SEDIMENT TRANSPORT AND CAUSE OF THE DEPOSITION IN NAI LAGOON (NINH THUAN PROVINCE)

Vu Duy Vinh, Do Thi Thu Huong, Nguyen Van Quan, Nguyen Ngoc Tien
Author affiliations

Authors

  • Vu Duy Vinh Institute of Marine Environment and Resources-VAST
  • Do Thi Thu Huong Institute of Marine Environment and Resources-VAST
  • Nguyen Van Quan Institute of Marine Environment and Resources-VAST
  • Nguyen Ngoc Tien Institute of Marine Geology and Geophysics-VAST

DOI:

https://doi.org/10.15625/1859-3097/16/3/6790

Keywords:

Nai lagoon, sediment transport, morphological change, MORFAC, Delft3D.

Abstract

This paper presents some studies on the characteristics of sediment transport and morphological change in the Nai lagoon (Ninh Thuan province). The 3D model was established based on Delft3D system combining hydrodynamics - wave - sediment transport and the MORFAC (the morphological acceleration factor) approach method with 36 different scenarios. The study results show that sediment flux in the coastal zone is predominantly moving from the east-northeast to the west-southwest directions. The sediments coming from the sea into the Tri Thuy channel are very big as compared with output sediment flux from the lagoon with daily average value of 760.1 m3/day and 122.8 m3/day respectively; these are the main cause of Nai lagoon inlet’s deposition processes. On the other hand, input and output sediment fluxes at the lagoon inlet (Tri Thuy Bridge) are small with daily average value of 3.4 m3/day and 2.1 m3/day respectively. The sediment from different sources into the Nai lagoon, but very small amount transported to the sea is the main cause of the deposition in Nai lagoon with rate of 5 - 15 mm/year. The sediment flux from the lagoon to the sea in the flooding is small and mostly kept in the lagoon. Therefore, the flooding makes significant increase of deposition rate in Nai lagoon.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Lesser, G. R., Roelvink, J. A., Van Kester, J. A. T. M., and Stelling, G. S., 2004. Development and validation of a three-dimensional morphological model. Coastal engineering, 51(8): 883-915. DOI: https://doi.org/10.1016/j.coastaleng.2004.07.014

Roelvink, J. A., 2006. Coastal morphodynamic evolution techniques. Coastal Engineering, 53(2): 277-287. DOI: https://doi.org/10.1016/j.coastaleng.2005.10.015

Lesser, G. R., 2009. An approach to medium-term coastal morphological modelling. UNESCO-IHE, Institute for Water Education.

Tonnon, P. K., Van Rijn, L. C., Walstra, D. J. R., 2006. The modelling of sand ridges on the shoreface. Coastal Engineering, 54(4): 279-296. DOI: https://doi.org/10.1016/j.coastaleng.2006.08.005

Jones, O. P., Petersen, O. S., and Kofoed-Hansen, H., 2007. Modelling of complex coastal environments: some considerations for best practise. Coastal Engineering, 54(10): 717-733. DOI: https://doi.org/10.1016/j.coastaleng.2007.02.004

Dissanayake, D. M. P. K., Ranasinghe, R., and Roelvink, J. A., 2009. Effect of sea level rise in tidal inlet evolution: A numerical modelling approach. Journal of Coastal Research, 56(2): 942-946.

Van der Wegen, M., and Roelvink, J. A., 2008. Long‐term morphodynamic evolution of a tidal embayment using a two‐dimensional, process‐based model. Journal of Geophysical Research: Oceans, 113(C3). DOI: https://doi.org/10.1029/2006JC003983

Van der Wegen, M., Wang, Z. B., Savenije, H. H. G., and Roelvink, J. A., 2008. Long‐term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research: Earth Surface, 113(F3). DOI: https://doi.org/10.1029/2007JF000898

Jones, M. T., Weatherall, P., and Cramer, R. N., 2009. User guide to the Centenary Edition of the GEBCO Digital Atlas and its data sets. Natural Environment Research Council.

Lyard, F., Lefevre, F., Letellier, T., and Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5-6): 394-415. DOI: https://doi.org/10.1007/s10236-006-0086-x

Locarnini, R. A., A. V., Mishonov, J. I., Antonov, T. P., Boyer, H. E., Garcia, O. K., Baranova, M. M., Zweng, C. R., Paver, J. R., Reagan, D. R., Johnson, M., Hamilton, D., Seidov, 2013. World Ocean Atlas 2013. Ocean Climate Laboratory. National Oceanographic Data Center. Silver Spring, MD 20910 - 3282.

Groenewoud, P., 2011. Overview of the service and validation of the database. Reference: RP_A870, www.waveclimate.com. BMT Argoss.

Delft Hydraulics, 2014. Delft3D-FLOW User Manual: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Technical report.

Battjes, J. A., and Janssen, J. P. F. M., 1978. Energy loss and set-up due to breaking of random waves. Coastal Engineering Proceedings, 1(16). DOI: https://doi.org/10.9753/icce.v16.32

Arcement, G. J., and Schneider, V. R., 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains. US. Geological Survey Water Supply Paper 2339, 38 p.

Simons, D. B., and Şentürk, F., 1992. Sediment transport technology: water and sediment dynamics. Water Resources Publication.

Uittenbogaard, R. E., 1998. Model for eddy diffusivity and viscosity related to sub-grid velocity and bed topography. Note, WL|Delft Hydraulics.

Van Vossen, B., 2000. Horizontal large eddy simulations; evaluation of computations with DELFT3D-FLOW. Report MEAH-197. Delft University of Technology.

Van Rjin, L. C., 1993. Principles of Sediment Transport in Rivers. Estuaries and Coastal. Seas. Aqua Publications. The Netherlands

Dissanayake, D. M. P. K., Roelvink, J. A., and Van der Wegen, M., 2009. Modelled channel patterns in a schematized tidal inlet. Coastal Engineering, 56(11): 1069-1083. DOI: https://doi.org/10.1016/j.coastaleng.2009.08.008

Vũ Duy Vĩnh, Nguyễn Văn Quân, 2015. Đặc điểm thủy động lực và khả năng trao đổi nước khu vực đầm Nại (Ninh Thuận) - kết quả từ mô hình Delft3D. Tạp chí Khoa học và Công nghệ biển, 15(3): 250-256.

Lê Thị Vinh, 2014. Chất lượng môi trường trầm tích đầm Nại, tỉnh Ninh Thuận. Tạp chí Khoa học và Công nghệ biển, 14(1): 59-67. DOI: https://doi.org/10.15625/jmst.v14i1.4030

Hjulstrøm, F., 1939. Transportation of debris by moving water, in Trask, P.D., ed., Recent Marine Sediments; A Symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, p. 5-31. DOI: https://doi.org/10.2110/pec.55.04.0005

Sundborg, Å., 1956. The River Klarälven: a study of fluvial processes. Geografiska Annaler, 38(2): 125-237. DOI: https://doi.org/10.2307/520140

Bruun, P., 1967. Tidal inlets and littoral drift (Vol. 2). Universitetsforlaget.

Nguyễn Đắc Vệ, Nguyễn Văn Quân, Bùi Văn Vượng, 2014. Đánh giá biến dổi hệ sinh thái ven bờ đầm Nại từ 1975 đến 2014 bằng công nghệ viễn thám và GIS. Tuyển tập Hội nghị Khoa học toàn quốc về sinh học và phát triển bền vững lần thứ 2. Nxb. Khoa học Tự nhiên và Công nghệ, Tr. 859-870.

Downloads

Published

31-08-2016

How to Cite

Vinh, V. D., Huong, D. T. T., Quan, N. V., & Tien, N. N. (2016). SEDIMENT TRANSPORT AND CAUSE OF THE DEPOSITION IN NAI LAGOON (NINH THUAN PROVINCE). Vietnam Journal of Marine Science and Technology, 16(3), 283–296. https://doi.org/10.15625/1859-3097/16/3/6790

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5