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ABSTRACT 

The dinoflagellate community was investigated in association with environmental factors using a data set in 
April 2021 and April 2022 in Xuan Dai Bay, South-Central Viet Nam. Environmental variables, including 
physical parameters and dissolved inorganic nutrients, were measured in April 2022. Seventy-three 
dinoflagellate taxa were identified for Xuan Dai Bay. There was a significant difference in the number and 
abundance of dinoflagellates between two parts of the bay, the upper and lower bay. The study showed that 
dinoflagellates favored an area with good water exchange and were less affected by aquaculture activities. 
Principal component analysis (PCA) was used to explore the relative abundances of different phytoplankton 
groups, their diversity indices, and environmental variables at the surface and bottom layers of the two parts 
of the bay. The results showed that dinoflagellates correlated to physical parameters (e.g., PAR, salinity, 
temperature) at the surface layer and nutrients at the bottom layer. Dinoflagellates and diatoms are 
mixotrophic and strongly correlated at the bottom layer in Xuan Dai Bay. This strong relationship in the bay 
was because of the dominance of a heterotrophic genus, Protoperidinium. The present study provided 
characteristics of the dinoflagellates in Xuan Dai Bay and the possible impacts of environmental parameters 
on their abundance. The results can be used for further studies and possibly managing of dinoflagellate 
blooms in coastal waters. 
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INTRODUCTION 

Marine dinoflagellates are one of the major 
groups of marine phytoplankton with different 
features in morphology, reproduction, toxin 
production, and nutrient demand in different 
waters [1–3]. They are important primary 
producers and indispensable in marine 
ecosystems, especially in coastal environments 
[4, 5]. Moreover, dinoflagellates are among the 
most sensitive phytoplankton to changes in 
environmental conditions [6, 7]. Their 
distribution is influenced by different interactions 
among environmental factors such as sea-
surface temperature, salinity, pH, and nutrients 
[8, 9]. Studies of dinoflagellate physiology have 
been carried out in various waters, from inshore 
to offshore waters (e.g., [10–20]). In Vietnam, 
studies on how dinoflagellate communities 
respond to the changes in environmental factors 
were sparse, especially in coastal or aquaculture 
areas. Recently, there was research on seasonal 
variations of the potentially toxic benthic 
dinoflagellates in Bai Lan, Nha Trang Bay [21]. 

This study analyzed how environmental 
parameters impact the benthic dinoflagellates 
and found possible responses of one 
dinoflagellate group to phosphate and other 
groups to PAR [21]. 

As semi-closed coastal waters in Central 
Vietnam, Xuan Dai Bay harbors rich biodiversity 
and brings ecological benefits for humans. With 
a surface area of about 13,000 hectares, 
aquaculture has developed more widely over 
the last 15 years. This bay is separated into two 
parts based on its morphology, the upper bay 
being relatively closed and shallower and the 
lower bay deeper and directly connected to 
open waters (Fig. 1). The upper bay has 
facilitating conditions to expand aquacultures, 
such as culturing lobsters, and oysters. 
Intensive aquaculture can release high 
nutrients or organic waste and generally cause 
environmental issues such as eutrophication. 
However, the changes in coastal environmental 
quality due to these anthropological activities 
affecting the dinoflagellate community are still 
sparse. 

 

  
Figure 1. Maps showing location of Xuan Dai Bay and sampling stations in April 2021 and 2022. 

Solid circles (4, 6, 8 & 13) are stations in 2021, solid triangles are stations in 2022  
(1, 3, 7, 9, 10, 12 & 15), and stars (2, 5, 11 & 14)  

indicate stations were sampling in both years 
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This study used phytoplankton and 
environmental data collected in April 2021 and 
2022 in Xuan Dai Bay to assess changes in 
communities and possible impacted factors. It 
focused on changes in dinoflagellate 
communities, including species composition, 
abundance, and effects of environmental 
factors on them in the survey area. 

MATERIALS AND METHODS 

Study area 

Xuan Dai Bay is in the northern part of Phu 
Yen Province. The bay is semi-closed with 
about 4.5 km wide mouth connecting to the 
open waters. Due to its morphological and 
bathymetric features, Xuan Dai Bay is divided 
into two parts, the upper bay (UB) and lower 
bay (LB), connected through a 2 km narrow 
channel (Fig. 1). The UB is a closed area and 
relatively flat. The waters are deeper toward 
the southeast, with the deepest ca. 9 m. The LB 
has an average of 14 m depth; the maximum 
depth at the mouth is 20 m [22]. 

Phytoplankton samples and environmental 
parameters were collected at 15 stations in 
April 2021 and April 2022 in Xuan Dai Bay (Fig. 
1). In April 2021; the phytoplankton samples 
were collected at 8 stations (2, 4–6, 8, 11, 13, 
14) with 8 qualitative samples and 16 
quantitative samples (at surface and bottom 
layers). In April 2022, water samples were 
taken at 11 stations (1–3, 5, 7, 9–15) with 11 
qualitative samples and 22 quantitative 
samples of phytoplankton and environmental 
parameters, including temperature, salinity, 
fluorescence, PAR and nutrients. 

Sampling and analysis 

Phytoplankton 

The net samples were taken at 15 stations 
in April 2021 and April 2022. Qualitative 
samples were collected using a plankton net 
with a 25 µm mesh size towing vertically, slowly 
from the bottom to the surface. Samples were 

fixed with formalin to a final concentration of 
5% and stored in the dark for later analysis. 
Species were identified, and cell dimensions 
were measured under the light microscope 
(Leica LDMB, Germany). A Calcofluor White 
M2R method [23] was used to identify armored 
dinoflagellates, and observation was under the 
epifluorescence microscope (Leica LDMB, 
Germany). 

Identification of the species was based on 
published descriptions of Graham & 
Bronikovsky [24], Abé [25], Balech [26], Tomas 
[27], Larsen & Nguyen Ngoc [28], Nguyen-Ngoc 
& Larsen [29], Nguyen-Ngoc et al., [30]; Phan-
Tan et al., [31]; Phan-Tan et al., [32]; Hoang 
Quoc Truong [33, 34], Shirota [35], Licea et al., 
[36]. The scientific names and the 
nomenclature were updated according to Guiry 
& Guiry [37]. Mixotrophic dinoflagellates were 
identified based on publication below: Baek et 
al. [38], Bockstahler and Coats [39], Bockstahler 
and Coats [40], Chang & Carpenter [41], Faust 
[42], Hansen & Tillmann [43], Hansen et al., 
[44]; Harrison et al., [45]; Horiguchi & Takano 
[46], Ishimaru et al., [47]; Jacobson & Anderson 
[48], Jeong et al., [49]; Jeong et al., [50]; Jeong 
et al., [51]; Leles et al., [52]; Lim et al., [53]; 
Löder et al., [54]; Nishitani et al., [55]; Norris 
[56], Park et al., [57]; Qiu et al., [58]. 

The quantitative samples were taken at 15 
stations In two surveys. Quantitative water 
samples (1 L) were collected using a 5-L Niskin 
bottle at each station’s surface and bottom 
layers, stored in PET plastic bottles and fixed 
with neutral Lugol solution. Samples were 
concentrated by settling through a few  
48 hours-settling steps, from 1,000 mL to the 
final 3 mL volume, using graded cylinders. A 
volume of 1,000 µL of each sample was loaded 
onto the counting chamber Sedgwick-Rafter to 
enumerate phytoplankton cells following the 
UNESCO method [59]. One drop of Calcofluor 
0.5 mg/mL was added to samples for 
identification and enumeration of 
dinoflagellates [28]. 

The qualitative and quantitative analysis of 
phytoplankton samples was performed at the 
Department of Plankton, Institute of 
Oceanography, Nha Trang. 
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Environmental variables 

The water environmental parameters were 
collected in April 2022 at 11 sampling samples 
in Xuan Dai Bay and used for Principal 
Components Analysis (PCA). All the water 
samples for nutrient analysis were collected 
using a 5-liter Niskin bottle at the surface and 
bottom layers. They were then kept in the dark 
at a low temperature (ca. 4oC) before 
transportation to the Department of Hydro-
Geochemistry laboratory, Institute of 
Oceanography, for analysis. Dissolved inorganic 
nutrients, including phosphate (PO4

3-), nitrite 
(NO2

-), nitrate (NO3
2-), and ammonia (NH3,4) 

were measured following standard methods 
[60]. Temperature, salinity, fluorescence, and 
Photosynthetically Available Radiation (PAR) 
were measured in situ using a Sea-Bird SBE 19+ 
CTD (USA) with valid calibration. 

Data analyses 

Phytoplankton data were extracted from the 
database of PLANKTONSYS (BioConsult A/S). 
Excel Microsoft Office 365 was used for data 
treatment and plotting. Correlations of 
dinoflagellate community and environmental 
factors were analyzed and illustrated by Principal 
Components Analysis (PCA) using RStudio 4.1.1 
with packages “FactoMineR” [61] and 
“factoextra” [62]. ArcMap 10.3 software was 
used to interpolate nutrient variables with the 
inverse distance weighted (IDW) interpolation 
method and plot the abundances of 
dinoflagellates. 

PRIMER software version 6 (PRIMER-E Ltd, 
Plymouth, United Kingdom) was used for 
calculating the Margalef and Shannon indices. 
The following equations were used: 

Margalef index: 

( ) ( )= −1 logd S N  [63] 

Shannon index: 

( )( )′ = − 2*logi iH sum P P  [64] 

where: i: the sites; ni: cell number of species 
counted on site i; N: a total cell number in a 

sample; S: a total of the number of species in a 
sample; Pi: frequency of the ith species in a 
sample = present probability of the ith species in 
a sample = ni/N. 

RESULTS AND DISCUSSION 

Environmental conditions 

Temperature, salinity, PAR, Fluorescence 

Water temperature was slightly higher, but 
salinity was lower at the stations of the UB 
compared to LB. There was a significant 
difference in salinity between the surface and 
bottom layers in the UB due to freshwater 
runoff from a small spring. Temperature and 
salinity strongly varied at 3–4 m depth in the 
UB and at 4–6 m in the LB (Figs. 2 & 3). 

 
Figure 2. Vertical temperature (oC) and salinity 

profiles at 5 stations in the UB, April 2022 
 

The PAR in the UB was high at the surface 
layer (ca. 1,000–2,000 µE.m−2.s−1) from above  
2 m depth at most stations, except for station 
3, with only 300–500 µE.m−2.s−1. PAR in the LB, 
however, was lower at the same depth (ca. 
300–1,400 µE.m−2.s−1) compared to the UB 
(Figs. 4 & 5). Regarding fluorescence, there was 

156 



Huynh Thi Ngoc Duyen et al./Vietnam Journal of Marine Science and Technology 2024, 24(2) 153–166 

no significant difference between the UB and 
the LB. The maximum fluorescence is mainly 
located at the middle and bottom layers of the 
water column in the UB and the middle layer 
(ca. 5–8 m depth) in the LB. 

 
Figure 3. Vertical temperature (oC) and salinity 

profiles at 6 stations in the LB, April 2022 

 
Figure 4. Vertical profiles of Fluorescence  

(mg Chl-a/m3) and Photosynthetically  
Available Radiation (PAR) at 5 stations  

in the UB, April 2022 

 
Figure 5. Vertical profiles of Fluorescence  

(mg Chl-a/m3) and Photosynthetically  
Available Radiation (PAR) at 6 stations  

in the LB, April 2022 
 
Dissolved nutrient concentrations 

  
Figure 6. Spatial variability of nutrient 

concentrations (phosphate, silicate, nitrate, 
and dissolved inorganic nitrogen)  

at the surface layer 
 

In April 2022, all nutrient concentrations 
were relatively low in the bay. However, the 
nutrient concentrations differed between the 
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surface and bottom layers, with higher 
concentrations at the bottom layer. Phosphate 
and nitrite concentrations were higher at both 
layers’ upper area, whereas nitrate was higher 
at the LB’s surface and the UB’s bottom layers. 
Ammonia was evenly distributed at the surface 
layer in all areas but higher at the bottom layer 
of the LB (Figs. 6 & 7). 

 
 

Figure 7. Spatial variability of nutrient 
concentrations (phosphate, silicate, nitrate, 

and dissolved inorganic nitrogen)  
at the bottom layer 

 
Dinoflagellate composition 

Regarding species composition, 73 
dinoflagellate taxa were identified in two 
surveys (2021–2022) in Xuan Dai Bay (Table 1). 
There was no significant difference in the 
number of species between the two years, with 
58 and 61 taxa in April 2021 and April 2022, 
respectively. The dinoflagellate species number 
was much lower in the upper bay (26 species), 
which has a dense density of lobster cages, 
compared to the lower bay (72 species). There 
was a bloom formation of centric diatom 
Leptocylindrus danicus with densities of 3–6 × 
106 cells.L-1 at stations 1 and 2 in April 2022, 
and that could lead to an imbalance of the 
phytoplankton community. 

Dinoflagellate abundance significantly 
differed between the two surveys, with  
445 cells.L-1 and 1.235 cells.L-1 for April 2021 
and April 2022, respectively. However, there 
was no difference in dinoflagellate abundance 
between the surface and bottom layer in 2021, 
while it was higher at the surface layer in 2022 
(Fig. 8). Especially in the lower bay, the density 
of dinoflagellates at all stations at the surface 
layer was higher with over 1,000 cells.L-1. With 
the higher species number and abundance of 
dinoflagellate in the lower bay, dinoflagellates 
facilitated better in this area. The quality of the 
water environment in the lower bay was also 
better (Figs. 6 & 7), with less affected by 
aquaculture activity and better water 
exchanged with the open sea compared to the 
upper bay. 

 
Table 1. List of dinoflagellate species in Xuan Dai Bay in April 2021 and April 2022 

Ord. Species 
Stations 

Encounter 
frequency 

Upper bay Lower bay 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Akashiwo sanguinea 
 

+ + 
   

+ + + + + + + + + 11 
2 Alexandrium sp. 

        
+ + + + 

 
+ + 6 

3 Amphisolenia bidentata 
        

+ 
 

+ 
    

2 
4 Blixaea quinquecornis 

 
+ 

 
+ 

 
+ 

         
3 

5 Ceratocorys horrida 
             

+ 
 

1 
6 Dinophysis caudata 

      
+ + + + + + + + + 9 

7 Dinophysis fortii         + +  + + + + 6 
8 Dinophysis miles 

      
+ 

 
+ + + + 

 
+ + 7 

9 Dinophysis sp. 
        

+ 
 

+ 
  

+ 
 

3 
10 Gonyaulax alaskensis 

       
+ + 

 
+ 

 
+ + + 6 

11 Gonyaulax fusiformis 
      

+ 
  

+ + 
  

+ 
 

4 

158 



Huynh Thi Ngoc Duyen et al./Vietnam Journal of Marine Science and Technology 2024, 24(2) 153–166 

Ord. Species 
Stations 

Encounter 
frequency 

Upper bay Lower bay 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

12 Gonyaulax polygramma 
     

+ 
 

+ + + + + + + + 9 
13 Gonyaulax sp. 

       
+ 

   
+ 

  
+ 3 

14 Gonyaulax spinifera + 
 

+ 
   

+ + + + + + + + + 11 
15 Gymnodinium sp. 

 
+ 

 
+ 

    
+ + + + 

 
+ + 8 

16 Gyrodinium sp. + + 
 

+ 
 

+ 
 

+ + + + + + + + 12 
17 Lingulodinium polyedra 

      
+ + + + + + + + + 9 

18 Noctiluca scintillans 
        

+ + + + 
 

+ + 6 
19 Ornithocercus magnificus 

           
+ 

  
+ 2 

20 Ostreopsis sp. 
            

+ 
  

1 
21 Oxytoxum milneri 

            
+ + 

 
2 

22 Oxytoxum tesselatum 
       

+ 
  

+ + + + 
 

5 
23 Oxytoxum laticeps 

       
+ 

       
1 

24 Phalacroma cf. rotundatum 
       

+ 
       

1 
25 Phalacroma cuneus 

           
+ 

  
+ 2 

26 Podolampas bipes 
             

+ 
 

1 
27 Podolampas palmipes 

       
+ + 

 
+ + + + 

 
6 

28 Prorocentrum cf. rhathymum + + + 
 

+ 
 

+ 
 

+ 
      

6 
29 Prorocentrum micans 

  
+ 

  
+ + + + + + + + + + 11 

30 Prorocentrum sigmoides 
      

+ + + + + + + + + 9 
31 Prorocentrum sp. + + 

  
+ + + 

 
+ 

  
+ + 

  
8 

32 Protoperidinium angustum 
            

+ + 
 

2 
33 Protoperidinium brochii 

          
+ + + + + 5 

34 Protoperidinium claudicans 
         

+ 
  

+ 
 

+ 3 
35 Protoperidinium conicoides 

             
+ + 2 

36 Protoperidinium conicum 
       

+ 
  

+ 
 

+ + 
 

4 
37 Protoperidinium crassipes 

      
+ + + + + + + + + 9 

38 Protoperidinium depressum 
       

+ + 
 

+ + 
 

+ + 6 
39 Protoperidinium divergens 

         
+ 

 
+ 

 
+ 

 
3 

40 Protoperidinium elegans 
        

+ 
  

+ + 
 

+ 4 
41 Protoperidinium excentricum 

          
+ 

 
+ 

  
2 

42 Protoperidinium humile 
 

+ 
 

+ 
        

+ 
  

3 
43 Protoperidinium inflatum 

            
+ 

  
1 

44 Protoperidinium oceanicum 
      

+ + + + + + + + + 9 
45 Protoperidinium ovum 

        
+ 

 
+ + + + + 6 

46 Protoperidinium pellucidum + + + 
 

+ 
 

+ + + + + + + + + 13 
47 Protoperidinium pentagonum 

        
+ + + + 

 
+ + 6 

48 Protoperidinium sinuosum 
        

+ 
 

+ 
  

+ 
 

3 
49 Protoperidinium solidicorne 

             
+ 

 
1 

50 Protoperidinium spp. + + + + + + + + + + + + + + + 15 
51 Protoperidinium venustum 

       
+ + + + 

 
+ + + 7 

52 Protoperidinium yonedae 
      

+ + + 
 

+ + + + + 8 
53 Pseliodinium vaubanii 

          
+ + 

 
+ 

 
3 

54 Pyrocystis fusiformis 
        

+ 
  

+ 
  

+ 3 
55 Pyrophacus horologium 

       
+ + + + + + + 

 
7 

56 Pyrophacus steinii 
      

+ 
 

+ + + + + + + 8 
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Ord. Species 
Stations 

Encounter 
frequency 

Upper bay Lower bay 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

57 Tripos azoricus 
              

+ 1 
58 Tripos furca 

 
+ + + + + + + + + + + + + + 14 

59 Tripos fusus 
    

+ 
 

+ + + + + + + + + 10 
60 Tripos gibberus           +  +   2 
61 Tripos hexacanthus 

          
+ 

    
1 

62 Tripos inflatus 
        

+ + + + 
 

+ 
 

5 
63 Tripos lunula 

          
+ 

  
+ 

 
2 

64 Tripos macroceros 
        

+ 
 

+ + 
 

+ + 5 
65 Tripos massiliensis       + + + + + + + +  8 
66 Tripos muelleri 

 
+ 

   
+ + + + + + + + + + 11 

67 Tripos pentagonus 
       

+ 
   

+ 
 

+ + 4 
68 Tripos platycornis 

           
+ 

   
1 

69 Tripos trichoceros 
 

+ 
   

+ + + + + + + + + + 11 
70 Tripos candelabrum          +   + +  3 
71 Tripos carriensis 

             
+ 

 
1 

72 Tripos longipes 
        

+ 
 

+ 
  

+ + 4 
73 Tripos setaceus 

        
+ 

 
+ + 

 
+ + 5 

Total 6 12 7 6 6 9 21 29 42 31 46 44 39 53 41 73 
 

 

a b 

c d 

 
Figure 8. Distribution of dinoflagellate densities (cells.L-1) in Xuan Dai Bay in 2021 and 2022  

at the surface and bottom layers (a: surface layer in 2021; b: bottom layer in 2021;  
c: surface layer in 2022; d: bottom layer in 2022) 
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Effects of environmental variables on 
dinoflagellates 

Principal component analysis (PCA) using 
abundances of dinoflagellates (Dino), 
mixotrophic dinoflagellates (MTD), the number 
of dinoflagellates’ species (S), dinoflagellates’ 
Margalef (d) and Shannon (H) indices, diatoms’ 
abundance (Diat) and environmental variables 
showed the first two PCA axes explained 55.5% 
of the variance, with 31.9% and 23.6% for PC1 
and PC2, respectively (Fig. 9). The 
environmental factors were strongly 
correlated to PC1, including nitrite (0.84), 
nitrate (0.70), and PAR (-0.61) Salinity was 
correlated to PC2 (-0.86). Environmental 

factors had different effects on dinoflagellate 
abundance, MTD, diatoms, number of species, 
and Margalef and Shannon indices, and varied 
among the locations. At the surface layer, 
these variables are closely correlated with 
physical conditions (e.g., temperature, salinity, 
and PAR), ammonia, and fluorescence at the 
surface layer. At the bottom layers, they had a 
strong relationship with nutrients (nitrite, 
nitrate, phosphate, DIN). Especially at the 
bottom layer of the UB, the abundance of 
dinoflagellates and diatoms and the Shannon 
index were negatively correlated with 
nutrients. There was a strong correlation 
between the abundance of dinoflagellates and 
diatoms at the bottom layer. 

 
 A B 

C D 

 
Figure 9. Principle Component Analysis (PCA) for dinoflagellate (Dino) and mixotrophic dinoflagellate 

(MTD) abundance; diatoms (diat); Shannon index of dinoflagellates (H); Margalef index of 
dinoflagellates (d); species number of dinoflagellates (S) and environmental factors (Temperature - 

Tem; Salinity - Sal; Photosynthetically Available Radiation - PAR; Fluorescence - Flu; Phosphate - PO4; 
Nitrate - NO3; Nitrite - NO2; Ammonia - NH4; Dissolved inorganic nitrogen - DIN; Silicate - SiO3) at the 

UB’s surface (A), the UB’s bottom (B), the LB’s surface (C), and the LB’s bottom (D) 
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Mixotrophic dinoflagellates (MTD) have 
both phototrophy and phagotrophy [65], 
making the an excellent adaptive strategy of 
the group, reflecting changes in environmental 
factors and the ability to catch prey [66–68]. 
However, understanding the ecology of 
mixotrophic dinoflagellates is needed in 
Vietnamese waters, especially in coastal areas 
and internationally. Therefore, in the present 
study, we attempted to estimate the 
relationship between mixotrophic 
dinoflagellates and environmental variables, 
aiming to contribute a more detailed 
background of dinoflagellates in the survey 
area. In Xuan Dai Bay, abundance of MTD and 
dinoflagellates were highly correlated. One 
exception was for the UB’s bottom layer due to 
mixotrophy being the dominance of total 
dinoflagellate abundance in this data set. The 
correlation between dinoflagellate and diatom 
abundance is well-known, with dinoflagellate 
being mostly mixotrophic. In Xuan Dai Bay, this 
strong relationship at the bottom layers was 
probably because of the dominance of a 
heterotrophic genus, Protoperidinum, which 
feeds on diatoms or small flagellates [48, 69]. 
This genus dominated at the bottom layer in 
most stations of the UB with over 60% of total 
dinoflagellate abundance. 

According to this study, physical and 
nutrient variables were the main components 
affecting the dinoflagellate community at the 
surface and bottom layers. Previously, some 
studies mentioned temperature as a significant 
predictor of dinoflagellate abundance [11, 17, 
19, 20]. In a model simulation, Zhou et al. 
suggested that nitrate was crucial in 
determining the intensity of dinoflagellate 
blooms. In this simulation, diatoms succeeded 
before the dinoflagellates [18]. Our results 
showed that phosphate influenced 
dinoflagellate less than other nutrients. In real 
situations, dinoflagellate abundance can be 
controlled by more than two factors [20] and 
even interactions among those environmental 
factors. Besides, dinoflagellates have a strong 
capacity for phosphorus storage [14], and with 
their mixotrophic ability, it is not easy to detect 
the impacts of a single environment variable on 
them. Evaluating the relationship between 

dinoflagellates and environmental factors has 
generally required a spatially and temporally 
large data series to provide comprehensive 
results. However, the present study used the 
data set of the surveys in an embayment, which 
would reveal a part of the knowledge of the 
dinoflagellate community in their waters. 
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