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ABSTRACT 

Salinity intrusion forecasting is essential and challenging for hydrometeorology, especially in climate 
change. Employing machine learning (ML) algorithms and conventional forecasting techniques are 
gaining popularity and providing high performance. This study presents a method to optimize a machine 
learning model based on the Long Short-Term Memory (LSTM) algorithm for multistep-ahead salinity 
forecasting (up to 7 days) at Dai Ngai station, Soc Trang province. The optimization method based on the 
Bayesian algorithm for hyperparameters optimization and input predictors optimization has been highly 
effective for predicting salinity with a lead time of 1 day to 7 days. Specifically, the forecast results 
evaluated by the R2 and RMSE indexes both give satisfactory results on the test data set (with lead time 
from 1 day to 7 days, R2 ranges from 0.9 to 0.54, and RMSE ranges from 0.27 to 0.53). This study is a 
premise for improving machine learning models for short-term and long-term salinity intrusion prediction 
in the Mekong delta and Vietnam. 
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INTRODUCTION 

Salinity intrusion is an important issue 
because of its adverse effects on economic 
activities and social life [1]. Especially in the 
Mekong delta, salinity intrusion is increasingly 
complicated by human activities in the 
upstream Mekong river and sea level rise due 
to climate change [2]. Salinity intrusion 
forecasting is one of the crucial tasks in 
responding to its adverse impacts. 

There are two main approaches to predicting 
salinity intrusion: mathematical models based on 
equations that simulate the physical processes of 
flows and material propagation and transport 
(physical-based) and data-driven models. With 
the physical-based approach, in the Mekong 
delta region, many studies have used the Mike 
model for short-term forecasting and salinity 
intrusion simulation for climate change 
scenarios [3–5]. The advantage of this approach 
is that it helps researchers to understand the 
relative physical processes and drivers of 
salinity intrusion, thereby providing a basis for 
responding solutions. Furthermore, this 
methodology offers high reliability due to its 
extensive development history and notable 
achievements. However, the above approach’s 
limitations are difficult to solve in practice, 
including (i) large data requirements and  
(ii) expensive computational resources. Some 
critical data required for these models  
(e.g., topography, cross-sections, structures, 
hydrometeorology, etc.) are always difficult to 
collect and measure accurately. Specifically, 
these data are subject to alterations resulting 
from human activities such as dredging 
operations, sand mining, and river construction 
projects, thus increasing the margin of error in 
the model. Besides, model calculation 
complexity and simulation time challenge 
require extensive computational resources. 

The data-driven approach is promising 
because of its advantages. Previously, this 
approach had many limitations because 
statistical models could not give good results 
for time series forecasting, even basic machine 
learning models such as Autoregressive 
integrated moving average (ARIMA), Decision 
tree, and Random Forest [6]. However, with the 

vigorous development of deep learning 
algorithms, the limitations of the data-driven 
approach have been improved and brought 
about high efficiency, especially in tasks such 
as streamflow and dam inflow forecasting [7–
9], water level forecasting [10], regional wave 
height forecasting [11]. This approach has been 
applied to predict saline intrusion in the 
Mekong delta with promising results [12, 13]. 

Prominent among these algorithms is Long 
Short-Term Memory (LSTM), a particular 
Recurrent Neural Network (RNN) structure. 
The unique structure of LSTM allows this 
neural network to have the ability to remember 
long-term information in time series, through 
which the model built on LSTM can predict 
with a long period and high accuracy. 

A deep learning model’s training efficiency 
and quality depend on how the 
hyperparameters are tuned. However, 
optimizing the hyperparameters of any deep-
learning model is always challenging [14]. In 
addition, the error accumulation problem in 
multistep-ahead prediction always worries both 
the modelers and model users [15]. 

This study aims to propose and test a 
hybrid model using the Bayesian optimization 
method and a deep learning model based on the 
LSTM network to give multi-step-ahead 
predictions of daily maximum salinity series at 
Dai Ngai station, Soc Trang province. The 
investigation outcomes have showcased the 
method’s substantial efficacy, thus establishing 
the potential for its practical implementation. 
The model building and hyperparameter 
optimization process in this study is also a 
suggestion for other studies on building models 
based on applicable deep machine learning 
algorithms. 

METHODOLOGY AND DATASET 

Long-Short Term Memory (LSTM) 

Long Short-Term Memory Network 
(LSTM) is a unique structure of Recurrent 
Neural Network (RNN) capable of remembering 
long-term information of time series data [16] 
and overcoming the disadvantages of the basic 
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RNN structure. The remarkable difference in the 
LSTM structure is the addition of a long-term 
“memory” (cell state Ct). This memory is 
updated and transmitted in the LSTM network to 
help the network remember the information in 
the long term. Besides, a short-term “memory” 
(hidden state ht) is still retained as an RNN 
structure to calculate for each specific time step 

(Figure 1). These two memories are informed by 
equations called gates. These gates decide to 
discard information that is not useful to the 
network (forget gate), retain important 
information (input gate), and provide 
information to calculate output results. (output 
gate). The basic equations of the LSTM network 
structure are shown in Equations (1–6). 

 

 
Figure 1. The basic structure of LSTM cell 

 
( )1. .t f t f t ff W x U h bσ −= + +           (1) 



( )1. .t i t i t Ci W x U h bσ −= + +               (2) 



 

( )1tanh . .t t tCC CC W x U h b−= + +


      (3) 

( )1. .t o t o t oO W x U h bσ −= + +            (4) 



1t t t t tC C f i C−= +                     (5) 

( )tanht t th O C=                           (6) 

ft represents the forget gate at time step t. The 
sigma function in this equation gives a value 
from 0 to 1 that determines what information 
is removed from the network; if the value of 
the function is 0, then all information is 
removed, and vice versa if the function is 
equal to 1, all information is kept in the 
network. it represents the input gate, which 
determines the amount of information to feed 

into the network through the standby state 
equation tC . Ot represents the output gate, 
providing information for calculating outputs. 
Finally, two long-term memory states, Ct and 
short-term ht, are updated. Equations (1) to (4) 
contain 12 parameters (Wf, Uf, bf, Wi, Ui, bi, 

CW , 
CU , 

Cb , Wo, Uo, bo) that an LSTM 
network needs to train. 

A time series prediction model based on the 
LSTM network structure needs to be 
implemented by 5 main hyperparameters, 
including the Number of Layers, the Number of 
Hidden Units, the Dropout Rate, the Batch 
Size, and the Number of Epochs. 
Hyperparameters significantly affect the 
model’s accuracy, therefore, need to be 
optimized so that the LSTM model has the best 
results [9]. This study uses the method of 
hyperparameter optimization by Bayesian 
optimization. Besides, some general settings 
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were used for the models in this study, 
including The loss function used is Mean 
Square Error (MSE), the parameter 
initialization method of the model is the Xavier 
method [14], and the loss function optimization 
method used the Adam [17]. 

Hyperparameter optimization method 

Before training the model, it is necessary to 
choose the hyperparameter setting because it 
affects the model’s accuracy, but this is a time-
consuming and confusing step [9, 18]. 
Optimization of hyperparameters is imperative 
in achieving the maximal accuracy of the 
model. Table 1 displays the hyperparameters 
that require determination in this study. The 
hyperparameter selection process’s main 

challenge is finding the best set of 
hyperparameters among many different 
combinations that save computation time and 
cost. Grid search (GS) and random search (RS) 
are two popular methods widely used because 
of their simplicity and convenience [19, 20]. 
The operation of the above two search methods 
is depicted in Figures 2a and 2b. The advantage 
of these two methods is that they are simple, 
accessible, and give relatively good results 
compared to the ad-hoc selection method. 
Nevertheless, the GS method requires extensive 
computation time to evaluate all possible 
hyperparameter combinations. In contrast, the 
RS technique conserves computational 
resources by randomly exploring potential 
combinations among hyperparameters but may 
neglect optimal sets of hyperparameters. 

 

 
Figure 2. Hyperparameter optimization methods for machine learning models 

 
Optimizing hyperparameters by the 

Bayesian method has outstanding advantages 
compared to the above two methods in terms of 
accuracy and efficiency, and this has been 
researched and proven in the field of 
hydrometeorology [21–24]. The Bayesian-
based hyperparameter optimization process is 
shown in equation (7): 

( )* arg max ,H f H H= ∈            (7) 

which: H* is the optimal set of hyperparameters 
H; ℍ is the a priori distribution of H; and f is 
Gaussian processes (  ). The Bayesian 
method uses Gaussian distribution for its 
hyperparameter optimization process. Details 
of this method are presented in a number of 
studies such as [22, 23]. 

Study area and dataset 

The area of interest for this study is the end 
of the Hau river, which is also the Mekong 
estuary in Soc Trang province, which is likely to 
be heavily affected by the impacts of climate 
change (Fig. 3). According to the climate change 
scenario, if the sea level rises by 1 m, about 
43.7% of the area of Soc Trang province will be 
affected by salinity intrusion and affecting about 
450,000 people (35% of the total population of 
Soc Trang province). In addition, agricultural 
production accounts for a large proportion of the 
province’s economic structure and people’s 
income. For the above reasons, research on 
salinity intrusion forecasting and climate change 
response research is vital and urgent. 
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Figure 3. Study area 

 

 
Figure 4. Salinity data (g/L) daily observed at Dai Ngai station, Soc Trang province  

in the period from January to June of 2020 and 2021 
 

This study uses the highest salinity 
monitoring data (g/L) per day at Dai Ngai 
station, Soc Trang province, during the dry 
season of 2020 and 2021 (January to June). The 
data presented in Figure 4 of the study reveals a 
substantial discrepancy between the 
observation periods of 2020 and 2021. As a 
result, connecting the two data series for model 
training purposes may result in significant 
errors. The study builds two models for two 

data periods (2020 and 2021) to evaluate the 
method’s effectiveness. Both models use 90% 
of the data length for training and 10% to test 
the model with a 7-day lead time. 

In a time series forecasting model, data 
about the delay of that series (lag-time) plays 
an important role, affecting the model’s 
accuracy [26]. Several methods can be used to 
select the amount of delay of the sequence as 
input to the model, such as Autocorrelation 
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(ACF) and Partial autocorrelation (PACF) [9, 
26, 27]. The disadvantage of the above 
method is that although it calculates the 
correlation between the lagged time series and 
the original data series, it is impossible to 
choose how much the correlation threshold is 
enough to choose the number of lags. This 
study does not use the above methods but 
selects the number of time lags based on the 
test method to find the most suitable lag time 
for each model. 

RESULTS AND DISCUSSION 

Result of lag-time selection for input predictor 

Figure 5 shows the accuracy of two LSTM 
models for two-time series 2020 and 2021 
(calculated on the test dataset). The figure 
shows that with the 2020 dataset, the model 
will give the slightest RMSE error (about 
0.32) and the highest R2 index (about 0.7) 
when the lag time used is 7. Like the 2021 
data with a lag time of 2, the model gives the 
smallest RMSE error (about 0.3) and the 
largest R2 accuracy (about 0.63). Note that 
these two LSTM models are not 
hyperparameter-optimized; the hyperpara-
meters of these models are randomly selected 
and fixed to evaluate the effect of lag time 
series. Thus, a time series with a lag time of 7 
is used for 2020 data and 2 for 2021. 

 

 
Figure 5. Optimal lag time for input predictors 

 
The results of the optimal LSTM models 

Table 1. The range of hyperparameters to 
optimize for the LSTM model 

Hyperparameter Range 
The number of hidden layers 1–7 
The number of hidden units 10–1,000 
The number of epochs 10–1,000 
Dropout rate 0.1–0.9 
Batch size 2–2,048 

With reliable input data selected in the 
above section, the LSTM model for two data 
series (2020, 2021) is set up with 
hyperparameters automatically optimized by 
the Bayesian method. The ranges of the 
hyperparameters’ values are shown in Table 1. 

Table 2 displays the mean values of the 
RMSE and the R2, calculated based on the test 
data set, for two data series of the observation 
periods of 2020 and 2021. The evaluation was 
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conducted across different lead times ranging 
from 1 to 7. The results show that both models 
for 2 data series have relatively good accuracy 

with the 1-day forecast value and even with the 
7-day forecast term; the model’s accuracy is 
also acceptable. 

 
Table 2. Results of optimal LSTM models for lead time from 1 to 7 days 

Lead time 
(day) 

2020 2021 
RMSE (g/L) R2 RMSE (g/L) R2 

1 1.16 0.90 0.29 0.89 
2 1.42 0.89 0.52 0.76 
3 1.49 0.86 0.64 0.60 
4 1.36 0.85 0.73 0.59 
5 1.48 0.82 0.82 0.57 
6 1.66 0.81 0.79 0.50 
7 2.08 0.72 0.85 0.51 

 
Figures 6 and 7 compares the measured and 

predicted values in the test set of 1-day lead 
time to the 7-day lead time of the 2020 and 
2021 data set, respectively. The findings 
highlight that the accuracy of predictions for a 

1-day lead time is superior to those made for a 
7-day lead time. However, it is noteworthy that 
the error associated with a 7-day lead time is 
not prohibitively large and still yields favorable 
outcomes.

 

 
Figure 6. Comparison of actual value and forecasted value of 1-day lead time  

to 7-day lead time forecasting of the 2020 data set 
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Figure 7. Comparison of actual value and forecasted value of 1-day lead time  

to 7-day lead time forecasting of the 2021 data set 
 

CONCLUSION 

Through the results of the prediction tests 
with a 7-day lead time using the optimal LSTM 
model, the research has proven the feasibility of 
the LSTM model for the salinity forecasting 
problem within 7 days. The study also shows 
that the Bayesian method works well for the 
hyperparameter optimization problem for the 
LSTM model. Furthermore, it has been 
demonstrated that optimizing input predictors 
can significantly impact on the accuracy of a 
predictive model. Based on the conclusions 
mentioned above, this study recommends that 
investigations utilizing LSTM models or other 
machine learning approaches carry out a 
meticulous calculation step and carefully select 
input parameters while also optimizing 
hyperparameters to enhance the accuracy of the 

predictive models. This study uses two separate 
LSTM models with two years of separate data 
without combining the two data series into one 
to evaluate the model. In the future, this study 
intends to conduct experiments utilizing 
numerous data series of dry seasons from 
multiple years in the past. The aim is to develop 
a model that can effectively extract valuable 
insights from historical data utilizing the LSTM 
model. Additionally, the study intends to 
investigate and test various techniques for 
enhancing the performance of the LSTM model 
in the context of salinity prediction. 

Recently, there has been a remarkable surge 
in the interest surrounding physics-informed 
neural networks. This approach stands out due 
to its incorporation of hydrodynamic 
information in conjunction with neural 
networks, resulting in enhanced accuracy of 
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machine learning models [28–30]. Applying 
this methodology to predict saline intrusion in 
the Mekong delta holds great promise and will 
be a focal point of future research endeavors. 
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