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Abstract 
This study proposes a numerical model based on the depth-integrated non-hydrostatic shallow 
water equations with an improvement of wave breaking dissipation. Firstly, studies of parameter 
sensitivity were carried out using the proposed numerical model for simulation of wave breaking 
to understand the effects of the parameters of the breaking model on wave height distribution. The 
simulated results of wave height near the breaking point were very sensitive to the time duration 
parameter of wave breaking. The best value of the onset breaking parameter is around 0.3 for the 
non-hydrostatic shallow water model in the simulation of wave breaking. The numerical results 
agreed well with the published experimental data, which confirmed the applicability of the present 
model to the simulation of waves in near-shore areas. 
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INTRODUCTION 
Water surface waves in the near-shore zone 

are very complicated and important for the 
sediment transportation as well as bathymetry 
changes in the near-shore areas. The accurate 
simulation of near-shore waves could result in a 
good chance to estimate well the amount of 
sediment transportation. So far, scientists have 
made effort to simulate waves in the near-shore 
areas for several decades. Conventionally, 
Navier-Stokes equations are accurate for the 
simulation of water waves in the near-shore 
areas including the complicated processes of 
wave propagation, shoaling, deformation, 
breaking and so on. However, for the practical 
purpose, the simulation of waves by a Navier-
Stokes solver is too expensive and becomes 
impossible for the case of three dimensions 
with a real beach. To overcome these 
difficulties, the Boussinesq type equations 
(BTE) have been used alternatively by coastal 
engineering scientists for more than two 
decades. Many researchers have reported 
successful applications of BTE to the 
simulation of near-shore waves in practice. 
Some notable studies could be mentioned such 
as Deigaard (1989) [1], Schaffer et al. (1993) 
[2], Madsen et al., (1997) [3, 4], Zelt (1991) 
[5], Kennedy et al., (2000) [6], Chen et al., 
(1999) [7] and Fang and Liu (1999) [8]. 

Recently, the success in application of the 
depth-integrated non-hydrostatic shallow water 
equations (DNHSWE) to the simulation of 
wave propagation and deformation reported by 
researches has provided a new type of 
equations for practical choices of coastal 
engineers. DNHSWE derived from depth-
integrating Navier-Stokes equations [9] 
contains non-hydrostatic pressure terms 
applicable to resolving the wave dispersion 
effect in simulation of short wave propagation. 
Compared to BTE which contains terms with 
high order spatial and temporal gradients, 
DNHSWE is relatively easy in numerical 
implementations as it contains only the first 
order gradient terms. These make DNHSWE 
become attractive to the community of coastal 
engineering researchers. So far, DNHSWE has 
been successfully applied to the simulation of 
wave processes in the near-shore areas in 

several studies. Some notable studies of wave 
propagation and wave breaking have been 
reported by Walter (2005) [10], Zijlema and 
Stelling (2008) [11], Yamazaki et al., (2009) 
[12], Smit et al., (2013) [13], Wei and Jia 
(2014) [14], and Lu and Xie (2016) [15]. The 
results given by the latter researchers confirm 
that DNHSWE is powerful and applicable to 
the simulation of wave propagation and 
deformation including wave-wave interaction, 
wave shoaling, refraction, diffraction with 
acceptable accuracy and comparable to the 
BTE. In these studies, the comparisons of wave 
height between the simulated results and the 
experimental data were mostly carried out for 
cases with non-breaking waves or long waves. 
Very few tests were made for the cases with 
wave breaking in the surf zone. Thus, it is very 
difficult to assess DNHSWE in terms of the 
practical use in the surf zone where the wave 
breaking is dominant. Recently, Smit et al., 
(2013) [13] have proposed an approximation 
method of a so-called HFA (Hydraulic Front 
Approximation) for the treatment of wave 
breaking. Following this method, the non-
hydrostatic pressure is assumed to be 
eliminated at breaking cells, then DNHSWE 
model reduces to the nonlinear shallow water 
model with some added terms accounting for 
the turbulent dispersion of momentum. 
Somewhat similarly to the technique given by 
Kennedy et al., (2000) [6], the onset of wave 
breaking based on the surface steep limitation 
is chosen. Notable discussion from Smit et al., 
(2013) [13] shows that the 3D version of non-
hydrostatic shallow water model needs a 
vertical resolution of around 20 layers to get 
accurate solution of wave height as good as 
that simulated by DNHSWE model with HFA 
treatment. Thus, by adding a suitable term 
accounting for wave breaking energy 
dissipation to DNHSWE, DNHSWE model 
becomes very powerful and applicable to a 
practical scale in the simulation of waves in 
the near-shore areas. The simulated results 
given by Smit et al., (2013) [13] showed good 
agreements with the experimental data given 
by Ting and Kirby (1994) [16]. The 3D 
version of non-hydrostatic shallow water 
model is very accurate in the simulation of 
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wave dynamics in surf zones. However, it is 
still very time consuming for the simulation of 
a practical case. 

The objective of the present study is to 
introduce another method with dissipation 
terms for DNHSWE to account for the wave 
energy dissipation due to wave breaking. 
Numerical tests are conducted to estimate the 
effects of the dissipation terms on the 
simulation of waves in near-shore areas 
including wave breaking in surf zones. 
Comparisons between the simulated results and 
the experimental data are also carried out to 
examine the effectiveness of the model. Results 

of the present study reveal that DNHSWE 
model including the dissipation terms can be 
applicable to the simulation of waves in near-
shore areas with an acceptable accuracy. 

NUMERICAL MODEL 
Governing equations 

Following the derivation given by 
Yamazaki et al., (2009) [12], the depth-
integrated non-hydrostatic shallow water 
equations can be written as follows: 

The momentum conservation equations 
for the depth-averaged flow in the x and y 
direction:
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The momentum conservation equation for 
the vertical depth-averaged flow: 
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The conservation of mass equation for 
mean flow: 
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Boundary equations at the free surface and 
at the bottom are as follows: 
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Where: (U, V, W) are the velocity components 
of the depth-averaged flow in the x, y, z 
directions, respectively; q is the non-
hydrostatic pressure at the bottom; n is the 
Manning coefficient; ζ = ζ(x, y, t) is the 
displacement of the free surface from the still 
water level; t is the time; ρ is the density of 

water; g is the gravitational acceleration; D is 
the water depth = (h+ζ). 

Wave breaking approximation 
Previous studies presented by Yamazaki et 

al., (2009) [12] showed that the governing 
equations for mean flows presented in section 
Governing equations were very good for the 
simulation of long waves and the propagation 
of non-breaking waves. However, these 
equations are not suitable enough for the 
simulation of water waves in coastal zones, 
where the waves are dominant with wave 
breaking phenomena. The reason is that the 
governing equations (1), (2) and (3) do not 
contain any terms accounting for the wave 
energy dissipation due to wave breaking. In 
order to apply the depth-integrated non-
hydrostatic shallow water equations to the 
simulation of water waves in the near-shore 
areas, the treatment for wave energy dissipation 
due to wave breaking is needed. 

So far, the wave energy dissipation 
methods have been derived for studying waves 
in shallow water with the application of 
Boussinesq equations. The successful studies 
can be mentioned such as those given by 
Madsen et al., (1997) [3, 4] and Kennedy et al., 
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(2000) [6], which presented the results in very 
good agreement with experimental data for 
wave breaking in surf zones. In the present 
study, the method given by Kennedy et al., 
(2000) [6] is used, and then it is applied to the 
depth-integrated non-hydrostatic shallow water 
equations for water wave propagation in the 
near-shore areas. 

Similarly to the method given by 
Kennedy et al., (2000) [6], in order to 
simulate the diffusion of momentum due to 
the surface roller of wave breaking, the terms 
Rbx, Rby and Rbz added to the right hand side 
of the momentum equations in the x, y, and z 
directions (Eqs. (1), (2) and (3)) are as 
follows: 
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However, the terms in Eqs. (7), (8) and (9) 
only account for the horizontal momentum 
exchanges due to wave breaking. Thus, in order 
to account for the energy lost due to the 
breaking process (dissipation due to bottom 
friction, heat transfer, release to the air, sound, 
and so on) we introduce other dissipation terms 
associated with the dissipation of vertical 
velocity and non-hydrostatic pressure where 
wave breaking occurs as follows: 
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o
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the previous time step, respectively; ve is the 

turbulence eddy viscosity coefficient defined 

by Kennedy et al., (2000) [12]: 
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With δ = 0.0–1.5, ghT /*  , 

ghI
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t 15.0)(  . 

Where: T
*
 is the transition time (or duration of 

wave breaking event); t0 is the time when wave 

breaking occurs, t – t0 is the age of the breaking 

event; ghI

t  )(
 is the initial onset of 

wave breaking (the value of parameter α varies 

from 0.35 to 0.65 according to Kennedy et al., 

(2000) [6]; 
)( F

t  is the final value of wave 

breaking. 

As wave breaking appears, the vertical 
movement velocity at the surface and non-
hydrostatic pressure are assumed to be 
dissipated gradually in the forms of Eqs. (10), 
(11) for the breaking point and neighbor points 
during the breaking time T

*
. Thus, there are 

two parameters affecting the dissipating 
process and these parameters are γ and β. 
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Numerical methods 
In order to solve numerically the 

governing equations from (1) to (4) with 
boundary equations (5) and (6) including wave 
breaking approximation (7), (8), (9), (10) and 
(11), we employed a conservative finite 
difference scheme using the upwind flux 
approximation given by Yamazaki et al., 
(2009) [12]. The space staggered grid is used. 
The horizontal velocity components U and V 
are located at the cell interface. The free 
surface elevation ζ, the non-hydrostatic 
pressure q, vertical velocity and water depth 
are located at the cell center. The solution is 
decomposed into 3 phases: The hydrostatic 
phase, non-hydrostatic phase and breaking 

dissipation phase. The hydrostatic phase gives 
the intermediate solution with the contribution 
of hydrostatic pressure. Then, the intermediate 
values are used to find the solution of the non-
hydrostatic pressure in the non-hydrostatic 
phase. In the last phase, the velocities of the 
motion are corrected using the non-hydrostatic 
pressure q and dissipation terms due to wave 
breaking to obtain the values at the new time 
step and then the free surface is determined 
using the corrected velocities. 

Hydrostatic phase 
For the horizontal momentum equations: 

The horizontal momentum equations (1), 
(2) are discretized as follows: 

 

     

   
   

1
, , , 1, , 1, 1, ,

2 2

, , ,2
, , 1 , 1 , 4/3

1, ,( )

m m m m m m m m m m
j k j k j k j k p j k j k n j k j k

m m m
j k j k xj km m m m m m

xp j k j k xn j k j k m m
j k j k

g t t t
U U U U U U U U

x x x

tU U Vt t
V U U V U U n g

y y D D

 
  

 



  
      

  

  
    
  

     (15) 

     

   
   

1
, , , 1 , , 1, 1, ,

2 2

, , ,2
, , 1 , 1 , 4/3

, , 1( )

m m m m m m m m m m
j k j k j k j k yp j k j k yn j k j k

m m m
j k yj k j km m m m m m

p j k j k n j k j k m m
j k j k

g t t t
V V U V V U V V

y x x

tV U Vt t
V V V V V V n g

y y D D

 
  

 



  
      

  

  
    
  

         (16) 

 

Where: 
m

pxV , 
m

nxV , 
m

pyU , 
m

nyU  are the averaged advection speeds and defined in the form of 

Eqs. (17), (18) as follows: 
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The momentum advection speeds are 
determined by the method given by Yamazaki 
et al., (2009) [12] and used to estimate the 
velocities at the cell side and conservative 
upwind fluxes as follows: 
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The numerical flux in the x  direction for 

a positive flow ( 0, m

kjU ) is estimated as 

follows:
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and for a negative flow ( 0, m
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Similarly, the momentum flux in the y 

direction is also estimated. The velocities 
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The numerical flux for a positive flow ( 0, m

kjV ) is estimated as follows: 

 

 



























 














0for
2

0for
22

1,,,

,1,

1,

,1,

,

,1,

,

m

kj

m

kjkj

m

kj

m

kj

m

kj

m

kj

m

kj

kj

m

kj

m

kj

m

kjp

Vh
VV

Vh
VV

FLV





                           (25) 

and for a negative flow ( 0, m

kjU ): 

 



























 


















0for
2

0for
22

1,1,1,

1,,

1,

2,1,

1,

1,,

,

m

kj

m

kjkj

m

kj

m

kj

m

kj

m

kj

m

kj

kj

m

kj

m

kj

m

kjn

Vh
UV

Vh
VV

FLV





                (26) 



A numerical model for simulation of near-shore waves 

161 

Note that the average velocity components: 
m

pyU , 
m

nyU ,
m

pxV , 
m

nxV  in Eqs. (15) and (16) are 

defined by Eqs. (17) and (18) with the values 

of 
m

pU ,
m

nU ,
m

pV ,
m

nV  estimated by equations 

from (19) to (26). The average values of 
m

kj ,  

and kjh ,  are also determined by Eqs. (16), 

(17). Superscript m denotes the value at old 

time step. 

For the mass conservation equation: 

Eq. (4) is discretized as follows: 
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Non-hydrostatic phase  

In this phase, the values at the new time 
step are determined from the intermediate 

values of velocity and non-hydrostatic pressure 
as follows: 
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In order to find the values of 
1

,

m

kjq , the vertical momentum equation (3) is used and 

discretized as follows: 
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Where the approximation 

)(
2

1
,,, kjbkjskj wwW   is assumed. 

The vertical velocity component at the 

bottom is estimated using a finite difference 

upwind approximation for Eq. (6) as follows:
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Using the continuity equation with the 

approximation for one layer of water column, it 

can be written in the finite difference equation 

as follows: 
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Substituting the velocities at time step m+1 

expressed through Eqs. (29), (30) and (32) into 

Eq. (36) yields the following Poisson equation 

for determining the non-hydrostatic pressure: 
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Equation (37) can be solved numerically to 

obtain the values of 
1

,

m

kjq . Then, the values of 

parameters B and ve are determined by Eqs. 

(12) and (13). Values of Rbx, Rby and Rbz are 

determined by Eqs. (7), (8) and (9) using a 

central finite deference scheme for the second 

order derivatives.  

Breaking dissipation phase 

When wave breaking occurs, equation (10) 

is used to obtain the values of non-hydrostatic 

pressure 
1

,
* m

kjq  as follows: 
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,
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,
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The corrections for velocity components 
of flow including effects of wave breaking are 
as follows: 
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After determining the velocity components 

at the correction step, the conservation of mass 

equation is used for determination of the free 

surface elevation and the total water depth. 

Equation (27) is employed to determine values 

of 
1

,

m

kj  explicitly. 

The computational procedure can be briefly 

described as follows: 

Initials: The values of all variables are 

given at time step m as the initial condition: 

1) Give values of variables at forcing 

boundaries; 

2) Compute 
1

,

~ m

kjU , 
1

,

~ m

kjV  (Eqs. (15), 

(16)) using known variables at time step m; 

3) Compute coefficients Aj, k, Cj, k, and Qj, 

k using known values of variables at time step 

m and 
1

,

~ m

kjU , 
1

,

~ m

kjV , for Poisson equation (Eqs. 

(38), (39), (40) and (41)); 

4) Solve Poisson Eq. (37) to get values 

of 
1

,

m

kjq  using BiCG-STAB method; 

5) Compute the values of the breaking 

parameters using Eqs. (12)–(4);  

6) Correct values of 
1

,

m

kjq  with breaking 

effects using (42) and then compute the values 

of 
1

,

m

kjU , 
1

,

m

kjV ,
1

,

m

kjs  from Eqs. (43), (44) and 

(45); 

7) Calculate the values of 
1

,

m

kj  by using 

Eq. (27); 

8) The variables at the new time step 

m+1 are assigned to the values at old time step 

m. Return to step 1 and repeat steps from 1 to 8 

for the next time step until the specified time. 

Stability condition requires the time step 

∆t to satisfy the well-known CFL condition for 

propagation of long gravity waves and 

dispersion of viscous terms. In the present 

study, we choose 

  )(/,min25.0 max  hgyxt  for all 

simulations. 

Wet-dry boundary and wave maker source 

For the treatment of run-up calculations, the 

interface between wet and dry cells is 

extrapolated following the approach of 

Kowalik et al., (2005) [17]. The numerical 

solutions are extrapolated from the wet region 

onto the beach. The non-hydrostatic pressure is 

set to be zero at the wet cells along the wet-dry 

interface. The moving waterline scheme 
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provides an update of the wet-dry interface as 

well as the associated flow depth and velocity 

at the beginning of every time step. A maker 

index 
m

kjIDX ,  is introduced to identify the 

computation region. First, the index 
m

kjIDX ,  is 

set based on the flow depth of the cell, 

1, m

kjIDX  if the flow depth is positive and 

0, m

kjIDX  if the flow depth is zero or 

negative. Then, the surface elevation along the 

interface determines any advancement of the 

waterline. For flows in the positive x direction, 

if 0, m

kjIDX  and 1,1 

m

kjIDX  then cell 

index is re-evaluated as 1, m

kjIDX  (wet) if 

kj

m

kj h ,,1  , 0, m

kjIDX  (dry) if 

kj

m

kj h ,,1  . 

If a cell becomes wet, the flow depth and 

velocity components at the cell are set as: 

kj

m

kj

m

kj hD ,,1,   , 
m

kj

m

kj UU ,1,   

The marker indexes are then updated for 

flows in the negative x direction. The same 

procedures are implemented in the y 

direction. For case the water flows into a new 

cell from multiple directions, the flow depth 

is averaged. 

After completing the re-evaluation step of 
the marker indexes and variables, the 
computation is advanced for the next time step 
for the wet region. To avoid the numerical 
instability due to a cell frequently exchanged 
between dry and wet status, we used a small 
value of 10

–5
 m for a critical dry depth instead 

of using zero. 
To generate surface waves for numerical 

experiments, the internal generation wave 
source method of Wei et al., (1999) [18] is 
adopted. In the method, there are two 
components accounting for the source function 
term and the sponge dissipation layer added to 
the momentum equation (refer to Wei et al., 
(1999) [18] for more detail). 

SIMULATION RESULTS AND 
DISCUSSIONS 
Wave breaking on a planar beach 

The experimental data of wave breaking on 
a 1/35 slopping beach given by Ting and Kirby 
(1994) [16] was used to verify the capability of 
the proposed numerical model in the simulation 
of wave breaking in surf zone. 

Simulation condition 
The computational domain was similar to 

that in the experiment done by Ting and Kirby 
(1994) [16]. Fig. 1 presents the bathymetry of 
the domain with a 1/35 slopping beach and 
alongshore width of 1 m. 

 

 

Figure 1. Bathymetry for simulation of waves on 1/35 slopping beach 
 

Note that the simulation was carried out 
with 2D depth-integrated non-hydrostatic 
shallow water model instead of 1D model. 
Firstly, a study of parameter sensitivity was 

done in order to get appropriate values of the 
parameters of the numerical model. The 
incident wave condition for the numerical 
model is similar to that for the physical 
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experiment done by Ting and Kirby (1994) [16] 
(for case with the regular incident wave height 
and period of 0.125 m and 2.0 s, respectively). 
A regular orthogonal mesh with ∆x = ∆y = 0.05 
m was used for all simulations. 

Parameter sensitivity 

Due to the modification of the wave 

breaking model, there are several parameters 

whose sensitivity needs inspecting to 

understand how and how much they affect the 

simulated results. These parameters include the 

onset wave breaking coefficient α, the duration 

of wave breaking coefficient γ (in the formula 

ghT /*  ), and the dissipation percentage 

coefficient β. The final value of wave breaking 
)( F

t  is not significantly sensitive to simulated 

wave heights, therefore, we use the fixed value 

ghF

t 15.0)(   and δ = 1.5 as recommended 

by Kennedy et al., (2000) [6]. 

Kennedy et al., (2000) [6] suggested that 

the value of α ranges from 0.35 to 0.65. 

However, the simulated results of waves on the 

1/35 slopping beach by the present model show 

that the value of α should be smaller than 0.35. 

Fig. 2 presents the effects of the onset breaking 

parameter α on the simulated wave height 

distribution in comparison with the 

experimental data given by Ting and Kirby 

(1994) [16]. It is clearly observed that the value 

of α equal to or greater than 0.35 makes the 

wave breaking location shift shoreward in 

comparison with the experimental data. The 

smaller value of α produces the earlier breaking 

effect. The best value of α is found around 0.3. 
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Figure 2. Influence of the onset breaking parameter α on simulated wave height distribution 
(Continuous lines: Simulated wave height; circles: experimental data [16]) 

 

Fig. 3 shows the influence of breaking 

duration parameter γ on the simulated wave 

height distribution. The following 

observations can be made from the figure: The 

value of γ = 5.0 suggested by Kennedy et al., 

(2000) [6] makes the underestimated energy 

dissipation then the wave height in the surf 

zone is overestimated; the smaller value of γ 

makes the greater dissipation effect near the 

breaking location; the wave height distribution 

near the breaking point is very sensitive to the 

value of γ. These mean that the duration of 

wave breaking in the present model is 

important to the simulation of waves in surf 

zone. The appropriate value of γ could be in 

the range from 0.4 to 0.6. Then we take γ = 

0.55 for all of other simulations. γ = 0.55 and 

α = 0.31 are employed to investigate the 
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influence of the dissipation percentage 

coefficient β on the wave breaking simulation. 

The results are presented in fig. 4. It can be 

seen that the variation of β causes a change in 

wave height at the breaking point and in the 

surrounding area. The smaller value of β 

makes the smaller amount of wave energy 

dissipated after duration of breaking event 

ghT /*  . The value of   equal to or 

greater than 0.4 gives almost similar results of 

wave height distribution at the breaking point 

and others. Thus, in the present study from 

now on, β = 0.5 is chosen for all of other 

simulations. Fig. 5 presents comparison of 

mean water levels between the simulated 

results and experimental data. The simulated 

mean water levels agree well with experimental 

data in the distance from the breaking point 

toward offshore region. The setup region after 

the breaking point shoreward is clearly seen. 

However, there are some discrepancies from 

the experimental data. 
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Figure 3. Influence of the breaking duration parameter γ on simulated wave height distribution 
(Continuous lines: Simulated wave height; circles: experimental data [16]) 
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Figure 4. Influence of dissipation parameter β on simulated wave height distribution  
(Continuous lines: simulated wave height; circles: experimental data [16]) 
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Figure 5. Comparison of mean water levels between simulated results and experimental data [16] 
 
Wave induced current with a rip channel 
Experimental condition and simulation setup 

The experiment on near-shore wave 
propagation over a rip channel given by Hamm 
(1992) [19] is well-known in the coastal 

engineering community. For testing the present 
numerical model with the proposed method of 
wave breaking dissipation, the experimental 
data given by Hamm (1992) [19] were 
employed.

 

 

Figure 6. Bathymetry for numerical simulation similar to the experiment by Hamm (1992) [19] 
 

The numerical simulation conditions were 

set up with the bathymetry and wave 

conditions similar to those in the experiment 

done by Hamm (1992) [19]. Numerical 

simulation was carried out for cases with 

unidirectional irregular waves with significant 

height of 0.13 m and peak period of 1.60 s. 

The experimental data of wave height 

distribution along the rip channel and on the 

cross-shore planar beach and the experimental 

data of the current distribution at rip channel 

were used for the comparison with numerical 

results. Fig. 6 shows the bathymetry of the 

computational domain. For the numerical 

simulation, both regular and irregular incident 

waves were imposed. 

Results and discussion 

Numerical simulation was carried out for 

200 peak wave periods to get a quasi-steady 

state. The significant wave heights were 

determined by using the well-known formula 

2004.4 sH  (where 
2

  is the variance 

of the water free surface elevation). The wave 

induced currents are determined by averaging 

the velocity at each cell in the duration of five 

peak wave periods. 

Fig. 7 shows the distribution of the 

simulated significant wave height in the 

computational domain. Along two cross 

sections R-R at rip channel and B-B on the 

planar beach (see fig. 7), the simulated wave 
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height and velocity were extracted to be 

compared to the experimental data given by 

Hamm (1992) [19]. 

 

 

Figure 7. Distribution of significant wave height in the computational domain  
(case with incident waves: Hs = 0.13 m, Tp = 1.60 s, uniform direction) 

 
Fig. 8 presents the comparison of wave 

height between the simulated and experimental 
results along the rip channel R-R and the cross-
section B-B. The following observations can be 
made from fig. 8a: The simulated wave heights 
with regular and irregular incident waves are in 
good agreement with the experimental data; 
distribution of the simulated regular wave 
height agrees very well with experimental data, 
and agrees better than that of the simulated 
irregular incident waves; inside the surf zone, 
the simulated significant wave heights were 
slightly overestimated in comparison with the 
experimental data; the differences between the 
experimental and simulated wave heights 
reduce in the area close to shoreline; this gives 
a confidence in the simulation of run-up and 
wave induced currents using the present model. 
Along the section B-B, very good agreement is 
again obtained (see fig. 8b). 

Comparisons of the module of velocity 
along the rip channel R-R are presented in  
Fig. 9. Good agreements between the simulated 
and the experimental results are clearly 

observed. Surprisingly, the simulated rip 
velocity with the regular incident wave is still 
in good agreement with the experimental data 
which were produced with irregular incident 
waves in the experiment done by Hamm (1992) 
[19]. However, the present model 
underestimated the maximum rip velocity. 

The distribution of wave induced currents 
in the computational domain including rip 
currents is shown in fig. 10. Rip current and 
long shore currents are clearly observed in the 
figure. Water from both sides of the rip 
channel tends to converge to the rip channel 
and form an offshoreward current with the 
high velocity in the middle of the channel. 
Longshore currents near the shoreline can 
also be clearly observed. In the rip channel, 
waves were stopped by the inverted current 
from the shore, which makes the waves become 
steep and broken on the rip (see fig. 11). From 
fig. 11 the run-up of waves on the beach is 
clearly observed and the interaction of waves 
in the near-shore area for the simulation case 
is really complicated. 
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Figure 8. Distribution of wave height along: a) rip channel R-R; b) cross-section B-B on the plane  

a) 

b) 

 

Figure 8. Distribution of wave height along: a) Rip channel R-R; b) Cross-section B-B on the 
plane beach (case with incident waves: Hs = 0.13 m, Tp = 1.60 s, uniform direction) 

 
In brief, a series of the above-mentioned 

simulated results shows that the present model 
can simulate well wave propagation in the 
near-shore areas including effects of wave-

current interaction, wave shoaling, wave 
breaking and wave-wave interaction with 
acceptable accuracy. 
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Figure 9. Distribution of wave induced rip current velocity along the rip channel  
(case with incident waves: Hs = 0.13 m, Tp = 1.60 s, uniform direction) 

 

Figure 10. Distribution of wave induced currents in the computational domain  
(case with incident waves: Hs = 0.13 m, Tp = 1.60 s, uniform direction) 
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a) b) 

 

Figure 11. Snapshots of free surface due to irregular waves (case with incident waves:  
Hs = 0.13 m, Tp = 1.60 s, uniform direction) 

 
CONCLUSIONS 

The present study has proposed a numerical 
model based on the depth-integrated non-
hydrostatic shallow water equations with an 
improvement of wave breaking dissipation 
using a modification of the method proposed by 
Kennedy et al., (2000) [6]. Firstly, numerical 
studies of the parameter sensitivity were carried 
out in order to understand the effects of the 
parameters on the simulated results of waves. It 
is found that with the present method, the 
simulated results of wave height near the 
breaking point are very sensitive to the time 
duration of wave breaking. The best value of 
the onset breaking parameter is around 0.3 for 
the present model. Then, the proposed 
numerical model was verified by some 
published experimental data. 

Comparison between the simulated results 
and the experimental data confirmed that the 
present model is good for the simulation of 
waves in the near-shore areas. However, the 
model does not include the nonlinear shallow 
wave generation source method (such as the 
Cnoidal’s waves); therefore, the model has not 
been verified for the case of plunging breaker. 
In the future, more verification of the model on 
wave plunging breaker needs to be carried out 
and consideration for improving simulation of 
wave setup is left for further study. 

The present model has been successfully 
applied to the simulation of regular and 
irregular waves. However, further verification 

of the model needs to be carried out with the 
field observation data to confirm applicability 
of the model to real cases. 

Acknowledgements: This work has been done 
under the financial support of Vietnam’s 
National Foundation for Science and 
Technology Development (NAFOSTED) by 
the project grant number 105.06-2016.01. The 
financial support from NASFOSTED is 
gratefully acknowledged. The first author 
wishes to give thanks to Vietnam Institute of 
Sea and Islands (VISI) for providing good 
condition for the research. Lastly, the first 
author would like to send special thanks to 
Prof. Kirby J. T. and Dr. Ting F. C. K. for 
kindly providing the experimental data. 

REFERENCES 

[1]  Deigaard, R., 1989. Mathematical 
modelling of waves in the surf zone. Prog. 
Rep, 69, 47–59. 

[2]  Schäffer, H. A., Madsen, P. A., and 
Deigaard, R., 1993. A Boussinesq model 
for waves breaking in shallow water. 
Coastal Engineering, 20(3–4), 185–202. 

[3]  Madsen, P. A., Sørensen, O. R., and 
Schäffer, H. A., 1997. Surf zone dynamics 
simulated by a Boussinesq type model. 
Part I. Model description and cross-shore 
motion of regular waves. Coastal 
Engineering, 32(4), 255–287. 



Phung Dang Hieu, Phan Ngoc Vinh 

172 

[4]  Madsen, P. A., Sørensen, O. R., and 
Schäffer, H. A., 1997. Surf zone dynamics 
simulated by a Boussinesq type model. 
Part II: Surf beat and swash oscillations 
for wave groups and irregular waves. 
Coastal Engineering, 32(4), 289–319. 

[5]  Zelt, J. A., 1991. The run-up of 
nonbreaking and breaking solitary waves. 
Coastal Engineering, 15(3), 205–246. 

[6]  Kennedy, A. B., Chen, Q., Kirby, J. T., 
and Dalrymple, R. A., 2000. Boussinesq 
modeling of wave transformation, 
breaking, and runup. I: 1D. Journal of 
Waterway, Port, Coastal, and Ocean 
Engineering, 126(1), 39–47. 

[7]  Chen, Q., Dalrymple, R. A., Kirby, J. T., 
Kennedy, A. B., and Haller, M. C., 1999. 
Boussinesq modeling of a rip current 
system. Journal of Geophysical Research: 
Oceans, 104(C9), 20617–20637. 

[8]  Fang, K., and Liu, Z., 1999. Modeling 
Breaking Waves and Wave-induced 
Currents with Fully Nonlinear Boussinesq 
Equations. WSEAS Transactions on Fluid 
Mechanics, 9, 131–143. 

[9]  Stelling, G., and Zijlema, M., 2003. An 
accurate and efficient finite‐difference 
algorithm for non‐hydrostatic 
free‐surface flow with application to 
wave propagation. International Journal 
for Numerical Methods in Fluids, 43(1), 
1–23. 

[10]  Walters, R. A., 2005. A semi‐implicit 
finite element model for non‐hydrostatic 
(dispersive) surface waves. International 
Journal for Numerical Methods in Fluids, 
49(7), 721–737.  

[11]  Zijlema, M., and Stelling, G. S., 2008. 
Efficient computation of surf zone waves 

using the nonlinear shallow water 
equations with non-hydrostatic pressure. 
Coastal Engineering, 55(10), 780–790.  

[12]  Yamazaki, Y., Kowalik, Z., and Cheung, 
K. F., 2009. Depth‐integrated, 
non‐hydrostatic model for wave breaking 
and run‐up. International Journal for 
Numerical Methods in Fluids, 61(5), 
473–497. 

[13]  Smit, P., Zijlema, M., and Stelling, G., 
2013. Depth-induced wave breaking in a 
non-hydrostatic, near-shore wave model. 
Coastal Engineering, 76, 1–16. 

[14]  Wei, Z., and Jia, Y., 2014. Simulation of 
nearshore wave processes by a depth-
integrated non-hydrostatic finite element 
model. Coastal engineering, 83, 93–107. 

[15]  Lu, X., and Xie, S., 2016. Depth-averaged 
non-hydrostatic numerical modeling of 
nearshore wave propagations based on the 
FORCE scheme. Coastal Engineering, 
114, 208–219. 

[16]  Ting, F. C., and Kirby, J. T., 1994. 
Observation of undertow and turbulence 
in a laboratory surf zone. Coastal 
Engineering, 24(1–2), 51–80.  

[17]  Kowalik, Z., Knight, W., Logan, T., and 
Whitmore, P., 2005. Numerical modeling 
of the global tsunami: Indonesian tsunami 
of 26 December 2004. Science of Tsunami 
Hazards, 23(1), 40–56. 

[18]  Wei, G., Kirby, J. T., and Sinha, A., 1999. 
Generation of waves in Boussinesq 
models using a source function method. 
Coastal Engineering, 36(4), 271–299. 

[19]  Hamm, L., 1993. Directional nearshore 
wave propagation over a rip channel: an 
experiment. In Coastal Engineering 1992 
(pp. 226–239). 

  

 


