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Abstract 

This article presents an application of the finite element method (FEM) for the stability analysis of 3D frame 

(space bar system) on the coral foundation impacted by collision impulse. One-way joints between the rod 

and the coral foundation are described by the contact element. Numerical analysis shows the effect of some 

factors on the stability of the bar system on coral foundation. The results of this study can be used for 

stability analysis of the bar system on coral foundation subjected to sea wave load. 
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INTRODUCTION 
Most of the structures built on the coral 

foundation are frames that consist of 3D beam 
elements. Under the wave and wind loading, 
response of the structure is periodical. 
However, in the case of strong waves and 
wind or ships approaching, the structural 
system is usually subjected to impact load. 
The simultaneous impact of horizontal and 
vertical loads may lead the structure to 
instability. So, the stability calculation of the 
3D beam structure on coral foundation is 
necessary. Nguyen Thai Chung, Hoang Xuan 
Luong, Pham Tien Dat and Le Tan [1, 2] used 
2D slip element and finite element method for 
dynamic analysis of single pile and pipe in the 
coral foundation in the Spratly Islands. 
Mahmood and Ahmed [3], Ayman [4] studied 
nonlinear dynamic response of 3D-framed 
structures including soil structure interaction 
effects. Hoang Xuan Luong, Nguyen Thai 
Chung and other authors [5, 6] have 
systematically studied physical properties of 
corals of Spratly Islands and obtained a 
number of results on interaction between 
structures and coral foundation on these 

islands. Graham and Nash [7] assessed the 
complexity of the coral shelf structure by 
studying the published literature. Therefore, 
the interaction between the structures and 
coral foundation is an important problem in 
dynamic analysis of offshore structures that 
was basically considered in [8, 9]. In addition, 
the vertical static load may significantly affect 
the stability of a structure when the impact is 
applied horizontally. Therefore, study of the 
factors mentioned above is important and this 
is the subject of the present work. Thus, in this 
paper, an algorithm is proposed for evaluating 
stability of the frame structure on coral 
foundation under static load Pd and horizontal 
impact load PN that allows one to find the 
critical forces in different cases. 

GOVERNING EQUATIONS AND FINITE 
ELEMENT FORMULATION 
The 3D beam element formulation of the 
frame 

Using the finite element method, the frame 
is simulated by three dimensional 2-node beam 
elements with 6 degrees of freedom per node 
(fig. 1). 

 

 

Figure 1. Three dimensions 2-node beam element model 
 

Displacement at any point in the element [10, 13]: 
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Where: t represents time; u, v and w are 
displacements along x, y and z; θx is the rotation 

of cross-section about the longitudinal axis x, 
and θx, θz denote rotation of the cross-section 
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about y and z axes; the displacements with 
subscript “0” represent those on the middle 

plane (y = 0, z = 0). 
The strain components are [10, 12]:

 

 

2 22 2

0 0 0

2 2 2

2 20 0 0

0

1 1 1 1

2 2 2 2

1
,

2

y x xz
x

y xz

x
zx

u v wu v w
z y z y

x x x x x x x x x x

u v w
z y y z

x x x x x x

wu w
y

z x x x

  


 




             
                
                

          
                        

  
   
   

0

,y

x
xy z

vu v
z

y x x x




 



  
    
   

  (2) 

 

The latter equations can be rewritten in the 

vector form: 

     
L NL

                        (3) 

In which:    ,
L NL

   are linear and non-linear 

strain vectors, respectively. 

The constitutive equation can be written as:
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 is the matrix of 

material constants, E is the elastic modulus of 

longitudinal deformation, G is the shear 

modulus. 

Nodal displacement vector for the beam 
element is defined as: 
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Dynamic equations of 3D element can be 

derived by using Hamilton’s principle [11, 13]: 

 
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Where: Te, Ue, We are the kinetic energy, strain 

energy, and work done by the applied forces of 

the element, respectively. 

The kinetic energy at the element level is 

defined as: 
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Where: Ve is the volume of the plate element, 

    
e

u N q is the vector of displacements, 

[N] is the matrix of shape functions. 

The strain energy can be written as: 
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The work done by the external forces: 
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In which: {fb} is the body force, Se is the 

surface area of the plate element, {fs} is the 

surface force, and {fc} is the concentrated load. 

Substituting equations (3), (4) into (8) and then 

substituting (7), (8), (9) into (6), the dynamic 

equation for the beam element is obtained in 

the form: 

         
bb b b

Ge e ee e e
M q K K q f      (10) 

Where:  
b

e
K  is the linear stiffness matrix, 

given in Appendix A.1, 
b

G e
K   is the non-linear 

stiffness matrix (geometric matrix), given in 

Appendix A.2,  
b

e
M  is the mass matrix, given 

in Appendix A.3 [13], [15], and  
b

e
f  is the 

nodal force vector. 

Finite element formulation of coral 
foundation 

The coral foundation is simulated by 8-
node solid elements with 3 degrees of freedom 
per node (fig. 2). 

 

 
                     a) In the global coordinate system                b) In the local coordinate system 

 
 

Figure 2. 8-node solid element 
 

The element stiffness and mass matrices are 
defined as [12, 13]: 
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The dynamic equation of the element can 
be written as [11, 13]: 

         
s s s

e e ee e
M q K q f          (13) 

In which: [B]s is relation matrix between 

deformation - strain and [D]s - elastic constant 

matrix of 8-node solid element, ρs is the density 

of soil, [N]s is the shape function matrix. 

The 3D slip element linking the beam 

element and coral foundation 

To characterize the contact between the 

beams surface and coral foundation (can be 

compressive, non-tensile [5, 6, 15]), the 

authors used three-dimensional slip elements 

(3D slip elements). This type of element has 

very small thickness, used for formulation of 

the contact layer between the beams and the 

coral foundation, the geometric modeling of 

the element is shown in fig. 3. 

The stiffness matrix of the slip element in 

the local coordinates is [16, 17]: 

      
slip T

e
K N k N dxdy         (14) 

Where: 

 

  1 2 3 4 1 2 3 4
N B B B B B B B B                                                (15) 

 

Matrix [Bi] contains the interpolation functions of the element and is given by: 
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and [k] is the material property matrix 

containing unit shear and normal stiffness, 

which is defined as: 
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Where: ksx, ksy denote unit shear stiffness 

along x and y directions, respectively; and knz 

denotes unit normal stiffness along the z 

direction, they are defined in table 1. 

In table 1, ν is the Poisson’s ratio, E is 
the longitudinal elasticity modulus, and Gres 
is the transversal elasticity modulus of the 
coral foundation. 

It should be noted that due to the special 

contact of beams and coral foundation as 

described above, in the slip elements, the 

stiffness matrix,  
slip

e
K  is dependent on 

displacement vector  
e

q  [1, 17]:  
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a) Three-dimensional slip element b) Use of slip elements in soil - structure interaction 

 
 

Figure 3. Three-dimensional slip element and use of the element 
 

Table 1. Material property matrix 

knz Force/(Length)2 
(1 )

(1 )(1 2 )
nz

E
k  

ksx, ksy Force/(Length)2 
2(1 )

sx sy

E
k k  

kres Force/(Length)2 kres = Gres 

 
Equation of motion of the system and 
algorithm for solution 

By assembling all element matrices and 
nodal force vectors, the governing equations of 
motions of the total system can be written as: 

        G
M q K K q f            (18) 

Where:
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and , ,b s slip

e e e
N N N are the numbers of beam, 

solid and slip elements, respectively. 

In case of consideration of damping force 

    d
f C q  , the dynamic equation of the 

system becomes: 

 

            G
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Where:          G
C M K K C q          

 

is the overall structural damping matrix, and α, 

β are Rayleigh damping coefficients [11, 14]. 

The non-linear equation (20) is solved by using 

the Newmark method for direct integration and 

Newton-Raphson method in iteration processes. 

A computation program is established in 

Matlab environment, which includes the 

loading vector updated after each step: 
Step 1. Defining the matrices, the external 

load vector, and errors of load iterations. 
Step 2. Solving the equation (20) to present 

a load vector. 
Step 3. Checking the following stability 

conditions. 
If the displacement of the frame does not 

increase over time: define stress vector, update 
the geometric stiffness matrices [KG] and [K]. 
Increase load, recalculate from step 2; 

If the displacement of the frame increases 
over time, the system is buckling: Critical load 
p = pcr, t = tcr. End. 

RESULTS AND DISCUSSION 
Basic problem 

Let’s consider the system shown in fig. 4 
which has structural parameters as follows: 
Dimensions H1 = 8.5 m, H2 = 22.2 m, H3 = 24.0 
m, H4 = 5 m, B1 = 16 m, B2 = 25 m, corner of 

main pile β = 8
o
. The main piles, horizontal bar 

and the oblique bar have the annular cross-
section, in which outer diameter of main piles 
Dch = 0,8 m, thickness of piles tch = 3.0 cm; 
outer diameter of horizontal bar and the oblique 
bar Dth = 0.4 m, thickness of piles tth = 2.0 cm. 
The cross-section of bars connecting main piles 
at height (H1 + H2 + H3) is of I shape with size: 
width bI = 0.4 m, height hI = 1.0 m, web 
thickness thg = 0.04 m. Frame is made of steel, 
with material parameters: Young modulus E = 
2.1×10

11 
N/m

2
, Poisson’s coefficient ν = 0.3, 

density ρ = 7850 kg/m
3
, depth of pile in the 

coral foundation H0 = 10 m (fig. 4a). 
Foundation parameters: The coral 

foundation contains four layers; the 
physicochemical characteristics of the substrate 
layers are derived from experiments performed 
on Spratly Islands as shown in table 2. 

With the error in iteration of study εtt = 0.5, 
after the iteration, the size of coral foundation 
is defined as: BN = LN = 80 m, HN = 20 m. 

Boundary conditions: Clamped supported on 
the bottom, simply supported on four sides and 
free at the top of the research domain. 

Load effects: The vertical static load Pd at 
the top of 4 main piles of the system is Pd = 10

6 

N, the impact load at the top of 2 main piles in 
the horizontal direction x: PN = P(t) has ruled as 
shown in fig. 4b, where P0 = 10

6 
N,  = 0.5 s. 

 

Table 2. Characteristics of coral foundation layer’s materials [1–3] 

Layer Depth (m) Ef (N/cm2) νf ρf (kg/m3) 
Friction coefficient 

with steel fms 
Damping coefficient ξ 

1 2 2.83×104 0.22 2.55×103 0.21 
0.05 

2 10 2.19×105 0.25 2.60×103 0.32 
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a) Computational model b) Impact load law 

 
 

Figure 4. Computational model and impact load law 
 

Vertical and horizontal displacement and 
acceleration response (according to the 

direction of collision) at the top of the bar 
system are shown in figs. 5–8 and table 3. 

 

 

Figure 5. Displacement u at the top of the frame 

 

Figure 6. Displacement w at the top of the frame 

 

Figure 7. Horizontal acceleration at the top  

of the frame 

 

Figure 8. Vertical acceleration at the top  

of the frame 
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Comment: Under action of a horizontal 
pulse, displacement and acceleration response 
at the top of the system will have the sudden 
change. After the impact has finished, the 
response will gradually return to the stable 

stage. For horizontal response, the stable point 
comes to 0, while for vertical response, stable 
displacement value differs from 0 because the 
static load on the system still exists. 

 
Table 3. Displacement response at the top of the bar system 

 umax (m) wmax (m) maxu  (m/s2) maxw  (m/s2) 

Value 0.0984 0.00469 11.399 1.885 

 

Effect of horizontal impact on the stability of 

the system 

 

Figure 9. Displacement u at the top of the frame 

 

Figure 10. Displacement w at the top of the frame 
 

To evaluate the effect of horizontal impulse 

on the stability of the beam system with the 

same values of the structural parameters of the 

problem, we only increase the value P0 of 

horizontal impulse. Responses at the calculated 

points are shown in figs. 9–12 and table 4. 

 

Figure 11. Horizontal acceleration at the top of 

the frame 

 

Figure 12. Vertical acceleration at the top  

of the frame 
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Comment: When impulse P0 increases, 
the extreme response at the points of 
calculation increases. This extreme value 
jumps when P0 = 1.8×10

7 
N, at this time the 

computer program only runs a few steps and 
then stops, does not run out of computational 
time as in previous cases. In this case, the 
system is unstable. 

 
Table 4. Transition and acceleration response at the top of the system according to the P0 

P0 [N] Umax [m] Wmax [m] maxU  [m/s2] maxW  [m/s2] 

5×105 0.0492 0.00277 5.697 1.905 

1×106 0.0984 0.00469 11.399 1.885 

3×106 0.2954 0.0136 34.144 3.845 

1.8×107 1.7924 0.1312 131.253 22.219 

 

Effect of static load on the stability of the 

system 

 

Figure13. Displacement u at the top of the frame 

 

Figure 14. Displacement w at the top of the frame 

 

Figure 15. Horizontal acceleration at the top  
of the frame 

 

Figure 16. Vertical acceleration at the top  
of the frame 
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To evaluate the effect of static load on the 
stability of the bar system and find the critical 
value of the static load while keeping the 
impulse P0 = 10

6 
N, the authors increase the 

value of the force Pd, the responses are shown 
in table 5 and figs. 13–16. 

Comment: In the first time, when 
increasing the value of static load Pd, the 
vertical displacement at the top of the system is 

changed faster than the horizontal 
displacement. When static load Pd is strong 
enough, horizontal displacement at the top of 
the truss increases suddenly. The computer 
program is stopped because the non-
convergence leads to the unstable structure. We 
determine the critical value of the system with 
the given set of parameters Pd = 2.8×10

8 
N 

corresponding to the case P0 = 1×10
6 
N. 

 
Table 5. Displacement response and acceleration at the top of the bar system according to the Pd 

Pd (N) umax (m) wmax (m) maxu  (m/s2) maxw  (m/s2) 

1×106 0.0984 0.00469 11.,399 1.885 

1×107 0.1013 0.0135 11.4491 22.376 

1×108 0.1504 0.1345 13.5499 230.996 

2.8×108 2.2248 0.6122 243.421 615.297 

 
CONCLUSIONS 

In this study, the authors achieve some 
critical results: Establishing the theoretical 
foundations and setting up the program to 
evaluate the dynamic stability of the 3D beam 
model on the coral foundation; conducting the 
survey and evaluating the effect of impulse 
load and static load on the system. 

The calculation results above show that 
when the static load Pd = 10

6 
N, the system will 

be unstable when impulse amplitude P0  
1.810

7 
N, whereas when impulse amplitude P0 

= 10
6 
N, the system will be unstable when static 

load Pd = 2.810
8 
N. 

Data availability: The data used to support 
the findings of this study are available from the 
corresponding author upon request. 

Conflicts of interest: The authors declare 
that there are no conflicts of interest regarding 
the publication of this paper. 

Acknowledgments: This research was 
supported by Le Quy Don University. 

REFERENCES 
[1] Chung, N. T., Luong, H. X., and Dat, P. 

T., 2006. Study of interaction between 
pile and coral foundation. In National 
Conference of Engineering Mechanics 
and Automation, Vietnam National 
University Publishers, Hanoi (pp. 35–44). 

[2] Hoang Xuan Luong, Pham Tien Dat, 
Nguyen Thai Chung and Le Tan, 2008. 

Calculating Dynamic Interaction between 
the Pipe and the Coral Foundation. The 
International Conference on Computational 
Solid Mechanics, Ho Chi Minh city, 
Vietnam, pp. 277–286. (in Vietnamese). 

[3] Mahmood, M. N., Ahmed, S. Y., 2006. 
Nonlinear dynamic analysis of reinforced 
concrete framed structures including soil-
structure interaction effects. Tikrit Journal 
of Eng. Sciences, 13(3), 1–33. 

[4] Ismail, A., 2014. Effect of soil flexibility 
on seismic performance of 3-D frames. 
Journal of Mechanical and Civil 
Engineering, 11(4), 135–143. 

[5] Hoang Xuan Luong, 2010. Recapitulative 
report of the subject No. KC.09.07/06–10. 
Le Quy Don University, Vietnam. (in 
Vietnamese). 

[6] Nguyen Thai Chung, 2015. Recapitulative 
report of the subject No. KC.09.26/11–15. 
Le Quy Don University, Vietnam. (in 
Vietnamese). 

[7] Graham, N. A. J., and Nash, K. L., 2013. 
The importance of structural complexity 
in coral reef ecosystems. Coral reefs, 
32(2), 315–326. DOI 10.1007/s00338-
012-0984-y. 

[8] Nguyen Tien Khiem, Nguyen Thai Chung, 
Hoang Xuan Luong, Pham Tien Dat, Tran 
Thanh Hai, 2018. Interaction between 
structures and sea environment. Publishing 
House for Science and Technology, ISBN: 
978-604-913-785-3. (in Vietnamese). 



Research on the stability of the 3D frame 

241 

[9] Hoang Xuan Luong, Nguyen Thai Chung, 
Tran Nghi, Pham Tien Dat, 2016. Coral of 
Spratly islands - Interaction Between 
Structures and Coral Foundation. 
Construction Publishing House, IBSN: 
978-604-82-1830-0. (in Vietnamese). 

[10] Bathe, K. J., and Wilson, E. L., 1976. 
Numerical methods in finite element 
analysis (No. BOOK). Prentice-Hall. 

[11] Wolf, J., and Hall, W., 1988. Soil-
structure-interaction analysis in time 
domain (No. BOOK). A Division of Simon 
& Schuster. 

[12] Bathe, K. J., and Wilson, E. L., 1982. 
Numerical methods in finite element 
analysis, Transl. from Eng., 448 p. 
Strojizdat, Moscow. 

[13] Zienkiewicz, O. C., and Taylor, R. L., 
1991. The finite element method. Vol. 2: 
solid and fluid mechanics, dynamics and 
non-linearity. 

[14] Walker, A. C., Ellinas, C. P., and Supple, 
W. J., 1984. Buckling of offshore 
structures. Gulf Publishing Company. 

[15] Hidalgo, E. M., 2014. Study of 
optimization for vibration absorbing 
devices applied on airplane structural 
elements. Doctoral dissertation, 
Universitat Politècnica de Catalunya. 
Escola Tècnica Superior d’Enginyeries 

Industrial i Aeronàutica de Terrassa. 
Departament de Projectes d'Enginyeria, 
2014 (Grau en Enginyeria en Tecnologies 
Aeroespacials). 

[16] Tzamtzis, A. D., and Asteris, P. G., 2004. 
FE analysis of complex discontinuous and 

jointed structural systems (Part 1: 
Presentation of the method-a state-of-the-
art review). Electronic Journal of 
Structural Engineering, 1, 75–92. 

[17] Dynamic analysis of Jacket type offshore 
structure under impact of wave and wind 

using Stoke’s second order wave theory. 
Vietnam Journal of Marine Science and 
Technology, 15(2), 200–208. 
https://doi.org/10.15625/1859-
3097/15/2/6507. 

 

 

 

 

Appendix 

A.1. The linear stiffness matrix  
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b
K is: 
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A.2. The non-linear stiffness matrix 
b
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Where: Nx is the axial force of beam element; Jp is the torsional constant; Jy and Jz respectively are 

the moments of inertia about the y and z axes of the element. 

A.3. The mass matrix  
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. 

 is the mass density of beam. 


