Biodiversity of phytoplankton in Duyen Hai town, Tra Vinh province

Le Thi Trang^{*}, Nguyen Van Tu, Tran Thi Lan Anh, Luong Duc Thien

Institute of Tropical Biology, VAST, Vietnam *E-mail: letrangenvi@gmail.com

Received: 9 September 2019; Accepted: 19 December 2019

©2020 Vietnam Academy of Science and Technology (VAST)

Abstract

This study was conducted to enhance the understanding of phytoplankton diversity of Duyen Hai town, Tra Vinh province. We selected 12 representative sampling sites and investigated phytoplankton diversity in both dry and rainy seasons. The phytoplankton of this area were comprised of 134 species, belonging to 64 genera, 45 families, 31 orders, 8 classes and 5 divisions. Among those divisions, Bacillariophyta was the most dominant in species, accounting for 70% of the total number of species and Cyanobacteria commonly had high density at 12 surveyed sites. The average density of phytoplankton was 1,195 cells/l in the rainy season and 2,020 cells/l in the dry season, respectively. For water bodies with the exchange of freshwater and marine water, the diversity is typically higher than in water bodies with purely freshwater or marine conditions.

Keywords: Aquatic ecology, biodiversity, diatoms, phytoplankton, Tra Vinh.

Citation: Le Thi Trang, Nguyen Van Tu, Tran Thi Lan Anh, Luong Duc Thien, 2020. Biodiversity of phytoplankton in Duyen Hai town, Tra Vinh province. *Vietnam Journal of Marine Science and Technology*, 20(2), 189–197.

INTRODUCTION

Duven Hai town is located in the southeast of Tra Vinh province. It is bounded in the east and the south by the East Sea, in the west by Duyen Hai district, and in the north by Cau Ngang district. Duyen Hai aquatic system is influenced by the semi-diurnal tide (two high and two low tides each day), with the regime of high tidal amplitude and strong current. The systems of Thau Rau, Ba Dong, Long Toan rivers, and Tat channel control the entire network of rivers and distribute water throughout the town. In addition, there is a network of rivers, canals, and irrigation channels that distribute water sources to inland and aquaculture development areas.

Due to the characteristics of the region with dense river systems, the water resources of Duyen Hai town are plentiful and diverse. It is a favorable condition for the presence, living and diversification of aquatic species in the region. The appearance of phytoplankton is typically closely related to the ecological and environmental conditions, these species are production organisms in some food webs, capable of expediting material transition in the aquatic system and may be an indicator for water quality [1–4].

The studies of coastal phytoplankton for Vietnam started in 1926 since Maurice Rose reported 20 species of diatoms for the Nha Trang bay [5]. In 1966, Shirota described 213 species of diatoms along coastline from Thuan An (Thua Thien-Hue province) to Phu Quoc (Kien Giang province) [5]. In 1993, Truong Ngoc An described 244 species in the book "Taxonomy of Bacillariophyta plankton in marine water of Vietnam" [5]. Recently, some of the researches on coastal phytoplankton at local scale have contributed to the understanding of diversity of phytoplankton in Vietnam. At the Central coast Pham Thi My Hanh (2013) reported 144 species [6], at the West-Sea zone of Ca Mau peninsular Luong Van Thanh (2008) reported 216 species [7], and in the coastal areas from Soc Trang to Bac Lieu Mai Viet Van et al., (2012) reported 232 species [8]. Among these studies, diatom was the most abundant group of the species list.

So far, the studies on the diversity of phytoplankton in the coastal area of Tra Vinh

province have not been carried out yet. This research aims to explore phytoplankton diversity in Duyen Hai town for further works on the conservation, rational use, and sustainable development.

MATERIALS AND METHODS Study area

This study selected 12 locations representative of the whole coastal zone and inland area of the Duyen Hai town, Tra Vinh province. Phytoplankton samples were collected during the rainy (July) and dry (December) seasons in 2017. The sampling sites are shown in figure 1 below.

Sample collection

Phytoplankton samples were taken by the method of Edward and David (2010) [9]. Qualitative samples of phytoplankton were collected from the surface waters by towing a plankton net (with a mesh size of 25 μ m, mouth diameter of 40 cm, repeating 3–5 times/sample, and speed at 0.3 m/s). Quantitative samples of phytoplankton were collected by filtering 40 liters of water through the plankton net. The collected samples were stored in plastic jars with a volume of 250 ml and fixed with 5% formalin at the field.

Data analysis

Olympus BX51 optical microscope at 100-400X magnification was used to identify phytoplankton according to the morphological method based on the classification books such as Desikachary (1959) [10]; Hendey (1964) [11]; Shirota (1966) [12]; Truong Ngoc An (1993) [5]; Duong Duc Tien and Vo Hanh (1997) [13]; Ton That Phap (2009) [14]. Quantitative samples were allowed to settle for 24 hours in the laboratory and then concentrated to 20 ml/sample. Phytoplankton density was counted in 1 ml in the Sedgewick-Rafter counting chamber by the method of Edward and David (2010) [9] and then converted to the number of cells in 1 liter. The phytoplankton taxa are searched and sorted according to AlgaeBase's taxonomy system [15].

The samples of phytoplankton were analyzed at the laboratory of the Institute of Tropical Biology.

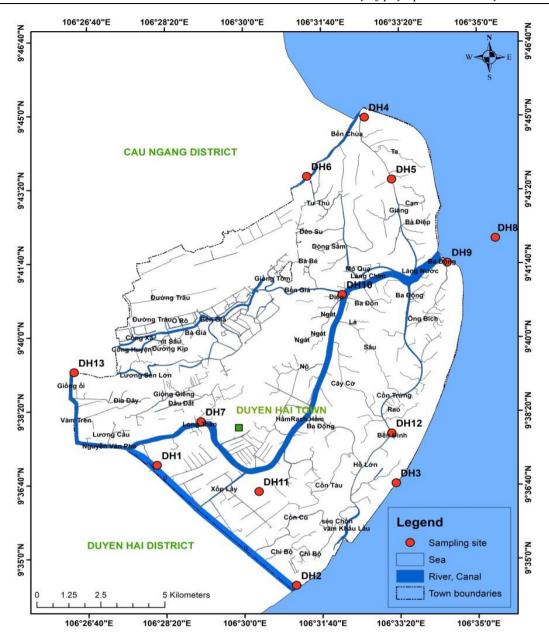


Figure 1. The map of sampling sites in Duyen Hai town, Tra Vinh province

RESULTS

Phytoplankton community structure

134 species of phytoplankton flora of Duyen Hai town, Tra Vinh province were recorded, which belong to 64 genera, 45 families, 31 orders, 8 classes, and 5 divisions, namely Cyanophyta, Bacillariophyta, Chlorophyta, Euglenophyta, and Dinophyta. Among those divisions, Bacillariophyta had the most diverse species composition with 98 species, occupying 73.1%; followed by Cyanophyta with 21 species, occupying 15.7%; Dinophyta with 8 species, occupying 6.0% and Chlorophyta with 5 species, occupying 3.7%; and the lowest species composition belonged to Euglenophyta with 2 species, occupying 1.5% (table 1, figure 2).

This phytoplankton flora is comprised of many species which are typical of the phytoplankton communities of the coastal and estuarine regions. The Biddulphia, Anabaena, Microcystis, Oscillatoria, Chaetoceros, Ditylum, simplex, Scenedesmus Coscinodiscus, Pediastrum Gyrosigma, Nitzschia, Pleurosigma, quadricauda, Oedogonium sp., and Spirogyra ionia (table 2). This proves that the aquatic Rhizosolenia, Skeletonema and are in these groups. environment in the study area was mainly corepresentative genera affected by seawater via the tide and a part of However, some of the species from freshwater were recorded as well, such as freshwater from inland region.

Table 1. Structure of	phytoplankton	species com	position in Duye	en Hai town, Tra	Vinh province

No.	Phylum	Class	Order	Family	Genus	Species	Ratio %
1	Cyanophyta	1	3	5	11	21	15,7
2	Bacillariophyta	3	20	30	42	98	73,1
3	Chlorophyta	2	4	5	5	5	3,7
4	Euglenophyta	1	1	1	2	2	1,5
5	Dinophyta	1	3	4	4	8	6,0
	Total	8	31	45	64	134	100

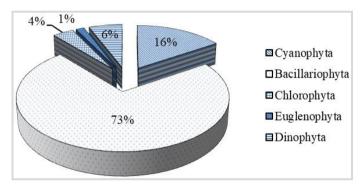


Figure 2. Composition structure of phytoplankton

Table 2. List of	phytoplankton s	species from Duyen	Hai town, Tra Vinh	province

Taxon	Taxon
Phylum Cyanophyta	74. Asteromphalus flabellatus (Brébisson) Greville, 1859
Class Cyanophyceae	Order Thalassiosirales
Order Chroococcales	Family Skeletonemataceae
Family Microcystaceae	75. Skeletonema costatum (Greville) Cleve, 1873
1. Microcystis aeruginosa (Kützing) Kützing, 1846	Family Stephanodiscaceae
2. Microcystis panniformis Komárek, Komárková-	
Legnerová, Sant'Anna, M. T. P. Azevedo, & P. A. C.	76. Cyclotella comta (Ehrenberg) Kützing, 1849
Senna, 2002	
Order Oscillatoriales	77. Cyclotella meneghiniana Kützing, 1844
Family Pseudanabaenaceae	Ho Lauderiaceae
3. <i>Jaaginema</i> sp.	78. Lauderia borealis Gran, 1900
Family Phormidiaceae	Order Biddulphiales
4. Arthrospira sp.	Family Biddulphiaceae
5. Phormidium tenue Gomont, 1892	79. Biddulphia aurita (Lyngbye) Brébisson, 1838
6. Planktothrix agardhii Anagnostidis & Komárek, 1988	80. Biddulphia mobiliensis (J. W. Bailey) Grunow, 1882
Family Oscillatoriaceae	81. Biddulphia regia (Schultze) Ostenfeld, 1908
7. Lyngbya majuscula Harvey ex Gomont, 1892	82. Biddulphia sinensis Greville, 1866
8. Lyngbya martensiana Menegh. ex Gomont, 1892	83. Hydrosera triquetra G. C. Wallich
9. <i>Lyngbya</i> sp.	Order Triceratiales
10. Oscillatoria acuta Bruhl et Biswas, 1932	Family Triceratiaceae
11. Oscillatoria curviceps C. Agardh ex Gomont, 1892	84. Triceratium favus Ehrenberg, 1839

12. Oscillatoria limosa C. Agardh ex Gomont, 1892 Order Hemiaulales 13. Oscillatoria princeps Vaucher ex Gamont, 1892 Family Hemiaulaceae 14. Oscillatoria perornata Skuja, 1949 85. Hemiaulus membranaceus Cleve, 1873 15. Oscillatoria proboscidea Gomont, 1892 86. Hemiaulus sinensis Greville, 1865 16. Oscillatoria tenuis Agardh, 1813 87. Cerataulina pelagica (Cleve) Hendey, 1937 17. Oscillatoria sp. 88. Climacodium biconcavum Cleve, 1897 18. Trichodesmium erythraeum Ehrenberg ex Gomont, Family Bellerocheaceae 1892 Order Nostocales 89. Bellerochea horologicalis Stosch, 1980 Family Nostocaceae 90. Bellerochea indica Karsten, 1907 19. Anabaena sp. Family Streptothecaceae 20. Anabaenopsis circularis Woloszynska & V. Miller, 91. Streptotheca thamesis Shrubsole, 1891 1923 21. Aphanizomenon aphanizomenoides (Forti) Horecká Family Lithodesmiales et Komárek. 1979 Phylum Bacillariophyta Family Lithodesmiaceae Class Bacillariophyceae 92. Ditylum brightwellii (T.West) Grunow, 1885 Order Achnanthales 93. Ditylum sol (Grunow) De Toni, 1894 Family Achnanthaceae Order Chaetocerotales 22. Achnanthes brevipes C.Agardh, 1824 Family Chaetocerotaceae Family Cocconeidaceae 94. Bacteriastrum hyalinum Lauder, 1864 23. Cococines sp. 95. Chaetoceros aequatorialis Cleve, 1901 Order Thalassiophysales 96. Chaetoceros affinis Lauder, 1864 Family Catenulaceae 97. Chaetoceros curvisetus Cleve, 1889 24. Amphora sp. 98. Chaetoceros decipiens Cleve, 1873 Order Naviculales 99. Chaetoceros indicus Karsten, 1907 Family Naviculaceae 100. Chaetoceros lauderi Ralfs ex Lauder, 1864 25. Navicula membranacea Cleve, 1897 101. Chaetoceros lorenzianus Grunow, 1863 26. Navicula sp. 102. Chaetoceros subtilis Cleve, 1896 27. Trachyneis aspera (Ehrenberg) Cleve, 1894 Order Rhizosoleniales 28. Trachyneis debyi (Leuduger-Fortmorel) Cleve, 1894 Family Rhizosoleniaceae 103. Guinardia flaccida (Castracane) H. Peragallo, 1892 Family Pinnulariaceae 29. Pinnularia major (Kützing) Rabenhorst, 1853 104. Dactyliosolen mediterraneus H. Peragallo, 1892 Family Pleurosigmataceae 105. Rhizosolenia alata f. genuina Gran, 1908 30. Gyrosigma acuminatum (Kützing) Rabenhorst, 1853 106. Rhizosolenia alata f. indica (H. Peragallo) Gran, 1905 31. Gyrosigma attenuatum (Kützing) Rabenhorst, 1853 107. Rhizosolenia bergonii H. Peragallo, 1892 32. Gyrosigma balticum (Ehrenberg) Rabenhorst, 1853 108. Rhizosolenia calcar- avis Schultze, 1858 33. Gyrosigma scalproides (Rabenhorst) Cleve 1894 109. Rhizosolenia crassispina J. L. B. Schröder, 1906 34. Gyrosigma sp. 110. Rhizosolenia imbricata Brightwell, 1858 35. Gyrosigma sinense (Ehrenberg) Desikachary, 1988 111. Rhizosolenia imbricata var. shrubsolei Schröder, 1906 36. Gyrosigma wormlevi (Sullivant) Boyer, 1922 112. Rhizosolenia robusta G. Norman ex Ralfs, 1861 37. Pleurosigma angulatum (Queckett) W. Smith, 1852 113. Rhizosolenia setigera Brightwell, 1858 38. Pleurosigma elongatum W. Smith, 1852 114. Rhizosolenia styliformis T. Brightwell, 1858 39. Pleurosigma naviculaceum Brébisson, 1854 Class Fragilariophyceae 40. Pleurosigma strigosum W. Smith, 1852 Order Climacospheniales Order Bacillariales Family Climacospheniaceae Family Bacillariaceae 115. Climacosphenia moniligera Ehrenberg, 1843 41. Cylindrotheca closterium Reimann & J. C. Lewin, 1964 Order Thalassionematales 42. Nitzschia closterium (Ehrenberg) W. Smith, 1853 Family Thalassionemataceae 43. Nitzschia lorenziana Grunow, 1880 116. Lioloma pacificum (Cupp) Hasle, 1996 44. Nitzschia paradoxa (J. F. Gmelin) Grunow, 1880 117. Thalassionema nitzschioides Mereschkowsky, 1902 45. Nitzschia palea (Kützing) W.Smith, 1856 118. Thalassionema frauenfeldii Hallegraeff, 1986 46. Nitzschia plana W.Smith, 1853 Order Fragilariales 47. Nitzschia sigma (Kützing) W. Smith, 1853 Family Fragilariaceae 48. Pseudo-nitzschia seriata (Cleve) H. Peragallo, 1899 119. Synedra ulna (Nitzsch) Ehrenberg, 1832 Family Surirellaceae Phylum Chlorophyta 49. Campylodiscus daemelianus Grunow, 1874 Class Chlorophyceae 50. Campylodiscus echeneis Ehrenberg ex Kützing, 1844 Order Chlorococcales

51. Surirella fastuosa (Ehrenberg) Ehrenberg, 1843	Family Hydrodictyaceae
52. Surirella gemma Ehrenberg, 1839	120. Pediastrum simplex Meyen, 1829
53. Surirella ovata Kützing, 1844	Family Scenedesmaceae
54. Surirella ovalis Brébisson, 1838	121. Scenedesmus quadricauda (Turpin) Brébisson, 1835
55. Surirella robusta Ehrenberg, 1840	Order Oedogoniales
Order Cymbellales	Family Oedogoniaceae
Family Cymbellaceae	122. Oedogonium sp.
56. Cymbella lanceolata (C. Agardh) Kirchner, 1878	Order Volvocales
57. Cymbella tumida (Brébisson) van Heurck, 1880	Family Volvocaceae
Order Plagiogrammales	123. Volvox aureus Ehrenberg, 1832
Family Plagiogrammaceae	Class Zygnematophyceae
58. Plagiogramma vanheurckii Grunow, 1881	Order Zygnematales
Class Coscinodiscophyceae	Family Zygnemataceae
Order Coscinodiscales	124. Spirogyra ionia Wade, 1949
Family Coscinodiscaceae	Phylum Euglenophyta
59. Coscinodiscus asteromphalus Ehrenberg, 1844	Class Euglenophyceae
60. Coscinodiscus concinnus W.Smith, 1856	Order Euglenales
61. Coscinodiscus gigas Ehrenberg, 1841	Family Euglenaceae
62. Coscinodiscus jonesianus (Greville) Ostenfeld, 1915	125. Euglena acus Ehrenberg, 1830
63. Coscinodiscus bipartitus Rattray, 1890	126. Trachelomonas hispida (Perty) F.Stein,1878
64. Coscinodiscus radiatus Ehrenberg, 1841	Phylum Dinophyta
65. Coscinodiscus rothii (Ehrenberg) Grunow, 1878	Class Dinophyceae
66. Coscinodiscus subtilis Ehrenberg, 1841	Order Gonyaulacales
67. Coscinodiscus sp.	Family Ceratiaceae
Family Heliopeltaceae	127. Ceratium furca Claparède & Lachmann, 1859
68. Actinoptychus undulatus (Kützing) Ralfs, 1861	128. Ceratium fusus (Ehrenberg) Dujardin, 1841
Family Hemiaulaceae	129. Ceratium macroceros (Ehrenberg) Vanhöffen, 1897
69. Hemidiscus hardmannianus (Greville) Kuntze, 1898	130. Ceratium vultur Cleve, 1900
Order Melosirales	Order Peridiniales
Family Melosiraceae	Family Kolkwitziellaceae
70. Melosira granulata (Ehrenberg) Ralfs,1861	131. Diplopsalis lenticula Bergh, 1882
71. Melosira moniliformis (O. F. Müller) C. Agardh, 1824	Family Protoperidiniaceae
72. Melosira nummuloides C.Agardh, 1824	132. Protoperidinium divergens (Ehrenberg) Balech, 1974
Order Paraliales	133. Protoperidinium subinerme (Paulsen) Loeblich III, 1969
Family Paraliaceae	Order Thoracosphaerales
73. Paralia sulcata (Ehrenberg) Cleve, 1873	Family Thoracosphaeraceae
Family Asterolampraceae	134. Goniodoma sphaericum Murray & Whitting, 1899

Phytoplankton densities and dominant species

The density and dominant species of phytoplankton in Duyen Hai town have shown a difference between seasons and locations.

In the rainy season, the density of phytoplankton between locations had а significant difference, ranging from 129 to 3,830 cells/l, with the maximum at the station DH08 and the minimum at the station DH11. The filamentous blue-green algae such as Oscillatoria perornata, O. princeps, 0. proboscidea, and Lyngbya sp. grew well. These species dominated at ten of twelve sampling sites, at each station these species occupied from 35.3% to 77.2% of the total cells. Particularly, at two sampling sites of DH10 and DH11, diatom species like *Coscinodiscus jonesianus* and *Melosira granulata* were dominant, occupying 24.8% and 54.3% of the total cells, respectively (table 3).

In the dry season, phytoplankton density was somewhat higher than in the rainy season, the cell number of phytoplankton ranged from 66–10,636 cells/l, with the highest at the station DH03 and the lowest at the station DH07. The dominant species in dry season were Oscillatoria princeps, Lyngbya majuscula, Lyngbya sp. belonging to blue-green algae which occupied from 19.4% to 93.9% of the total cells, except for two sampling sites of DH07 and DH09, the diatom Skeletonema costatum dominated, occupying 45.5% and 52.9% of the total cells, respectively (table 3).

Sampling sites	Dominant species	Total density (cells/l)	Density of dominant species (cells/l)	Ratio of dominant species (%)
		Rainy season		
DH01	Oscillatoria perornata	2,225	814	36.6
DH02	Oscillatoria princeps	1,932	1,000	51.8
DH03	<i>Lyngbya</i> sp.	756	200	26.5
DH04	Oscillatoria proboscidea	486	375	77.2
DH05	<i>Lyngbya</i> sp.	2,590	1,214	46.9
DH06	Lyngbya sp.	279	200	71.7
DH07	Lyngbya sp.	177	86	48.6
DH08	Oscillatoria perornata	3,830	1,351	35.3
DH09	Oscillatoria princeps	342	150	43.9
DH10	Coscinodiscus jonesianus	137	34	24.8
DH11	Melosira granulata	129	70	54.3
DH12	Oscillatoria princeps	1,452	520	35.8
		Dry season		
DH01	Lyngbya majuscula	693	200	28.9
DH02	Oscillatoria princeps	145	70	48.3
DH03	Oscillatoria princeps	10,636	5,720	53.8
DH04	Lyngbya majuscula	2,058	400	19.4
DH05	Oscillatoria princeps	4,873	1,764	36.2
DH06	<i>Lyngbya</i> sp.	391	367	93.9
DH07	Skeletonema costatum	66	30	45.5
DH08	Oscillatoria princeps	1,284	420	32.7
DH09	Skeletonema costatum	820	434	52.9
DH10	Oscillatoria princeps	204	166	81.4
DH11	Oscillatoria princeps	2,719	1,280	47.1
DH12	Oscillatoria princeps	353	220	62.3

Table 3. Density and dominant species of phytoplankton from Duyen Hai town, Tra Vinh province

Biodiversity of phytoplankton in Duyen Hai town

DISCUSSION

studies In Vietnam, several on phytoplankton in some areas, which have characteristic environmental similarity to Duyen Hai, Tra Vinh province, have been conducted so far. In 2008, Luong Van Thanh [7] reported 16 species of phytoplankton belonging to seven algal divisions (Cyanophyta, Chrysophyta, Xanthophyta, Bacillariophyta, Chlorophyta, Euglenophyta, Dinophyta) in the estuaries of West-Sea zone of Ca Mau peninsula; in this research. Bacillariophyta was dominant with 53.7% of the total number of species. With similar environment condition in the coastal areas from Soc Trang to Bac Lieu province, the research of Mai Viet Van et al., (2012) [8] reported 232 algal species belonging to only four divisions (Bacillariophyta, Dinophyta, Cyanophyta, and Chlorophyta), however. Bacillariphyta randomly occupied 74.57% of the total number of species. In the other study, Pham Thi Minh Hanh (2013) [6] recorded 144 species belonging to three divisions (Bacillariophyta, Dinophyta, and Cyanophyta), and confirmed that the Bacillariophyta was the dominant group in species number at the Central coastal region of Vietnam (Deo Ngang, Dong Hoi, Con Co, Thuan An, Da Nang, Dung Quat, Sa Huynh, Quy Nhon). The result of Huynh Thi Ngoc Duyen et al., (2018) [16] shown 238 species belonging to four divisions (Bacillariophyta, Dinophyta, Ochrophyta, and Cyanophyta) in the coastal waters of Ninh Thuan - Binh Thuan and Bacillariophyta played the main role in the structure of species composition. In comparison to the above researches, the phytoplankton flora of Duyen Hai town does not reflect diversity in species but show higher diversity in the division. Similar to other research, this research again confirms that Bacillariophyta plays the leading the structure of phytoplankton role in composition at the estuary and coastal waters.

The diversity of phytoplankton in the coastal area of Duyen Hai town has been

clearly shown at the diatom group. Among 98 species of diatom recorded for this area, many of them have been reported in a single genus. The number of species in the diatom genera was ordered as follows: Rhizosolenia (10 species) > Coscinodiscus (9 species) Chaetoceros (8 species) > Gyrosigma (7 species) > Nitzschia (6 species) > Surirella (5 species) > Biddulphia, Pleurosigma (4 species). Only Oscillatoria genus of the blue-green algae group was recorded with eight species and only Ceratium genus of dinoflagellate group was recorded with four species. The other genera or 2 only 1 appeared with species. Phytoplankton are the primary producer in the aquatic food chain and play a significant role in the aquatic ecosystem. The density of phytoplankton in both rainy and dry seasons in Duyen Hai town ranged from 1,000 to 2,000 cells/l, this density is settled at medium level but contributes an important role in connecting the food web in this area.

CONCLUSION

134 species of phytoplankton flora in the coastal region of Duven Hai town. Tra Vinh province were recorded, belonging to 64 genera, 45 families, 31 orders, 8 classes, and 8 divisions. The number of species in the flora list was arranged as follows: Bacillariophyta > Cyanophyta > Dinophyta > Chlorophyta > Euglenophyta. The species composition of phytoplankton was characteristic of the estuarine and coastal areas, however, there were some freshwater species that were widely distributed. environmentally These phytoplankton species are a primary food source for aquatic organisms. Bacillariophyta was dominant in the number of species and Cyanophyta was dominant in cell density. Moreover. the blue-green algae group (Oscillatoria perornata, O. princeps, O. proboscides, and Lyngbya sp.) and diatom group (Coscinodiscus jonesianus, Melosira granulate) were dominant at sampling sites in the rainy season. In dry season, species of O. princeps, Lyngbya majuscule, Lyngbya sp. (blue-green algae), and Skeletonema costatum (diatom) were dominant at sampling sites.

This research contributes to the understanding of species composition and density of phytoplankton in the coastal area of Duyen Hai town, Tra Vinh province. Further research on the management and conservation of aquatic ecosystem for sustainable development in this area needs to be conducted.

Acknowledgements: We thank the Department of Science and Technology of Tra Vinh province for their funding, and thank our colleagues Mr. Tran Van Tien, Mr. Le Van Tho for their support in fieldwork.

REFERENCES

- [1] Chellappa, N. T., Câmara, F. R. A., and Rocha, O., 2009. Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves reservoir and Pataxó channel, Rio Grande do Norte, Brazil. *Brazilian Journal of Biology*, 69(2), 241–251.
- [2] Onyema, I. C., 2013. Phytoplankton bioindicators of water quality situations in the Iyagbe lagoon, South-western Nigeria. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 4(3), 639–652.
- [3] Nguyen Chi Thoi, Nguyen Thi Mai Anh, Tran Thi Le Van, Ho Van The, Phan Tan Luom, Doan Nhu Hai, Nguyen Ngoc Lam, 2014. Variations in number of species and abundance of phytoplankton in Van Phong Bay, Khanh Hoa province. *Collection of Marine Research Works*, 20, 104–120. (in Vietnamese).
- [4] Varadharajan, D., and Soundarapandian, P., 2015. Biodiversity and abundance of phytoplankton from Muthupettai mangrove Region, South East coast of India. Journal of Aquaculture Research and Development, 6(12), 1–6.
- [5] Truong Ngoc An, 1993. Taxonomy of Bacillariophyta plankton in marine water of Vietnam. *Science and Technics Publishing House, Hanoi*, 304 p. (in Vietnamese).
- [6] Pham Thi Minh Hanh, 2013. Study on the impact of water quality on marine phytoplankton community in the Central

area of Vietnam. *Proceedings of the* 5th *National Scientific Conference on Ecology and Biological Resources*, pp. 1333–1340 (in Vietnamese).

- [7] Luong Van Thanh, 2008. Studies on hydro-biology in estuaries at West-Sea zone of Ca Mau peninsular for aquaculture development. Journal of Water Resources k Environmental 337-345. Engineering, 23, (in Vietnamese).
- [8] Mai Viet Van, Tran Dac Dinh, Nguyen Anh Tuan, 2012. Composition and population density of plankton in the coastal areas from Soc Trang to Bac Lieu provinces. *Can Tho University Journal of Science*, 23a, 89–99. (in Vietnamese).
- [9] Edward, G. B., and David, C. S., 2010. Freshwater algae identification and use as bioindicators. *A John Wiley & Sons*, *Ltd*, 101.
- [10] Desikachary, T. V., 1959. Cyanophyta (Vol. 2). New Delhi: Indian Council of Agricultural Research.
- [11] Hendey, N. I., 1964. An Introductory Account of the Smaller Algae of British Coastal Waters: Part V, Bacillariophyceae [Diatoms]. Otto Koeltz Science Publishers.

- [12] Shirota, A., 1966. The plankton of South Viet-Nam: fresh water and marine plankton. *Overseas Technical Cooperation Agency*.
- [13] Duong Duc Tien, Vo Hanh, 1997.
 Freshwater algae of Vietnam.
 Classification of Chlorococcus.
 Agricultural Publishing House, Hanoi, 503 p. (in Vietnamese).
- [14] Ton That Phap, 2009. Biodiversity of the Tam Giang-Cau Hai lagoon, Thua Thien-Hue province, Central Vietnam. *Hue University Publishing House*, 214 p. (in Vietnamese).
- [15] Guiry, M. D., and Guiry, G. M., 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org.
- [16] Huynh Thi Ngoc Duyen, Phan Tan Luom, Tran Thi Le Van, Nguyen Thi Mai Anh, Tran Thi Minh Hue, Nguyen Chi Thoi, Nguyen Ngoc Lam, Doan Nhu Hai, 2018. Variation in phytoplankton community in Ninh Thuan-Binh Thuan coastal waters between post El Niño year and ENSO neutral year. Academia Journal of Biology, 40(1), 13–24.