
 96 

Journal of Marine Science and Technology; Vol. 17, No. 4B; 2017: 96-107   
DOI: 10.15625/1859-3097/17/4B/12997 

http://www.vjs.ac.vn/index.php/jmst 

 

 

POSSIBILITY OF RESERVOIR-TRIGGERED EARTHQUAKE 

OCCURRENCE IN THE HUOI QUANG AND BAN CHAT 

HYDROPOWER DAM AREA 
 

Bui Van Duan
*
, Nguyen Anh Duong, Tran Thi An, Vu Minh Tuan, Nguyen Thuy Linh 

Department of Seismology, Institute of Geophysics, VAST 
*
E-mail: buivanduan77@yahoo.com 

Received: 9-11-2017 
 

 
ABSTRACT: The possibility of reservoir-triggered earthquake occurrence in the Huoi Quang 

and Ban Chat hydropower dam area has been assessed based on studying and analyzing the 

relationships between the reservoir-triggered earthquake occurrence and the following factors: (1) 

the types of rocks underlying the reservoir; (2) the oscillating reservoir loads on faults in the 

reservoir area; (3) the incremental stress caused by reservoir loads; (4) the slip tendency of faults in 

the reservoir area; and (5) the Coulomb stress change of faults in the reservoir area. The results 

show that these factors have interactive effects and simultaneously contribute to the favorable 

conditions for reservoir-triggered earthquake occurrence. The Huoi Quang and Ban Chat 

hydropower reservoirs are located in the area of moderate seismicity; however, with the favorable 

conditions due to these five factors, reservoir-triggered earthquakes can possibly occur. If reservoir-

triggered earthquakes occur, they will be concentrated around the Ban Chat hydropower dam area 

within a radius of 11 - 12 km and at a depth of about 6 ± 1 km. 
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INTRODUCTION 

Currently in Vietnam as well as in the 
world, many artificial reservoirs have been 
created for the purpose of electricity 
production, flood control and irrigation. In 
some reservoirs, the water accumulation has 
resulted in geological hazards, including 
earthquakes. Earthquakes caused by artificial 
reservoirs (reservoir-triggered earthquakes) can 
possibly occur, but they are not the inevitable 
consequence of river damming [1]. Reservoir-
triggered earthquakes are often associated with 
the water accumulation and discharge in the 
early years when the water is accumulated in 
reservoirs. Until 2013, 128 reservoir-triggered 
earthquakes have been reported worldwide, of 
which 4 earthquakes have M ≥ 6.0, 15 
earthquakes have 5.0 ≤ M ≤ 5.9, 33 earthquakes 

have 4.0 ≤ M ≤ 4.9 , and 76 earthquakes have 
M < 4.0 [1-3]. In Vietnam, reservoir-triggered 
earthquakes with 4.0 ≤ M ≤ 4.9 have also been 
recorded in the Hoa Binh and Song Tranh 2 
hydropower reservoirs [4-6]. 

Reservoir-triggered earthquakes have 
occurred in reservoirs with different dam 
heights. Normally, reservoir-triggered 
earthquakes increase as the dam height 
increases [1]. Until 2012, in the world the 
reservoir-triggered earthquakes have occurred 
in 37 reservoirs among a total of 573 reservoirs 
with the dam height of 100 - 150 m [1]. In 
addition, many reservoir-triggered earthquakes 
have occurred in small reservoirs (capacity ≤ 1 
billion m

3
) such as Song Tranh 2 hydropower 

reservoir (capacity of 0.7292 billion m
3
) [7]. 

http://dx.doi.org/10.15625/1859-3097/14/2/4475
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The Huoi Quang and Ban Chat hydropower 
plants were constructed in 2006. Huoi Quang 
hydropower plant is the lower cascade of Ban 
Chat hydropower plant and is the upper cascade 
of Son La hydropower plant. The Huoi Quang 
and Ban Chat hydropower reservoirs (HQ-BC 
reservoirs) are located on the Nam Mu river in 
Than Uyen and Tan Uyen districts, Lai Chau 
province (fig. 1). These two reservoirs have 
great dam height. The Ban Chat and Huoi 
Quang hydropower dams are 132 m high and 
104 m high, respectively. The total capacity of 
Ban Chat reservoir is 2.1 billion m

3
 and that of 

Huoi Quang reservoir is 0.1842 billion m
3
. The 

water in Bat Chat reservoir was accumulated up 
to a building grade of 475 m in February 2013; 
the water in Huoi Quang reservoir was 
accumulated up to a building grade of 370 m in 
February 2015. 





Reservoir and 
dam site: a-Huoi 
Quang; b-Ban Chat
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Fig. 1. Locations of Huoi Quang  
and Ban Chat reservoirs 

 
Based on these realities, a question has 

been raised: When the water in HQ-BC 
reservoirs is accumulated up to the building 
grade, is there any possibility of reservoir-
triggered earthquake occurrence? In response to 

this question, several factors related to the 
reservoir-triggered earthquake occurrence in 
this area have been simultaneously examined: 
(1) the types of rocks underlying the reservoir; 
(2) the oscillating reservoir loads on faults in 
the reservoir area; (3) the incremental stress 
caused by reservoir loads; (4) the slip tendency 
of faults in the reservoir area; and (5) the 
Coulomb stress change on faults in the 
reservoir area. The obtained results will make 
the safe operation of dams and reservoirs of 
Huoi Quang and Ban Chat hydropower plants 
more effective. 

METHODS 

In addition to traditional methods such as 
the analyses of geological maps, tectonic data, 
and seismic data, we have used the following 
methods: 

The calculation of incremental stress 
under the reservoir caused by reservoir loads: 
When studying reservoir-triggered earthquake 
in Kariba reservoir (Zimbabwe), Gough and 
Gough (1970) examined the increment of stress 
and the subsidence of rocks under the reservoir 
caused by reservoir loads. To calculate the 
incremental stress under the reservoir caused 
by reservoir loads according to different 
components, the authors built the algorithm in 
three dimensions [8]. The details of method and 
algorithm can be seen in Gough and Gough 
(1970). 

The assessment of the effects of oscillating 
reservoir loads on faults based on their 
locations and features: Roeloffs (1988) 
suggested that the effects of oscillating 
reservoir loads depended on the locations and 
features of faults [9]. The oscillating reservoir 
load maintains a stable effect on the fault if it is 
located on the hanging wall of a reverse fault 
with a steep dip or directly on a thrust fault 
with a low dip, or if a strike-slip fault or a 
normal fault is located on the edge of the 
reservoir. The instability of fault (earthquake) 
occurs if the reservoir is located on the footwall 
of a reverse fault with a steep dip or on the 
hanging wall of a thrust fault with a low dip. 
The earthquake can possibly occur beneath the 
reservoir if there is a vertical strike-slip fault or 
a normal fault. 
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The calculation of Coulomb stress 
change: The method was developed into the 
COULOMB program by Toda et al. (2011) 
based on the elastic half-space theory proposed 
by Okada (1992) and the Coulomb failure 
criterion proposed by King et al. (1994), in 
which the failure on faults occurs when there is 
a great change in Coulomb stress, which is 
determined by the formula: 

'τf s n  

Where Δσf is the stress change on the faults due 
to the slip on the source faults, Δτs is the 
change in shear stress, Δσn is the change in 
normal stress, and μ' is the coefficient of 
friction on the faults. Calculations were made 
in an elastic, isotropic and homogeneous half-
space. The method was devised to calculate 
displacement, deformation and static stress at 
any depth caused by slip fault, intrusive 
magma, and extension or narrowing of dyke 
[10-12]. 

The analysis of slip tendency on the fault 
surface in three dimensions: The method was 
developed into a subprogram of COULOMB 
program by Neves et al., (2009) based on the 
definition of slip tendency on the fault surface 
of Morris et al., (1996). The slip tendency on 
the fault surface is defined as the ratio of shear 
stress (τ) to normal stress (σn) on the fault 
surface and denoted by Ts [13], thus the fault 
tends to slip when Ts  ≥ 0.5 [14]. The details of 
method and algorithm can be seen in Neves et 
al., (2009). 

RECENT REGIONAL TECTONIC 
STRESS FIELD AND FEATURES OF 
MAJOR FAULTS IN THE RESERVOIR 
AREA 

Recent regional tectonic stress field 

The convergent or divergent motion of 
lithospheric plates will generate the 
compressive or tensile stress field respectively. 
This motion induces a field of tectonic force 
that propagates in the plates and is called the 
regional tectonic stress field. It does not remain 
in a certain form but changes according to time, 
space and magnitude [15]. The recent tectonic 
stress fields in geological structural units 

occurring at various locations are different; 
however, they still carry the typical 
morphology of regional tectonic stress field. 
The force direction of recent regional tectonic 
stress field is quantitatively expressed through 
the orientation values of three principal stress 
axes (σ1, σ2, σ3). There are several methods for 
determining the orientation values of σ1, σ2, and 
σ3 such as using the methods of conjugate joint 
sets (Gzovski) and superposition of 
compressive-tensile regions on the chart 
(Gusenko) to determine the orientation of 
maximum compressive stress axis [16], using 
the method of inverse problem solution based on 
a set of striations on the fault surfaces and focal 
mechanisms in a specific region to determine the 
most appropriate stress tensor [17], using the 
results of earthquake focal mechanism analysis 
to determine the orientation values of three 
stress axes [18-20]. 

 

Fig. 2. Study area on the map of recent tectonic 
stress field zoning of Sichuan-Yunnan region 

(China). This map was modified after  
Cui et al., (2006) 

The study area is located in Northwest 
Vietnam, where the maximum compressive 
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stress axis (σ1) and the maximum tensile stress 
axis (σ3) of Pliocene-Quaternary regional 
tectonic stress field have been determined to be 
nearly horizontal in the sub-longitudinal 
direction and nearly horizontal in the sub-
latitudinal direction respectively [16, 21-23]. 
These results do not reveal the quantitative 
values for the orientations of three principal 
stress axes of recent regional tectonic stress 
field. Currently, the result of earthquake focal 
mechanism analysis is considered as a reliable 
indicator to evaluate the state of regional 
tectonic stress field. However, in Vietnam, the 
results of earthquake focal mechanism analysis 
are few and asynchronous, thus the utilization 
of these results in determining quantitative 
values for three principal stress axes of recent 
tectonic stress field faces many difficulties. In 
order to overcome this limitation, we have 
referred to the similar research results in the 
vicinity and then have applied them in our 
study area. Because the study area is adjacent 

to the Sichuan-Yunnan stress zone (zone B), in 
this paper we have referred to the result of Cui 
et al., (2006) (fig. 2). 

When studying the recent tectonic stress 
field in Sichuan-Yunnan region (China), Cui et 
al., (2006) established three tectonic stress 
zones based on the results of focal mechanism 
analysis of 201 earthquakes from 1933 to 2004. 
The authors determined the orientation values 
of three principal stress axes of recent tectonic 
stress field for each zone, of which the values 
of zone B were  σ1 (ψ=343, δ=5), σ2 (ψ=122, 
δ=83) and σ3 (ψ=252, δ=4) [8]. This result was 
similar to that of Ha Thi Giang (2012) when 
analyzing the focal mechanism of the 
earthquake in Muong La on November 26, 
2009, MW = 3.9 and two aftershocks (table 1) 
[24]. Therefore, in this paper the orientation 
values of three principal stress axes of recent 
regional tectonic stress field have been 
determined to correspond to those of zone B. 

 
Table 1. The focal mechanism solutions of three earthquakes occurring in Muong La area [24] 

Date 
Location 

MW 

P T 
Remark 

Lat. (
o
) Long. (

o
) Azimuth (

o
) Plunge (

o
) Azimuth (

o
) Plunge (

o
) 

26/11/2009 21.316 104.176 3.6 167 (347) 6 258 9 Main shock 

26/11/2009 21.309 104.163 3.5 168 (348) 6 258 3 Aftershock 

08/12/2009 21.315 104.164 2.9 163 (343) 9 254 5 Aftershock 

 
Features of major faults in the reservoir area 

The major faults located in the connected 
region of HQ-BC reservoirs were determined 
based on the results of ~30 m resolution DEM 
image analysis (SRTM images and GMRT 
images), including F-II1, F-II2, F-III, F-III2, F-
III3 and F-III4 faults (fig. 3) [3]. 

F-II1 fault is a segment of the Muong La - 
Bac Yen fault zone. This is a second order 
fault, coinciding with the foot of tectonic scarp 
with the height of about 1000 m [25]. This fault 
develops in the NW - SE direction. Along the 
fault zone, the geological formations are 
extremely cataclased, sheared and contorted 
with many slip surfaces containing striations 
and cross-cutting quartz veins [23, 26]. 
According to Le Tu Son et al., (2005), the slip 
surface of the fault inclines northeastwards 
with the inclination of 70 - 80° and the dipping 

depth of 35 - 40 km. The destruction zone on 
the fault surface shows the linear fracture 
structures extending continuously, forming the 
steep cliff and sometimes leaving the sharp 
facets. Under the impact of recent tectonic 
stress field, the slip type of the fault is mainly 
dextral strike-slip, along with inverse 
component [23]. 

F-II2 fault is a segment of the Than Uyen 
fault zone. This is a second order fault zone, 
extending in the NE - SW direction. According 
to Le Tu Son et al., (2005), the geological 
formations distributed along the fault are 
severely laminated, contorted and crystallized 
into quartz; in addition, the tectonic fracture 
and cataclasis are observed in some places; the 
slip surface attitude of the fault is determined to 
dip southeastwards with the dip angle of 80° 
and the dipping depth of 30 - 35 km. Under the 
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impact of recent tectonic stress field, the slip 
type of the fault is mainly sinistral strike-slip, 
along with normal component [23]. 

F-III1, F-III2, F-III3 and F-III4 faults are 
segments of the Muong Khoa - Ta Gia fault 
zone, which were determined based on the 
results of DEM image analysis [3]. These faults 
coincide with the IV-40 fault zone determined 
by Le Tu Son et al., (2005). The slip surface of 
fault zone dips eastwards with the dip angle of 
75°. The geological formations distributed 
along the faults are laminated, fractured and 
cataclased by faulting activities. The dipping 
depth of the faults reaches 10 - 20 km [23]. 
According to our assessment, these faults are 
probably the extension of the Muong La - Bac 
Yen fault zone but they are smaller in scale. 
Under the impact of recent tectonic stress field, 
the slip type of these faults is mainly normal 
type, along with dextral strike-slip component. 

Some basic features of F-II1, F-II2, F-III1, 
F-III2, F-III3 and F-III4 faults are summarized 
and presented in table 2 below. 
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Fig. 3. The major faults in the study area 

 
Table 2. Basic features of major faults within the Huoi Quang and Ban Chat reservoir area [3, 23, 26] 

No. Faults Strike (
o
) Length (km) Depth (km) Dip angle (

o
)/Dip direction Slip type (N2-Q) 

1 F-II1 157 12.5 35 - 40 80 / NE Dextral strike-slip 

2 F-II2 211 14.5 30 - 35 80 / SE Sinistral strike-slip 

3 F-III1 164 11.1 10 - 20 75 / E Normal 

4 F-III2 170 10.4 10 - 20 75 / E Normal 

5 F-III3 171 9.9 10 - 20 75 / E Normal 

6 F-III4 174 11.4 10 - 20 75 / E Normal 

 

SOME FACTORS RELATED TO THE 

POSSIBILITY OF RESERVOIR-TRIG-

GERED EARTHQUAKE OCCURRENCE 

IN THE HQ-BC RESERVOIR AREA 

Types of rocks underlying the reservoir area 

According to global statistics results of Qiu 
(2012) based on 115 reservoir-triggered 
earthquakes occurring in the reservoir areas, 
among four types of rocks underlying the 
reservoirs (crystalline rock, limestone, volcanic 
rock and clastic rock), crystalline rock and 
limestone are most likely to experience 
earthquakes (39.13%) [1]. Limestone is the 
most vulnerable rock because of being 
chemically dissolved by water. When being 

chemically dissolved, the cohesion of the rock 
decreases, the friction also decreases, thus 
weakening the strength of fault [27]. The 
dissolved materials can also be removed by the 
water flow, the rock fractures are extended, 
thus reducing the strength of rock, accelerating 
the slip process and finally resulting in the 
reservoir-triggered earthquake occurrence. 

Based on the distribution of geological 
formations on the sheets of Geological and 
Mineral Resources Map of Vietnam on 
1:200,000 such as the Kim Binh - Lao Cai 
sheet [28], the Phong Sa Li - Dien Bien Phu 
sheet [29], we have delineated six areas in 
which there are limestone, marl, light-grey 
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porous limestone of Muong Trai Formation 
(T2l mt2). These areas are distributed into six 
narrow strips, of which only three strips (A, B, 
C) are located beneath the reservoirs. Based on 
this feature, it can be concluded that the A, B, 
C areas are more likely to experience 
earthquakes (fig. 4). 
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Fig. 4. Distribution of limestone on the 
Geological and Mineral Resources  

Map of Vietnam 
 

Oscillating reservoir loads on major faults in 
the reservoir area 

Based on the locations of the faults and 
with the HQ-BC reservoirs in fig. 3, it can be 
seen that the F-II1, F-III2, F-III3 and F-III4 
faults will be directly affected by oscillating 
reservoir loads. To examine the effect of 
oscillating reservoir loads on faults in the HQ-
BC reservoir area, we have used the method of 
Roeloffs (1988) [9]. The results show that the 
Huoi Quang reservoir is located on the fault 
with the dominant strike-slip type (F-II1 fault), 
and the Ban Chat reservoir is located on the 
faults with the dominant normal slip type. 
Thus, under the impact of oscillating loads of 
HQ-BC reservoirs, F-II1, F-III2, F-III3 and F-
III4 faults become unstable. It means that under 
the impact of oscillating loads of HQ-BC 
reservoirs, the reservoir-triggered earthquakes 

are likely to occur on the F-II1, F-III2, F-III3 
and F-III4 faults. 

Incremental stress under the full reservoir 

The algorithm proposed by Gough and 
Gough (1970) to calculate the incremental 
stress caused by reservoir loads has been 
successfully used in some reservoirs in 
Vietnam such as Hoa Binh, Son La, Song 
Tranh 2 hydropower reservoirs [7, 30, 31]. 
These calculation results show that the value of 
incremental stress under the reservoir caused 
by reservoir loads reaches the maximum and 
vanishes at the certain depth; this value 
gradually decreases with depth. 

In accordance with the building grades of 
Huoi Quang and Ban Chat hydropower 
reservoirs, Bui Van Duan et al., (2014) 
calculated the incremental stress under the 
reservoir caused by reservoir loads. The results 
show that the value of incremental stress 
caused by reservoir loads reaches the maximum 
at the depth h = 0.123 km, gradually decreases 
and vanishes at the depth h=6.217 km [3]. The 
increments of downward normal stress (σZ) and 
maximum shear stress (τmax) at depths of 3 km, 
6 km under HQ-BC reservoirs caused by 
reservoir loads are presented in table 3. 

 
Table 3. Maximum values of incremental stress 
(Z , max) at 3 km and 6 km depths under HQ-

BC reservoirs caused by reservoir loads [3] 

Depth 
(km) 

Maximum values of incremental stress 

Z (bar) max (bar) 

3 1.96 1.09 

6 0.99 0.56 

 
With the results shown in table 3, it can be 

seen that at depths of 3 km and 6 km under 
HQ-BC reservoirs, there are the increments of 
Z and max caused by reservoir loads. The 
incremental stress caused by reservoir loads is 
mainly concentrated in the Ban Chat reservoir 
area and reaches the maximum value in the 
center of the reservoir (fig. 5 and fig. 6). 

Rajendran (1995) argued that the stress 
change caused by reservoir loads was 
associated with reservoir-triggered earthquakes 
when the incremental stress under the reservoir 
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was about 0.1 bar [32]. The values of Z and 
max under HQ-BC reservoirs are not 
considerable but > 0.1 bar. Thus, the 
incremental stress of rocks under HQ-BC 
reservoirs caused by reservoir loads is one of 
the favorable conditions for reservoir-triggered 

earthquake occurrence in this area and its 
vicinity. With this increment, the possibility of 
reservoir-triggered earthquake occurrence will 
be concentrated in the Ban Chat reservoir area 
at the depth of 6 ± 1 km. 

 

  

Fig. 5. Distribution of the downward normal stress (Z) under HQ-BC reservoirs  
at 3 km (a) and 6 km (b) depths 

 

  

Fig. 6. Distribution of the maximum shear stress (max) under HQ-BC reservoirs  
at 3 km (a) and 6 km (b) depths 
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Slip tendency of major faults in the reservoir 
area 

 

Fig. 7. Slip tendency of major faults in the HQ-
BC reservoir area on a 3D grid with red color 

indicating the highest slip tendency 
 

The majority of earthquakes in reservoirs 
are caused by the reactivation of pre-existing 
faults rather than the occurrence of new faults 
[13]. The possibility of reactivation of major 

faults in the HQ-BC reservoir area is related to 
the recent regional tectonic stress field. Using a 
program for analyzing slip tendency of faults in 
three dimensions developed by Neves et al., 
(2009), we have assessed the slip tendency on 
F-II1, F-II2, F-III1, F-III2, F-III3 and F-III4 
faults. The results of slip tendency analysis on 
major faults in the HQ-BC reservoir area under 
the impact of recent regional tectonic stress 
field are presented in fig. 7. 

The results in fig. 7 show that F-II2 and F-
III4 faults tend to slip, of which F-II2 fault has 
strong slip tendency (Ts ≥ 0.8), F-III4 fault has 
moderate slip tendency (Ts = 0.5 - 0.6). In 
addition, Le Tu Son et al., (2005) showed that 
the slip surface of F-II2 fault coincided with the 
laminated surface of shale of Muong Trai 
Formation (T2l mt3) [23]. With this feature, 
after the water accumulation in HQ-BC 
reservoirs, the water will soak through fault 
surface and reduce the friction on fault surface, 
thus creating the favorable conditions for slip 
process. Therefore, under the impact of recent 
regional tectonic stress field, reservoir-
triggered earthquakes are more likely to occur 
on F-II2 fault. 

Coulomb stress change of major faults in the 
reservoir area 

 

   

Fig. 8. The Coulomb stress change of major faults in the HQ-BC reservoir area at different depths 
(red color indicating the stress rise; blue color indicating the stress drop) 

 

Using the method of calculation of 

Coulomb stress change developed by Toda et 

al., (2011), we have examined Coulomb stress 

change of major faults in the HQ-BC reservoir 

area at different depths. To examine this factor, 

a maximum earthquake scenario is assumed to 
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occur on faults in the reservoir area as follows: 

on F-II1 and F-II2 faults the maximum 

earthquake has a magnitude MSmax=5.9 [33]; on 

F-III1, F-III2, F-III3 and F-III4 faults the 

maximum earthquake has a magnitude 

MSmax=5.0 [34]. This scenario is input into the 

COULOMB 3.3 program to calculate the stress 

change on the faults. Coulomb stress change on 

the faults in the HQ-BC reservoir area is 

calculated at depths of 3 km, 6 km, 10 km and 

presented in fig. 8. The results indicate that in 

the recent regional tectonic stress field, 

Coulomb stress change is clearest and greatest 

on F-II2 fault. Thus, reservoir-triggered 

earthquakes in the HQ-BC reservoir area are 

more likely to occur on F-II2 fault and in the 

regions of stress rise (red- and yellow-colored 

regions). With this result, in the recent regional 

tectonic stress field, the activity of F-II2 fault 

will control and direct the distribution of 

reservoir-triggered earthquakes occurring in 

this area. 

DISCUSSION 

21° 55'

22° 09'



21° 41'

1
0
4
°
 0

0
'

1
0
3
°
 3

2
'

1
0
3
°
 4

6
'

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

P
h
ong

 Tho
 fault zone

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

M
u

o
n
g

 L
a
 - B

a
c
 Y

e
n
 fa

u
lt zo

n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

T
h
a
n
 U

y
e
n
 f
a
u
lt
 z

o
n
e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

M
u

o
n

g
 K

h
o

a
 - T

a
 G

ia
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

S
o

n
g
 D

a
 fa

u
lt z

o
n

e

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-I
I2

F
-II1
F
-II1
F
-II1
F
-II1
F
-II1

F
-II1
F
-II1
F
-II1
F
-II1
F
-II1

F
-II1
F
-II1
F
-II1
F
-II1

F
-II1
F
-II1
F
-II1
F
-II1
F
-II1

F
-II1
F
-II1
F
-II1
F
-II1
F
-II1
F
-II1

F
-III1
F
-III1
F
-III1
F
-III1
F
-III1

F
-III1
F
-III1
F
-III1
F
-III1
F
-III1

F
-III1
F
-III1
F
-III1
F
-III1

F
-III1
F
-III1
F
-III1
F
-III1
F
-III1

F
-III1
F
-III1
F
-III1
F
-III1
F
-III1
F
-III1

F
-III2
F
-III2
F
-III2
F
-III2
F
-III2

F
-III2
F
-III2
F
-III2
F
-III2
F
-III2

F
-III2
F
-III2
F
-III2
F
-III2

F
-III2
F
-III2
F
-III2
F
-III2
F
-III2

F
-III2
F
-III2
F
-III2
F
-III2
F
-III2
F
-III2

F
-III4
F
-III4
F
-III4
F
-III4
F
-III4

F
-III4
F
-III4
F
-III4
F
-III4
F
-III4

F
-III4
F
-III4
F
-III4
F
-III4

F
-III4
F
-III4
F
-III4
F
-III4
F
-III4

F
-III4
F
-III4
F
-III4
F
-III4
F
-III4
F
-III4

F
-III3
F
-III3
F
-III3
F
-III3
F
-III3

F
-III3
F
-III3
F
-III3
F
-III3
F
-III3

F
-III3
F
-III3
F
-III3
F
-III3

F
-III3
F
-III3
F
-III3
F
-III3
F
-III3

F
-III3
F
-III3
F
-III3
F
-III3
F
-III3
F
-III3

kilometers

4.5 9



0



Reservoir contour

a - Province boundary; 
b - District boundary

The rank of fault:
 a - Level 3, b - Level 2 

Faults: 
 a - normal, b - reverse

Dam site:
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Fig. 9. Distribution of earthquakes occurring in 
the study area in the period of 1900-2012 

The HQ-BC reservoir area is located in the 
Northwest, which is considered the most active 
seismic region in the territory of Vietnam [34, 
35]. However, the study area has the moderate 
seismicity. This was assessed by Le Tu Son et 
al., (2005) based on the results of Gutenberg-
Richter graph drawing for the Huoi Quang and 
Ban Chat hydropower plant area in the period 
of 1920-2004 [23]; the graph is defined by:  

log 5.66 0.86N M  

In this paper, the seismic data in the HQ-
BC reservoir area before the water 
accumulation up to building grade (from 1900 
to 2012) have been collected. According to the 
record of the Institute of Geophysics, before the 
water was accumulated up to building grade in 
the Ban Chat reservoir (before 2013), no 
earthquakes occurred within the reservoir area 
but some occurred outside (fig. 9). 

Thus, the HQ-BC reservoirs are located in 
the area where earthquakes rarely occur. This 
feature is quite consistent with the result of 
research on tectonic deformation in Northwest 
Vietnam using GPS measurement technology 
by Nguyen Anh Duong (2012). This result 
shows that the tectonic deformation in the HQ-
BC reservoir area is mainly extensional 
(extensional strain rate axis is greater than 
compressional strain rate axis) [36], the stress 
is not accumulated; consequently, earthquakes 
rarely occur. 

The results from the assessment of five 
associated factors show that these factors have 
interactive effects and simultaneously 
contribute to the favorable conditions for 
reservoir-triggered earthquake occurrence. The 
HQ-BC reservoirs are located in the area of 
moderate seismicity (even low seismicity); 
however, with the favorable conditions due to 
five associated factors, reservoir-triggered 
earthquakes can possibly occur. It should be 
emphasized that whether reservoir-triggered 
earthquakes in the HQ-BC reservoir area occur 
or not, they depend on the complex relationship 
between these factors and the earthquake 
occurrence. Due to the complexity and 
diversity of factors related to reservoir-
triggered earthquakes, all assessments and 
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researches to minimize the hazards of river 
damming must be considered simultaneously. It 
has no significance if any factor is considered 
separately and allowed to play an 
overwhelming role. 

CONCLUSION 

The possibility of reservoir-triggered 
earthquake occurrence in the Huoi Quang and 
Ban Chat hydropower reservoirs is related to 
the following factors: (1) the types of rocks 
underlying the reservoir; (2) the oscillating 
reservoir loads on faults in the reservoir area; 
(3) the incremental stress caused by reservoir 
loads; (4) the slip tendency of faults in the 
reservoir area; and (5) the Coulomb stress 
change of faults in the reservoir area. These 
factors interact with each other and 
simultaneously contribute to the favorable 
conditions for reservoir-triggered earthquake 
occurrence. 

The Huoi Quang and Ban Chat reservoirs 
are located in the area of moderate seismicity; 
however, the assessment results based on five 
associated factors show that reservoir-triggered 
earthquakes can possibly occur. If reservoir-
triggered earthquakes occur, they will be 
concentrated around the Ban Chat hydropower 
dam area within a radius of 11 - 12 km and at a 
depth of about 6 ± 1 km. 
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