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Abstract. Kinh Ngu Trang oilfield is of the block 09-2/09 offshore Vietnam, which is located in the 

Cuu Long basin, the distance from that field to Port of Vung Tau is around 140 km and it is about 

14 km from the north of Rang Dong oilfield of the block 15.2, and around 50 km from the east of 

White Tiger in the block 09.1. That block accounts for total area of 992 km2 with the average water 

depth of around 50 m to 70 m. The characteristic of Oligocene E reservoir is tight oil in sandstone, 

very complicated with complex structure. Therefore, the big challenges in this reservoir are the low 

permeability and the low porosity of around 0.2 md to less than 1 md and 1% to less than 13%, 

respectively, leading to very low fracture conductivity among the fractures. Through the Minifrac 

test for reservoir with reservoir depth from 3,501 mMD to 3,525 mMD, the total leak-off coefficient 

and fracture closure pressure were determined as 0.005 ft/min0.5 and 9,100 psi, respectively. To 

create new fracture dimensions, hydraulic fracturing stimulation has been used to stimulate this 

reservoir, including proppant selection and fluid selection, pump power requirement. In this article, 

the authors present optimisation of hydraulic fracturing design using unified fracture design, the 

results show that optimum fracture dimensions include fracture half-length, fracture width and 

fracture height of 216 m, 0.34 inches and 31 m, respectively when using proppant mass of 150,000 

lbs of 20/40 ISP Carbolite Ceramic proppant. 

Keywords: Fracture dimensions, hydraulic fracturing design, oligocene reservoir, Kinh Ngu Trang 

oilfield. 

 
INTRODUCTION TO GEOLOGICAL 
PROPERTIES OF KINH NGU TRANG 

The Oligocene reservoir in Kinh Ngu Trang 
oil field can be seen as the tight oil reservoir 
with both permeability and porosity being low 
but the oil potential with oil initially in place 
(OIIP) is approximately 177 million tonnes. In 
order to increase oil productivity, the hydraulic 
fracturing stimulation is the best choice to 
increase conductivity in the fractures. Before 
preparing for fracture treatment, the geology of 
Kinh Ngu Trang has to be fully understood and 
it plays the very important role in order to 
predict these fracture directions during 

pumping and allows selecting the right 
fracturing fluid systems for this project. The 
other benefit is that the right pump horsepower 
has been determined. Through the specific 
measurement in the field, overburden pressure, 
pore pressure, and fracture pressure, minimum 
in-situ stress, maximum in-situ stress, the 
correlation between young modulus and 
fracture toughness, Poisson’s ratio, and young 
modulus have been obtained by various 
methods. Generally in the field, the geology of 
Kinh Ngu Trang is mostly strike slip faulting 
stress regime which is to build the geological 
framework of the field. In order to construct an 
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overburden pressure profile for this well, sonic 
log density is a tool to measure shale density at 
each well depth. On the other hand, the 
relationship between shale densities and the 
valuable sonic log has been presented by 
Gardner’s experiment. The details of the 
reservoir properties and parameters are shown 

in table 1 and table 2, which are calculated 
through the average values including young 
modulus of 5,000,000 psi, Poisson’s ratio of 
0.25, and closure pressure of 9,137 psi, fracture 
toughness of 1,000 psi-in0.5, reservoir 
compressibility, and other parameters that are 
for fracture design. 

 
Table 1. Fracturing parameters 

Parameters Value 

Fracture height, hf, ft. 101 

Leak-off coefficient, ft/min
0.5

 0.00055 

Spurt loss, gal/ft
2
 0.1 

Injection rate, bpm 18 

Injection time, min 73 

Spurt loss, in 0.1 

Proppant concentration at the end of job, (EOJ), ppg 8 

Flow behavior index, n 0.55 

Consistency index, K, lbf.s
n
/ft

2
 0.04 

Fracturing fluid type: Fracturing Lighting 3500 (LF-3500) with the compositions as presented in fracturing fluid selection
 

Pproppant type: ISP Carbolite-Ceramic , 20/40, 170 lb/ft
3
, 16/20 with 170 lb/ft

3
 

 
Table 2. Reservoir data of X well in Oligocene 

E reservoir, offshore Vietnam [1, 2] 

Parameters Value 

Target fracturing depth, ft. 11,482 

Reservoir drainage area, acres 122 

Reservoir drainage radius, ft. 1,300 

Wellbore radius, ft. 0.25 

Reservoir height, ft. 77 

Reservoir porosity, % 12.8 

Reservoir permeability, md 0.1 

Reservoir fluid viscosity, cp 0.5 

Oil formation volume factor, RB/STB 1.4 

Oil saturation, % 48 

Total compressibility, psi
-1

 1.00 ×10
-5

 

Young modulus, psi 5×10
6
 

Sandstone Poisson’s ratio 0.25 

Initial reservoir pressure, psi 5610 

Reservoir temperature, 
o
F 260 

Oil API 40 

Gas specific gravity 0.707 

Bubble point pressure, psi 1,310 

Flowing bottom hole pressure, psi 3,500 

Closure pressure, psi 9,137 

 
IN-SITU STRESSES 

The orientation and magnitude of the in situ 
stresses determine the direction and geometry 
of the propagated fractures. It not only finds 
exactly fracture model in order to design 

fracture volume but also provides pump 
horsepower for the fracture treatment. The state 
of stresses is described by three principal 
stresses perpendicular to each other, including 
the maximum principal stress, the intermediate 
principal stress and the minimum principal 
stress. In addition, during pumping to produce 
fractures growth, the fractures propagate 
perpendicularly to the minimum principal stress 
[3]. Before designing fracture treatment, the 
parameters consisting of young modulus, 
unconfined compressive strength, closure 
pressure as minimum horizontal stress, 
maximum horizontal stress, vertical stress have 
been gathered. In fact there are some methods 
to determine minimum horizontal stress 
including Hubbert and Willis [3], the Matthews 
correlation [4], the Pennebaker correlation [5], 
the Eaton correlation [6], the Christman 
equation [7], and the MacPherson and Berry 
correlation [8] but these methods require more 
input data and take the time to determine 
minimum horizontal stress that is the main 
drawback for the treatment design. To obtain 
quickly the valuable closure pressure, it is 
predicted through the extended leak-off test 
instead of leak-off test or Mini-fracture test 
because this method predicts exactly that one. 
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In the field, fracture pressure as closure 
pressure or minimum in-situ stress is 
sometimes determined through Eaton method 
because it takes input data consisting of 
overburden stress, Poisson’s ratio, well depth 
and pore pressure. The fracture treatment also 
requires the Young modulus that is taken 
through the core tests in the laboratory or Mini-
fracture test with formation breakdown test or 
logs. The Eaton method is to predict fracture 
pressure as closure pressure with the equation 
below: 

1

v p pS P Pv
FP

D v D

  
   

 
               (1) 

 

In which: FP is the fracture pressure, psi; Sv is 

the overburden pressure, psi; D is the true 

vertical depth, ft; Pp is the pore pressure, psi; ν 

is the Poisson’s ratio. 

 

Fig. 1. Modelling in-situ stress 

 
In order to achieve the success of the 

fracturing stimulation, some previous fracture 
treatments with the objective in the tight oil 
sandstone reservoir have reviewed productivity 
of the fractured wells. The table below shows 
some fracturing achievements that have 
fractured with different targets. 

 
Table 3. The results of fractured wells in the White Tiger oilfield [1] 

Wells Formation Treatment date 
Production 

date 

Production data Oil 
increase 
(m

3
/day) 

Before fracturing 
(m

3
/day) 

Post-fractured 
wells (m

3
/day) 

X1 Lower Oligocene 3-Sept-2011 13-Sept-2011 - 35 35 

X2 Lower Miocene 6–7-Sept-2011 13-Sept-2011 - 33 33 

X3 Lower Oligocene 8–Sept-2011 16-Sept-2011 48 88 40 

X4 Upper Oligocene 21–22-Sept-2011 2-Oct-2011 15 49 34 

X5 Lower Oligocene 28-Sept-2011 10-Oct-2011 71 251 180 

 
YOUNG’S MODULUS 

It is defined as the ratio of stress to strain 
for uniaxial stress and it is the stiffness of the 
rock. Young’s modulus can significantly affect 
the fracture geometry and net pressure as 
presented by Meyer & Jacot (2001). In the 
Miocene sandstone reservoir, this value is 
about 3.45×106 psi (Report VSP). Poisson’s 
ratio is defined as the lateral expansion to 
longitudinal contraction of a rock and it has a 
minor effect on the fracture propagation. The 
Poisson’s ratio in the Miocene reservoir is 
about 0.23 for the sandstone and about 0.31 for 
the shale (Report). In the field, it is clear that 
the greater young’s modulus as well as hard 
rock produces the thinner fracture, longer 
fracture and higher fracture during pumping 
under high pressure and it is difficult to make 

fracture width, length because it requires more 
pump horsepower. In contrast, lower young’s 
modulus produces more easily fracture 
dimensions due to using lowest pump 
horsepower. To define the valuable fracture 
toughness, KIC, this is obtained from the 
concept of stress intensity factor and is 
developed in linear elastic fracture mechanics 
(LEFM). In addition, fracture toughness is a 
measure of a material’s resistance to fracture 
propagation. It is proportional to the amount of 
energy that can be absorbed by the material 
before propagation occurs. 

LEAK-OFF COEFFICIENT 
The valuable leak-off coefficient plays a 

crucial role in order to design fracture with 
high fluid efficiency and it is definitely an 
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average rate of fluid leak-off per unit fracture 
area that is created during pumping. In the 
field, this value can be determined by mini-
fracture test. In addition, leak-off coefficient 
variations could considerably impact not only 
fracture geometries, fracture length and height 
but also proppant placement for fracture model. 
The fluid leak-off rate from a hydraulic fracture 
influences the created area of the fracture. For 
example, the created fracture area decreases 
when fluid leak-off rate increases. In addition, 
the proppant concentration in the fracture 
increases when the leak-off is high; therefore, 
higher leak-off coefficient could cause poorer 
proppant placement. 

FLUID SELECTION 
In 1991, Economides et al. presented the 

fracturing fluid selection guide line in the 
petroleum industry practically. Ideally, the 
fracturing fluid must be compatible with the 
formation rock properties; also it is compatible 
with fluid flow in the reservoir and reservoir 
pressure and reservoir temperature. Fracturing 
fluid generates pressure in order to transport 
proppant slurry and open fracture, produce 
fracture growth during pumping, also fracturing 
fluid should minimize pressure drop alongside 
and inside the pipe system in order to increase 
pump horsepower with the aim of increasing a 
net fracture pressure to produce more fracture 
propagation. In fracturing fluid system, the 
breaker additive would be added to the fluid 
system to clean up the fractures after treatment 
and the friction reducer should be added in 
order to decrease the pressure loss system in 
the pipe that brings more benefit for net 
pressure. Due to the temperature of Oligocene 
E reservoir in Kinh Ngu Trang up to 260oF, 
fracturing fluid of LF-3500 has these 
compositions including clay treatment-3C of 
1ppg, clay master 5C of 1pptg, Inflo-250 of 2 
pptg, BF-7L (Cross-linking Buffer) of 2 pptg, 
XLW-30 (Cross linker) of 3 pptg, GBW-
41L(Breaker) of 2 pptg,  Hiperm CRB 
(Encapsulated Breaker) of 1 ppg, XLFC-5C 
(Gel Liquid Concentrate) of 8.75 pptg for 
fracturing fluid system [1, 2]. To predict 
precisely the fracture geometry as fracture half-
length, fracture width during pumping, the 

power law fluid model would be applied in this 
study. Then the most fracturing fluid model is 
usually given by: 

nK                                     (2) 

Where: τ- shear stress; γ- shear rate; K- 

consistency coefficient, n- rheological index as 

dimensionless flow behavior index but related 

to the viscosity of the non-Newtonian 

fracturing fluid model [9]. 

The power law model can be expressed by: 

log log logK n    

       
22Slope N XY X Y N X X              

 Intercept Y n X N    

Where X = log γ; Y = log τ; and N = Data 

number; Thus n = Slope and K= exp(Intercept). 

The detail of the fracturing fluid 
composition has been presented as the table 
below. 

PROPPANT SELECTION 
In order to select proppant, the proppant 

must be selected correctly as proppant type, 
proppant size, proppant porosity, proppant 
permeability and proppant conductivity, 
proppant strength under fracture closure 
pressure of 9,137 psi in the Oligocene E 
sequence [2]. The important factor of proppant 
is proppant strength that would be much larger 
than closure pressure. And the other factor is 
saving cost. In order to estimate precisely the 
valuable fracture conductivity among fractures 
in terms of proppant damage factor, closure 
pressure and proppant concentration in the 
fractures have been accurately predicted. 
Proppant is used to open fractures and keep the 
fractures always open for a long time to gain 
fracture conductivity after pump is shut in and 
fracture will be closed due to effective stress 
and overburden pressure forced to fractures. 
Ideally, proppant selection needs to have 
enough strength to be resistant to crushing, 
erosion, and corrosion in the well. Due to 
fracture closure pressure in Oligocene E 
sequence up to 9,137 psi [1, 2], proppant type 



Optimisation of hydraulic fracturing design… 

 327 

should be selected with intermediate strength 
proppant (ISP), Carbolite Ceramic proppant 
with proppant size of 16/30, 20/40; proppant 
types that are good for optimum proppant 

settling in fracturing fluid and better for 
proppant transport and proppant slurry 
pumping are presented in the table below: 

 
Table 4. Proppant selection 

Parameters Value 

Proppant type 20/40 CARBO-Lite 

Specific Gravity 2.71 

Strength Intermediate 

Diameter 0.0287 in 

Packed porosity 0.29 

Proppant permeability  100,000 mD 

Conductivity at 9,137 psi closure pressure (at 1.37 lb/ft
2
) 1,500 mD-ft. 

Conductivity damage factor 0.5 

Closure pressure 9,137 psi 

Proppant type 16/20 CARBO-Lite 

Specific Gravity 2.71 

Strength Intermediate 

Average Diameter 0.0394016 

Packed porosity 26 

Proppant permeability 80,000 mD 

Conductivity at 9,137 psi closure pressure (at 1.37 lb/ft
2
) 2,400 mD.ft 

Proppant damage factor 0.5 

Closure pressure 9,137 

 
PUMP HORSEPOWER REQUIREMENT 

In order to design and select the right pump 
horsepower for the project, it depends on the 
main positive factors including closure 
pressure, hydrostatic pressure, and the near 
wellbore friction pressure loss, pressure loss 
systems inside the pipe. After Minifrac test in 
the formation, this has obtained high closure 
pressure that selects high pump horsepower. 
Due to hydraulic fracturing treatment with 
targeted reservoir depth up to 11,482 ft, it also 
affects selection of high pump horsepower. 
These data have been given as the table below 
that are necessary to calculate pump 
horsepower requirement for this project. 

 
40.8

c lossP p HSP q
HHP

   
  

In which: Pc is the fracture closure pressure in 

Oligocene Kinh Ngu Trang of 9,137 psi; HSP 

is the hydrostatic pressure that is calculated by 

the vertical depth, fracturing fluid density, psi; 

q is the optimum flow rate of the hydraulic 

fracturing project, bpm; ∆ploss is the total 

pressure loss including near wellbore friction 

and pressure loss via the pipe systems, psi. 

The database was obtained in the field. The 
pump horsepower is found at 2000 HHP. 

NET PRESSURE AND EXTENSION 
PRESSURE REQUIREMENT 

The positive net pressure plays the very 
crucial role for producing the fracture 
dimensions such as fracture half-length and 
fracture width and fracture height. By contrast, 
the extension pressure allows determining 
fracture propagation during fracture pumping. 
The details of the net pressure components 
have been presented as the following equation: 

net s c wellbore lossP P HSP P P P              (3) 

To produce the fracture dimensions, the net 
pressure is positively greater than zero, 
therefore the total bottom hole injection 
pressure overcomes the closure pressure. 

In which: Pnet is the net pressure inside fracture, 

psi; Ps is the surface treating pressure, psi; HSP 

is the hydrostatic pressure, psi; Pc is the closure 
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pressure, psi; Pwellbore is the near wellbore 

friction pressure, psi; Ploss is the total pressure 

loss in the pipe systems, psi. 

FRACTURE GEOMETRY MODEL 

In the recent years, there are various 

fracture models applying fracture design that 

give an approximate description of real fracture 

geometry, which are 2D fracture model without 

fluid leak-off such as GDK, PKN [10] and 

Radial and 2D fracture model [9]. In terms of 

fluid leak-off rate, and power law parameters, 

they consist of PKN-C, GDK-C and Radial-C 

[9]. Also, the 2D models show that fracture 

height is constant during pumping, therefore, 

fracture geometry of 2D models without fluid 

leak-off could not be evaluated accurately. 

However, the PKN-C [10] fracture geometry 

model accounts for the leak-off coefficient and 

power law parameters with fracture length and 

fracture more exactly than the other fracture 

models like PKN, GDK and the Radial model. 

In this study, the 2D PKN fracture geometry 

model (Two dimension PKN; Perkins and Kern 

(1961); Nordgren (1972)) in fig. 1 is used to 

present the significant fracture geometry of 

hydraulic fracturing stimulation for low 

permeability, low porosity and poor 

conductivity as Oligocene E reservoir that 

requires the fracture half-length of fracture 

design and evaluates the fracture geometry. 

After incorporation of Carter’s solution II, the 

model is known as 2D PKN-C [9], had 

incorporated the leak-off coefficient, in terms 

of consistency index (K), flow behaviour index 

(n), injection rate, injection time, fluid 

viscosity, fracture height. The model detail in is 

shown as table 1 [9]. 

The maximum fracture width in terms of 

the power law fluid parameters is given by: 

 

   
1

1 2 21 12 2
2 2 2 2 2 2

/ 21 1
9.15 3.98

'

n
n n nn n

i f fn n n
f

q h xn
w K

n E


 

  
    
    
    

                     (4) 

 

Where:  E’ is the plain strain in psi, 

(
2

1
 
1

E





 ). 

Where n is flow behaviour index 

(Dimensionless) and K is the consistency index 

(Pa.secn), ν is in the Poisson’s ratio and μ is in 

Pa.s., the power law parameters are correlated 

with fluid viscosity of fracturing fluid as: 

 
0.1233

0.1756n 


    

 47,880 0.5 0.0159K      

By using the shape factor of π/5 for a 2D PKN 

[10] fracture geometry model, the average 

fracture width (wa) is given by π/5×wf as 

equation.

 

   
1

1 2 21 12 2
2 2 2 2 2 2

/ 21 1
9.15 3.98

5 '

n
n n nn n

i f fn n n
a

q h xn
w K

n E


 

  
    
     
    

                        (5) 

 

Carter solution II is used for material 

balance in terms of injection rate to the well. At 

the injection time te, the injection rate is entered 

in one wing of the fracture area, the material 

balance is presented by injection rate (q) that is 

the relationship between the total fracture 

volume and fluid volume losses to fractures. The 

material balance is presented as equation below.

 

0

2 2

t

L
p

C dA dA dA dw
q d S w A

d dt dt dtt




 
       

  
                            (6) 
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By an analytical solution for constant 
injection rate (q), Carter solved the material 

balance that is given by the fracture area for 
two wings as: 

 

     2

2

2 2
exp 1

4

a p

L

w S
A t q erfc

C


 

 

  
    

 
                                         (7) 

 

Hence fracture half-length with the fracture surface area (   2 f fA t x h ) is given by: 

 

 
   2

2

2 2
exp 1

4 2

a p

f

L f

w S q
x erfc

C h


 

 

  
    

 
                                      (8) 

 

Where is 
2

2

L

a p

C t

w S


 


.   

Equation (6) presents the fracture half-

length during proppant slurry injection into the 

fractures and that equation also describes the 

fracture propagation alongside the fractures 

with time, in which fracture half-length 

depends on several parameters as injection rate 

(q), injection time (t), leak-off coefficient (CL) 

[11, 12], spurt loss (Sp), and fracture height (hf), 

the average fracture width (wa). From the close 

of equation (6) it can be easy to determine the 

valuable fracture half-length by using iterative 

method calculation. The PKN-C fracture 

geometry model is shown in fig. 1. 

MATERIAL BALANCE 

Carter solved the material balance to 

account for leak-off coefficient, spurt loss, 

injection rate, injection time, and in terms of 

power law parameters as flow behaviour index 

of n and consistency index of K. Proppant 

slurry is pumped to the well under high 

pressure to produce fracture growth and 

fracture propagation. Therefore, the material 

balance is expressed as equation; Vi = Vf + Vl, 

where Vi is the total fluid volume injected to 

the well, Vf is the fracture volume that is 

required to stimulate reservoir, and Vl is the 

total fluid volume losses to the fracture area in 

the reservoir. The fracture volume, Vf, is 

defined as two sides of the symmetric fracture 

of  2f f f aV x h w , the fluid efficiency is defined 

by Vf/Vi. In 1986, Nolte proposed the 

relationship between the fluid volumes injected 

to the well and pad volume, and also proposed 

a model for proppant schedule. At the injection 

time t, the injection rate is entered into two 

wings of the fractures with q, the material 

balance is presented as the constant injection 

rate q that is the sum of the different leak-off 

flow rate and fracture volume as [9]: 

 

0

2 2

t

L
p

C dA dA dA dw
q d S w A

d dt dt dtt




 
       

  
                                        (9) 

 
The fluid efficiency of fractured well of the post fracture at the time (t) is given by: 

 

 
   2

2

2 2
      exp 1

4

a f a pa f f

L

w h w Sw h x
or erfc

qt C t


   

 

  
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 
               (10) 

                

Where, 
2

2

L

a p

C t

w S


 


, and CL is the total 

leak-off coefficient in ft/min0.5, wa is the 

average fracture width in the fractures in inch, 

Sp  is the spurt loss in the fractures in gal/ft2. 
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THE UNIFIED FRACTURE DESIGN 
(UFD) APPROACH 

The UFD concept includes: 
Calculating the proppant number from the 

given amount of proppant. 
Determining the optimal dimensionless 

fracture conductivity and maximum 
dimensionless productivity index from the 
proppant number. 

Calculating the fracture length and width 
from the dimensionless fracture conductivity. 

Determining the injection time and 
pumping schedule in order to achieve fracture 
geometry design. 

For a given mass of proppant, first the 
proppant number is calculated. 

In 2002, Valkó Economides et al., (2002) 

[13] had introduced the concept called Unified 

Fracture Design (UFD). It offers a method to 

determine the fracture dimensions providing 

the maximum reservoir performance after 

fracturing with the limited amount of proppant 

to determine a proppant number (Nprop) being 

used as a correlating parameter. In terms of 

economics, achieving the maximum reservoir 

performance means maximizing the production 

rate. The parameter represents the production 

rate very well such as the maximum 

dimensionless productivity index at the 

optimum dimensionless fracture conductivity 

(CfD,opt). The higher productivity index is, the 

more production gains. As a result, in the UFD, 

the dimensionless productivity, JD, is obtained. 

The proppant number, Np, is an important 

parameter of the UFD. The proppant number is 

a dimensionless parameter. 

Nprop, is calculated by: 

2

prop x fDN I C                                (11) 

Where Ix is a penetration ratio and CfD is 

dimensionless fracture conductivity. The 

penetration ratio is the ratio of the fracture 

length, 2Xf, to the equivalent reservoir length, 

xe. 

Therefore, the penetration ratio (Ix) and the 

dimensionless fracture conductivity have been 

presented as: 

2 f

x

e

x
I

x
                               (12) 

p f

fD

r f

w k
C

k x
                          (13) 

Where: Xf is the fracture half length, xe is the 

side length of the square drainage area of that 

reservoir, kr is the reservoir permeability, kf is 

the proppant pack permeability, and wp is the 

average (propped) fracture width. 

The combination of equations (11), (12) and 

(13) is the result of proppant number: 
 

2

2 2

4 2 2 2f p f f f p f pn
prop
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                                           (14) 

                                                                 

The propped fracture volume in the pay 

zone Vp is obtained as: 
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p
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V
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                   (15) 

Under  the  assumption  of  the  pseudo 

steady-state  flow  regime,  the  maximum 

dimensionless  productivity index (PI)  and  the 

optimum dimensionless fracture conductivity for 

a given mass of proppants (Mprop) are functions 

of the proppant number as [13]: 
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Once the optimum dimensionless fracture 

conductivity is known, the optimum fracture 

dimensions, i.e., propped fracture half length 

(xƒ,opt) and propped fracture width (wp,opt), are 

set [13]: 

,

,
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w
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FRACTURE CONDUCTIVITY 

The value of fracture conductivity is 

usually measured from laboratory data (API 

standard) based on proppant type, proppant 

size, proppant shape, proppant damage factor, 

proppant permeability, proppant porosity under 

closure pressure, that value is very important to 

predict the oil production and oil productivity 

after fracturing wells. The API standard for a 

test such as data to measure linear flow through 

the proppant pack between steel plates under 

specific pressure is applied to it. Then the 

standard API is usually tested at a proppant 

concentration of 2 lb/ft2. This theory most 

published data measured by API test. If the 

proppant permeability under closure pressure 

which is known for the specific proppant type 

has been selected, then the in-situ fracture 

conductivity can be evaluated by equation: 

  f pFractureconductivity k w          (19) 

For simulation fracture conductivity, if the 
closure pressure and proppant fracture 
concentration in (lb/ft2) are known by using 
Mfrac software, the fracture conductivity, 
proppant permeability, and proppant porosity 
under closure pressure can also be calculated. 

DIMENSIONLESS FRACTURE CONDUC-
TIVITY 

The dimensionless fracture conductivity, 
FCD, can be defined as and is given by: 

f p

CD

f

k w
F

k x





                        (20) 

In which: k is the reservoir permeability in mD; 

xf is the fracture length of fractured well in ft; kf 

is the proppant permeability under closure 

pressure applied on the proppant laden; wp is 

the propped fracture width at end of the job. 

TRANSIENT PRODUCTION FLOW 
REGIME 

Based on the constant bottom hole pressure 
situation, the oil production from fractured well 
in transient flow regime can be calculated by 
[14].

 

0

'2

162.6
log 3.23

i wf f

t w

q B k
p p logt s

kh c r




    

  
  

  
                                 (21) 

 

In which: '

wr   is the effective wellbore radius as 

given by: ' s

w w fr r e , sf is pseudo-skin and 

calculated by the relationship [9]: 

ln
f
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r
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 
, where xf is the fracture half-

length, and rw is the wellbore radius. The F 

factor can be calculated by: 
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Where: u = ln(FCD) and FCD is the 

dimensionless fracture conductivity which is 

calculated by 
f p

CD

f

k w
F

kx
 , also FCD is related 

to proppant number which is along the 

penetration ratio 2x f eI x x   and  f pk w  is the 

fracture conductivity which can be calculated 

by laboratory experiment or conductivity 

simulation when a proppant fracture 

concentration in lb/ft2 inside fracture under 

closure pressure applied on the proppant laden 

is known. Basically, the proppant number is 

defined by Economides et al., (2001). 

2 f prop

propp

res res

k V
N

k V

 
  
 

                  (23) 

Where: kf is the effective proppant pack 

permeability; k is the reservoir permeability; 

Vprop is the propped volume in the pay zone 

(two wings, including void space between the 

proppant grains); and Vres is the drainage 

volume. In the transient production period is 

often short time of oil production. 

OLIGOCENE RESERVOIR DATA 

The vertical exploration well in Kinh Ngu 
Trang-Duong Dong oil field is drilled with 
objective of tight oil Oligocene sandstone 
reservoir in the Cuu Long basin, offshore 
Vietnam. The Oligocene E sequence has high 
potential for oil and gas reserves. However, the 
reservoir is very tight and the geological 
property of that reservoir is the heterogeneous 
structure of course, the fracture conductivity is 
very poor. In this study, the reservoir data is 
obtained from the field of Oligocene reservoir, 
whose depths range from of 3,501 m to 3,525 
m and the fracture closure pressure is up to 
9,137 psi [1, 2], it is determined using fracture 
calibration test during well shut in period of 
140 minutes, the leak-off coefficient depends 
on the fluid properties and closure times, the 
reservoir data are presented in table 4. 

PUMPING SCHEDULE 

During proppant slurry pumping into the 
wells under high pressure, it produces fracture 

growth including fracture half-length and 
fracture width. This fracturing fluid stage can 

be divided into three main parts, the first part is 
pad volume which only pumps fracturing fluid 

and fluid additives without proppant for 
initially opening fracture, the second part is 

pumped proppant slurry with proppant 
concentration being added to fracturing fluid 

during pumping since proppant concentration at 
end of the job (8 ppg) as seen in fig. 1, which 

describes the proppant loading schedule. 
Nevertheless, the material balance describes the 

relationship between total fluid volume 
injection with time and fracture volume plus 

with fluid volume loss that allows calculating 
parameters including fluid efficiency of 34, pad 

volume of 27,000 gallons, injection volume of 
55,802 gallons, slurry volume of 28,802 

gallons. The detailed pump schedule and added 
proppant, and fluid volume requirement have 

been presented in table 2, fig. 2–3, respectively. 

 

Fig. 2. Proppant concentration schedule 

 

Fig. 3. Fluid volume schedule
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Fig. 4. Proppant added to fracturing fluid schedule 

 

Fig. 5. Fracture conductivity and fracture half-length during pumping  
of using Carbolite Ceramic proppant, 20/40 

 

Fig. 6. Fracture conductivity and fracture half-length during pumping of using couple of Carbolite 
Ceramic proppant, 20/40 and tail pumping Carbolite Ceramic proppant, 16/20 
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Fig. 7. Proppant concentration among fractures during pumping of using couple of Carbolite 
Ceramic proppant, 20/40 and Carbolite Ceramic proppant, 16/20 Figure 7. Proppant concentration among fractures during pumping of using couple of Carbolite 

Ceramic proppant, 20/40 and Carbolite Ceramic proppant, 16/20 

 
Figure 9. Valuable fracture conductivity, fractional porosity under closure pressure and proppant  

 

Fig. 8. Valuable fracture conductivity, fractional porosity under closure pressure  
and proppant concentration among the fractures 

Figure 9. Valuable fracture conductivity, fractional porosity under closure pressure and proppant 

concentration among the fractures 

 
Figure 10. Estimating fracture conductivity under closure pressure and actual proppant 

 

Fig. 9. Estimating fracture conductivity under closure pressure  
and actual proppant concentration among the fractures 
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Figure 11. Comparison about cumulative oil production between  

base case and stimulated case 

 

 

Fig. 10. Comparison about cumulative oil production between base case and stimulated case 

 
Table 5. Pump schedule of using Cabolite Ceramic proppant, 20/40 [14] 

Stage 
number 

Slurry 
rate, 
bpm 

Stage 
volume, 

gals 

Cumulative 
volume 

Stage 
time, 

minutes 

Stage 
type 

Proppant 
type 

Proppant 
con, ppg 

Cumulative 
proppant, 

lbs 

Stage 
propp 

1 18 26,460 26,460 35 Pad 0 0 0 0 

2 18 3,780 30,240 5.6 Prop 20/40 3 11,136.5 11,340 

3 18 3,780 34,020 5.9 Prop 20/40 4 26,804.6 15,120 

4 17 1,680 35,700 2.9 Prop 20/40 5.1 35,307.5 8,568 

5 17 3,570 39,270 6.3 Prop 20/40 5.8 56,126.6 20,706 

6 17 3,570 42,840 6.4 Prop 20/40 6.5 79,364.3 23,205 

7 17 3,570 46,410 6.6 Prop 20/40 7.1 104,785.3 25,347 

8 17 3,570 49,980 7 Prop 20/40 7.7 132,211.6 27,489 

9 17 2,142 52,122 4.1 Prop 20/40 8 149,347.6 17,136 

10 17   0 flush 0 0 0 0 

 
Table 6. Pump schedule of using Cabolite Ceramic proppant, 20/40  

and Carbolite Ceramic proppant, 16/20 [14] 

Stage 
number 

Slurry 
rate, 
bpm 

Stage 
volume, 

gals 

Cumulative 
volume 

Stage 
time, 

minutes 

Stage 
type 

Proppant 
type 

Proppant 
con, ppg 

Cumulative 
proppant, 

lbs 

Stage 
propp 

1 18 26,460 26,460 35 Pad 0 0 0 0 

2 18 3,780 30,240 5.6 Prop 20/40 3 11,136.5 11,340 

3 18 3,780 34,020 5.9 Prop 20/40 4 26,804.6 15,120 

4 17 1,680 35,700 2.9 Prop 20/40 5.1 35,307.5 8,568 

5 17 3,570 39,270 6.3 Prop 20/40 5.8 56,126.6 20,706 

6 17 3,570 42,840 6.4 Prop 16/20 6.5 79,364.3 23,205 

7 17 3,570 46,410 6.6 Prop 16/20 7.1 104,785.3 25,347 

8 17 3,570 49,980 7 Prop 16/20 7.7 132,211.6 27,489 

9 17 2,142 52,122 4.1 Prop 16/20 8 149,347.6 17,136 

10 17   0 Prop 0 0 0 0 
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Table 7. Result of optimum fracture dimensions 

Parameters Values 

Fracture half-length, xf , ft. 709 

Max fracture width, ww;0, in. 0.34 

Average fracture width, w , in. 0.27 

 
Table 8. Results from material balance 

Parameters Values 

Fracture area, ft
2
 109,186 

Total volume required, Vi, gals 55,802 

Efficiency, % 34 

Pad volume, gal 29,789 

Time to pump pad volume, min 35 

Average slurry conc., ppg 5.4 

Mass of proppant, lbs 150,000 

Prop. conc. in fracture, lb/ft
2
 1.37 

 
Table 9. Results from conductivity model  

and production model 

Parameters Values 

Closure stress, psi 9,137 

Fracture conductivity, mD-ft. 1,900 

Dimensionless fracture cond., FCD 13.4 

Pseudo-skin -7.15 

Effective wellbore radius, in. 320 

Productivity ratio, J/Jo 6.1 

 
CONCLUSIONS 

Through this study, it is possible to 
summarize these good views of the hydraulic 
fracturing design optimization as the follows: 

These factors include proppant 
concentration in the fractures, fracture closure 
pressure, proppant type, size, and density, 
which strongly affect the valuable fracture 
conductivity, fractional porosity, and fracture 
permeability of the fractures in the lower 
Oligocene reservoir. Specially, the higher 
fracture closure pressure is up to 9,137 psi in 
that reservoir, resulting in reducing fracture 
conductivity of 1,900 mD.ft and fracture half- 
length of around 709 ft when using 150,000 lbs 
proppant. By rising proppant concentration, the 
higher proppant density, and proponent 
diameter, it leads to increase in the 
conductivity. 

Proppant mass and total leak-off 
coefficient have been affected by those of the 

fracture half-length, and fracture width, and 
fluid efficiency of the post fractured wells. 

The fracturing fluid system including 
polymer concentration with fluid additive is 
important to transport proppant slurry and it 
also controlls the total fluid leak-off through 
the wall building effect. By adding more 
polymer concentration into the fracturing fluid 
systems, the total fluid leak-off has been lower, 
resulting in the high fluid efficiency of 
fractured wells. 

In the further work, in order to increase 
the net pressure for the main fractures (which 
provides good fracture conductivity of the main 
fractures) of the reservoir during pumping, it is 
necessary to isolate the second fracture (which 
is not useful for producing oil and gas 
production after fractured wells because 
fracture conductivity is poor). The second part 
of research of reducing pressure loss during 
pumping is to gain net pressure. 

By pumping couple of Carbolite Ceramic 
proppant 20/40 and 16/20, both fracture 
conductivity and proppant concentration are 
higher than in the pumping with only single 
Carbolite Ceramic proppant 20/40. This has the 
benefit to prevent proppant flow-back in the 
post fractured wells. 
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