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Abstract. When solving the approximation problems proposed by a Linguistic Rule Base System

(LRBS), the choice of reasoning method has a great influence on the result. The chosen reasoning

method should ensure the correctness of the variable relationship between the outputs versus the

inputs. According to the Hedge Algebra’s approach, we can convert the LRBS to a real “hyper

surface” in semantic space, called the Quantified Semantic Rule Base System (QRBS), and use an

interpolative method for reasoning. In this paper, we propose the use of the interpolation to ensure

the correctness mentioned above. It is interpolation based on the semantic distance weighting of the

input semantic values versus the semantic value of the elements appearing in the rule. In the input

semantic value vector, for each component we define its distance weight to the semantic value of the

corresponding language class that appears in the rule. This distance-weighted value is used to join

the output value. With this proposal, we have designed and simulated the controller that control

rules are given by LRBS for the resistance furnace. The results show that the controller works well

under the control requirements.

Keywords. Hedge algebras, approximate reasoning, bi-linear interpolation, linguistic rule base

system, fuzzy control.

1. INTRODUCTION

For the past few years, the theory of hedge algebras (HA) [9, 10] has been used to

solve problems in many different fields, including the field of control [4, 5, 6, 12, 13, 16].

According to the HA approach, the design of approximately reasoning set working as a

controller whose control rules are given by the LRBS has many advantages [8]. The way to

represent knowledge in real “hyper surface” in semantic space reflects the LRBS correctly, in

which it is the semantic order of the language values that is preserved. Solving the problem

of inference only by the method of interpolation on this “hyper surface” [16]. Among a few

of interpolation methods, they have a small number of calculations. This is an important

advantage for systems that require real-time response as the system in [16]. In the structure

of the reasoning set, there are not many influencing parameters, that is, the parameters of

the HA’s fuzzy parameters should be convenient for adjustment and optimization.

Consider a control rule set MISO given by LRBS:
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If X1 = A11 and . . . and Xm = A1m then Y = B1

If X1 = A21 and . . . and Xm = A2m then Y = B2

. . .
If X1 = An1 and . . . and Xm = Anm then Y = Bp

(1)

with X1,X2, . . . ,Xm and Y are linguistic variables, each linguistic variable Xj belongs to

the base space Uj and the linguistic variable Y belongs to the base space V ; Aij , Bk (i =

1..n, j = 1..m, k = 1..p) are the linguistic values that belong to corresponding background

space. By approaching the HA theory, we construct the HA structure for linguistic variables

and use the semantically quantifying mapping function SQMs [8] to convert the linguistic

values with a real “hyper surface” Sm+1
real in semantic space [0, 1]m+1. At that time, it is

possible to consider this hyperreal Sm+1
real as the mathematical representation of the LRBS.

Suppose that real inputs belonging to the corresponding base space are the input values

of the controllers x01, x02, . . . , x0m, the Normalization of those values in the value domain

of HA is used to obtain x01s, x02s, . . . , x0ms respectively. The solution of the problem of

approximation by the interpolation method on Sm+1
real is carried out. The interpolation value

received in the domain [0, 1] is the the semantically quantifying value of the output linguistic

variable Y that is transferred to the real variable domain (base space of variable Y) of the

control variable at the output by Denormalization.

The diagram of the approximate reasoning set based on the HA approach is described as

in Figure 1.

Figure 1. The diagram of the approximate reasoning set based on the HA approach

where:

• LRBS: Linguistic rule based system of the controller;

• QRBS: Quantifying rule based system of linguistic values which is computed by map-

ping function SQM (Sm+1
real );

• Normalization: standardize values of the variables in the semantic domain;

• IRMd (Interpolation Reasoning Method): Interpolative method on the “hyper surface”

Sm+1
real ;
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• Denormalization: convert semantic control value to the domain of variable real value

of the output variable.

As can be seen in Figure 1, choosing an IRMd plays an important role in determining

the output result of the inference. The chosen interpolation method should ensure a variable

relationship between the output and the inputs.

In the last studies, authors could use the PRODUCT instead of the “and” in the rule

to aggregate m inputs into a single input [3, 14]. Another way to aggregate inputs is to use

weighted connection [7, 14]. At that time, Sm+1
real surface will be transformed into C2

real in

2-D space, which makes the interpolation simpler. However, the access may cause loss of

information. The curve C2
real will no longer fully describe the semantics of the original LRBS,

and may even cause inconsistencies between the rules. This results in inaccurate inferences.

Direct interpolation on the semantic surface [1, 2] or using bi-linear interpolation [11] is a

good solution to overcome the disadvantages of the above connection. However, there is a

drawback that this method is only computable in the case of interpolation. When the input

value is outside the spatial domain of Sm+1
real , the computation of bi-linear interpolation value

becomes extrapolated. Basing on analysis, we find that in extrapolation, the calculated

value does not guarantee the variable correlation between the output and the inputs based

on LRBS. Suppose that there is a QRBS of a given controller as shown in Table 1. The

semantic surface of S3
real corresponds to the data in Figure 2a.

Table 1. QRBS of the controller

where, the semantic value of the input variables e, ce = {0.125, 0.375, 0.5, 0.625, 0.875}. The

semantic values of the output variable u corresponding each rule are the cells in the table.

According to QRBS in Table 1, we find that the variation of the output of u is “covariated”

with the input components e and ce. The yellow and green squares in Table 1 are the lack

of knowledge from the rule system (e, ce < 0.125 or e, ce > 0.875). For real values at the

input of this domain, the inference value must be calculated by other knowledge values in the

table. In that case, the computation based on bi-linear interpotation turns to extrapolation.

Suppose there is an input vector v1 (e1 = 0.1, ce1 = 0.1) < v2 (e2 = 0.125, ce2 = 0.125).

According to the variable rule of “covariated” of the rule table, there must have the

output u1 < u2. However, the calculation based on the interpolation formula:
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• For the input vector v1, the interpolative steps are computed as follows (Figure 2b):

B1: t1 = u11 +
(e1 − v1e) (u21 − u11)

v2e − v1e
= u11 = 0.125

B2: t2 = u12 +
(e1 − v1e) (u22 − u12)

(v2e − v1e)
= 0.125 +

(0.1− 0.125) (0.25− 0.125)

(0.375− 0.125)
= 0.1125

B3: u1 = t1 +
(ce1 − v1ce) (t2 − t1)

(v2ce − v1ce)
= 0.125 +

(0.1− 0.125) (0.1125− 0.125)

(0.375− 0.125)
= 0.12625

• For the input vector v2, the interpolative steps are computed similarly to give u2 =

0.125.

a) Semantic surface S3
real b) Interpolation for inputs v1(e1 = 0.1, ce1 = 0.1)

Figure 2. Semantic surface corresponding Table 1 and extrapolative computation

It can be seen that (u1 = 0.12625) > (u2 = 0.125). This shows that the bi-linear inter-

polative method does not guarantee the correlation between the output and the inputs in the

case of extrapolative computation. The inference value loses its correctness in some areas of

the input/output relationship surface. To overcome this problem, we propose an interpola-

tion method based on the semantic weighted distance of the input values versus the semantic

values of the linguistic terms appearing in the rule. After applying the suggestion for resistor

furnace controller, the simulation results show that the controller works well according to

the control requirements.

2. INTERPOLATION BASED ON THE SEMANTIC WEIGHTING
DISTANCE

In this section, we present a proposal for an interpolative method based on the semantic

weighting distance of the input values versus the semantic value of the terms appearing in

the rule.

In reality, for each linguistic rule, the output conclusions (the value of the concluding

statement) only depend on the input (the value of the conditional clause). In the domain of

semantic values, it is assumed that each input semantic value only defines a degree of satis-

faction for conditional clauses. They have semantic values that are upper and lower bounds
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of the semantic distance containing it. Figure 3 describes the distribution of the semantic

values of the language classes xi, xj , . . . , xk, xm which belong to the language variable X,...

Figure 3. Input x0 will satisfy the conditional rules contained v(xi), v(xj)

As can be seen in Figure 3, the input semantic value x0 is in the range from v (xi) to

v (xj), which are semantically closest to x0. Thus only the clauses x = xi and x = xj are

defined as a degree of satisfaction. Each clause will have a degree of satisfaction 0 ≤ w ≤1.

The closer the semantic values at the input of the semantic rule to the semantic value of the

linguistic category in the conditional clause are, the greater the degree of satisfaction of the

clause will be. We call this degree of satisfaction the “weight” of the clause.

Suppose that d = |x0 − v (xi)| is the semantic distance from the value x0 to v (xi). The

smaller d is, the closer the distance between x0 and v (xi) is, the greater the weight of the

clause x = xi . If d = 0, w = 1. The bigger the w rule is, the bigger the conclusion for the

output will be.

Definition 1. The semantic weighting distance function of the clause wi, wj :

x0 ∈ [v (xi) , v (xj)]→ [0, 1] .

Suppose x0 is a semantic value

1) x0 ∈ [v (xi) , v (xj)] , the semantic weighting distance of the clause x = xi is

wi = 1− |x0 − v (xi)| / |v (xj)− v (xi)| . (2)

And its of clause x = xj is

wj = 1− |x0 − v (xj)| / |v (xj)− v (xi)| . (3)

2) x0 ∈ [0, v (xi)], the semantic weighting distance of the clause x = xi is

wi = 1− |x0 − v (xi)| / (v (xi)) . (4)

3) x0 ∈ [v (xj) , 1], the semantic weighting distance of the clause x = xj is

wj = 1− |x0 − v (xj)| / (1− v (xj)) . (5)

The output semantic value of the rule is computed by y = Wr ∗ v (yj), where Wr is the

weight of the rule or the degree of satisfaction of the left member in the rule.

For the rule SISO: If x = xi then y = yj
Through the semantic value x0 of the input variable, we can compute the weight wi,

which represents the degree of satisfaction of the clause (with the conditional clause it is the

weight of Wr). Output: y = wi ∗ v (yj).
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Figure 4. Degree of satisfaction of the clause

For the rule MISO: If x1 = x1i and x2 = x2i . . . and xm = xmi then y = yj
Through the input vector (x01, x02, . . . , x0m), we can compute the weighting vector

(w1, w2, . . . , wm) (Figure 5). In view of the fact that the output conclusion does not ex-

ceed the input condition (or the weight of the concluding statement is no greater than the

weight of the conditional clauses). Thus we can:

• Use “and = min”, we have Wr = min (w1, w2, . . . , wm) or

• Use “and = prod”, we have Wr = (w1 ∗ w2 ∗ . . . ∗ wm).

Figure 5. Reasoning implementation of the rule MISO

When there are many degrees of satisfying more than zero, the output y∗ is calculated

by

y∗ =
(W1r ∗ y1 +W2r ∗ y2 + . . .+Wnr ∗ yn)

W1r +W2r + . . .+Wnr
. (6)

In case QRBS includes of 2 input components, 1 output component is represented by the

S3
real. Computing interpolation/ extrapolation is demonstrated as follows.

• In Figure 6a it is the interpolation:

Given S = (e2 − e1) (ce2 − ce1),

W11 =

(
1− (e0 − e1)

(e2 − e1)

)(
1− (ce0 − ce1)

(ce2 − ce1)

)
=

(e2 − e0) (ce2 − ce0)
(e2 − e1) (ce2 − ce1)

=
S11
S
,

W12 =

(
1− (e2 − e0)

(e2 − e1)

)(
1− (ce0 − ce1)

(ce2 − ce1)

)
=

(e0 − e1) (ce2 − ce0)
(e2 − e1) (ce2 − ce1)

=
S12
S
,
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W21 =

(
1− (e0 − e1)

(e2 − e1)

)(
1− (ce2 − ce0)

(ce2 − ce1)

)
=

(e2 − e0)
(e2 − e1)

(ce0 − ce1)
(ce2 − ce1)

=
S21
S
,

W22 =

(
1− (e2 − e0)

(e2 − e1)

)(
1− (ce2 − ce0)

(ce2 − ce1)

)
=

(e0 − e1)
(e2 − e1)

(ce0 − ce1)
(ce2 − ce1)

=
S22
S
,

u =
W11u11 +W12u12 +W21u21 +W22u22

W11 +W12 +W21 +W22
=
S11u11 + S12u12 + S21u21 + S22u22

S
.

• In Figure 6b:

Given S = (e2 − e1) ce1,

W11 =

(
1− (e0 − e1)

(e2 − e1)

)(
1− (ce1 − ce0)

ce1

)
=

(e2 − e0) ce0
(e2 − e1) ce1

=
S11
S
,

W12 =

(
1− (e2 − e0)

(e2 − e1)

)(
1− (ce1 − ce0)

ce1

)
=

(e0 − e1) ce0
(e2 − e1) ce1

=
S12
S
,

u =
W11u11 +W12u12

W11 +W12
=
S11u11 + S12u12

S11 + S12
.

• In Figure 6c:

Given S = e1 (ce2 − ce1) ,

W11 =

(
1− (e1 − e0)

e1

)(
1− (ce0 − ce1)

(ce2 − ce1)

)
=
e0 (ce2 − ce0)
e1 (ce2 − ce1)

=
S11
S
,

W21 =

(
1− (e1 − e0)

e1

)(
1− (ce2 − ce0)

(ce2 − ce1)

)
=
e0 (ce0 − ce1)
e1 (ce2 − ce1)

=
S12
S
,

u =
W11u11 +W21u21

W11 +W21
=
S11u11 + S21u21

S11 + S21
.

• In Figure 6d:

Given S = e1ce1,

W11 =

(
1− (e1 − e0)

e1

)(
1− (ce1 − ce0)

ce1

)
=
e0ce0
e1ce1

=
S11
S
,

u =
W11u11
W11

=
S11u11
S11

= u11.
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Figure 6. Interpolation/extrapolation on S3
real based on semantic weighting distance

Back to the problem with QRBS as in Table 1 and input vectors v1 (e1 = 0.1, ce1 = 0.1) <

v2 (e2 = 0.125, ce2 = 0.125), using the ’prod’ for ’and’ operator, we can compute the inter-

polation value on the semantic distance weight.

• With the input vector v1, the interpolation steps are computed as follows:

+ Apply (4), w1e = w1ce = 1− |0.1− 0.125|
|0.125|

= 0.8,

+ Wr = w1e ∗ w1ce = 0.64,
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+ The output, y =
0.64 ∗ 0.125

0.64
= 0.125.

• For the input vector v2:

+ Apply (2) and (3): w2e = w2ce = 1− |0.125− 0.125|
|0.375− 0.125|

= 1,

w3e = w3ce = 1− |0.125− 0.375|
|0.375− 0.125|

= 0,

+ Wr = w2e ∗ w2ce = 1,

+ The output is calculated according to (6): y∗ =
1 ∗ 0.125

1
= 0.125.

3. APPLICATION PROBLEM

3.1. Introduction to the resistor heaters

Heating equipment is an object which is widely used in industry, medicine and engineering

civil. In the industry it is often used for heat treatment, melting ferrous and non-ferrous

metals. Industrial furnaces often use metal wire. In other areas such as medical or civil, they

mainly focus on kilns. Temperature is the quantity that needs to be adjusted. Controlling

of the furnace temperature control is usually done by controlling the power supply.

Consider a resistance furnace with a power P = 1KW . Heating bar SiC, with a tem-

perature range of 25 − 250◦C. The furnace has an approximate transfer function (received

through process of object recognition), which is the most inertial step of delay:

W (s) = K
e−τs

1 + Ts
, (7)

where,

Amplification coefficient K = 10oC,

Constant time (second) T = 1300s,

Time delay (second) τ = 30s.

W (s) =
10e−30s

1 + 1300s
. (8)

3.2. Design of controller used hedge algebra

In this section, we apply a new method of interpolation based on the semantic distance

weights described in Section 2. The object to be controlled is the thermocouple furnace.

The controller here is the approximation set that the control rule is given by the LRBS. The

structure of the controller is shown in Figure 1. The controller design steps are as follows.

Step 1: Identify input/output variables, their variation domains, and control rules with

language classes in HA. Through the LRBS, we define the input/output variables and their

variance domain is determined by the survey as follows:
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• The controller inputs have two variables:

e (error)− control error, variance in range [−emax,+emax] = [−4, 4].

ce (changeerror)− indicates the variable speed of e. Variation in the range

[−cemax,+cemax] = [−50, 50].

• The output of the controller is the control quantity u to control the voltage of the

power source, varying in the range [−umax,+umax] = [−4.5, 4.5].

The control rule is an LRBS given in Table 2.

Table 2. LRBS of the controller

The input/output language variables include the following language values:

e, ce = {V N < LN < ZE < LP < V P} ;u = {V N < N < LN < ZE < LP < P < LP}

where, V N = V eryNegative, LN = LittleNegative, ZE = Zero, LP = LittlePositive, . . .

Rules in the table are understood as follows:

If e = V N and ce = V N then u = V N ; If e = V N and ce = LN then u = V N ; . . .

Step 2: Select the structures AXe,ce and AY for the variables Xi and Y. Determine the

fuzzy parameter of the generating elements and the hedges.

• Set of generating elements G = {N < P}; Set of hedges choosen: H− = {L} and

H+ = {V }.

• According to the HA structure for the variables constructed above, we need to choose

the fuzzy measure of the negative generating elements fm (c−) = fm (N) (fm (c+) =

1 − fm (c−) = fm (P ) = 1 − fm (N)) and the fuzzy measurement of negative hedges

α = µ (L) (β = µ (V ) = 1−α). The fuzzy parameters are initially chosen as intuitively

as in Table 3.

Table 3. Fuzzy parameter of HAs

e ce u

fm (N) 0.5 0.5 0.5244

α = µ (L) 0.5 0.5 0.5



INTERPOLATION BASED ON SEMANTIC DISTANCE WEIGHTING 29

• The sign of the generating elements, the hedges and the sign relationship between

the hedges are determined based on the semantic nature of the language terms. For

example, we have sgn (N) = −1, sgn (P ) = 1. Also, it can be seen that V V N <

V N ⇒ sgn (V, V ) = 1. LV N > V N ⇒ sgn (L, V ) = −1. Similarly, for other linguistic

elements, we define the sign relation as in Table 4.

Table 4. Sign relation

V L N P

V + + - +

L - - + -

Step 3: Compute semantically quantifying values for language labels in the rule set. Build

up the input/output relationship in semantic space S3
real.

With fuzzy parameters selected as in Table 3 and the sign relationship between hedges,

between the hedges and the generating elements as in Table 4, use semantically quantify-

ing mapping function SQMs [8], we can compute the semantically quantifying value of the

language terms in the rule table as in Table 5.

Table 5. QRBS of the controller

Figure 7 is S3
real corresponding to Table 5. That is the mathematical model that repre-

sents the input/output relationship of the controller.

Step 4: Select interpolative method: When performing the simulation, we proceed on both

bi-linear interpolation and interpolation based on semantic weighting distance. Figure 8 is

a simulation model of the system in the Matlab/Simulink environment.

4. COMPUTING RESULT AND SIMULATION

Let e, ce be variable from 0 to 1, step = 0.05, apply bi-linear interpolation and inter-

polate based on semantic weighting distance with and = prod, we get the corresponding

interpolation on Figure 9.
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Figure 7. Input/output relationship surface S3
real in semantic space

Figure 8. Model simulation of the system

Figure 9. a) Interpolation by bi-linear interpolation b) Weighted interpolation distances

Based on Figure 9, we find that both interpolation methods give the variable interpolation
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homogeneous with the semantic surface S3
real (Figure 7). On Figure 9a, when the input

values e < −emax, ce < −cemax or e > +emax, ce > +cemax, the extrapolation value is

incorrect according to the variable rule of the rule set. When deviations e and ce are large,

the controller should give a large value u. However, according to bi-linear interpolarion,

the value of u is small. This is opposed to the control objective. With the method of

interpolation based on semantic weighting distance when extrapolation has overcome this

limitation (Figure 8b). This is due to the addition of constraints (Definition 1) that allow

for normal bi-linear interpolation to the process of appropriate inference for LRBS.

Figure 10. Output response when simulating with the controller

Simulating the system with time = 1000s, the reference value is tref = 200oC, when there

is no interference and there is no load disturbance at the output (interference amplitude

N = 5% of the reference value). We get the result shown in Figure 10. The line BLI is

the response of the controller to the bi-linear interpolation, BLIsdw is the response of the

controller to the interpolation method based on the semantic weighting distance. Observing

the responses on the graph, we can see that even if there is no interference or interference

at the output of the system, the HAC controller always responds well in terms of response

time, over-tuning and time accuracy which is set up in both methods of interpolation. In the

same condition, the response of the controller with interpolation based on semantic distance

weights is a bit better than bi-linear interpolation. It can be explained that the difference in

the calculated values between the two methods is only in the range of extrapolation, where

Table 6. Simulation results

Bi-linear interpolation Interpolation based on semantic
distance weights

Without Noise Noise Without Noise Noise

Rise time [s] 172.6 163 161.087 151

Overshoot [%] 0.196% 0.021% 0.2% 0.021%

Settling time [%] 172.6 163 161.1 151

ISE 2.4021e+03 2418.2 2177.4 2.1937e+03
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e and ce are large. When e and ce have entered the interpolation area of surface S3
real, the

interpolation values of the two methods are the same.

Some computational values are summarized in Table 6. Numerical results also show that

interpolation based on semantic distance weights gives smaller values than normal bi-linear

interpolation.

5. CONCLUSION

In this paper, we have proposed the use of interpolation based on the semantic distance

weight of the input semantic values versus the semantic values of the terms appearing in

the rule. Specifically, we introduce constraints for the two-dimensional linear interpolation

method (Definition 1). Under the limited constraints in this definition, the extrapolation

value only depends on the semantic values of the adjacent elements in the LRBS. Thus

weighted output values are consistent with human reasoning based on the rule of the linguistic

element. We also carried out the design and applied this interpolation method in controllers

whose control rules were given by LRBS for resistor furnace. The simulated results are

compared and evaluated using normal bi-linear interpolation. The output response when

the controller works with the interpolation method based on the semantic distance weight

is better than the two-dimensional linear interpolation method. The quality of control is

not very great, as it only occurs in a few cases when extrapolating but it demonstrates

the correctness of the method when simulating LRBS’s variation rules and approximately

reasoning processes. In the near future, we will test this proposal for controllers with LRBS

and more complex objects to confirm the effectiveness of this method.
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