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Abstract. In this paper, we propose an efficient navigation framework for autonomous mobile

robots in dynamic environments using a combination of a reinforcement learning algorithm and a

neural network model. The main idea of the proposed algorithm is to provide the mobile robots the

relative position and motion of the surrounding objects to the robots, and the safety constraints such

as minimum distance from the robots to the obstacles, and a learning model. We then distribute

the mobile robots into a dynamic environment. The robots will automatically learn to adapt to the

environment by their own experience through the trial-and-error interaction with the surrounding

environment. When the learning phase is completed, the mobile robots equipped with our proposed

framework are able to navigate autonomously and safely in the dynamic environment. The simulation

results in a simulated environment show that, our proposed navigation framework is capable of driving

the mobile robots to avoid dynamic obstacles and catch up dynamic targets, providing the safety for

the surrounding objects and the mobile robots.
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1. INTRODUCTION

The ability to autonomously navigate in dynamic environments, such as urban and terrain

environments, museums, airports, offices and homes, and shopping malls, is crucial for mobile

robots. If we wish to deploy the autonomous mobile robots in such environments, the first

and most important issue is that, the mobile robots must avoid obstacles in their vicinity,

while navigating safely towards a given goal. In order to archive that, several mobile robot

navigation systems have been proposed in the recent years [1, 8, 11, 16].

The conventional mobile robot navigation frameworks can be roughly classified into two

categories according to the techniques utilized to develop the motion planning systems: (i)

model-based methods and (ii) learning-based approaches. In the first category, the naviga-

tion systems utilize available models, such as artificial potential field, vector field histogram,

dynamic window approach, velocity obstacles, randomized kinodynamic planning, inevitable

collision states, reciprocal velocity obstacles techniques to develop the motion planning sys-

tem. In the second category of the methods, the machine learning techniques, such as inverse
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reinforcement learning, are used to enable the mobile robots to navigate autonomously in

dynamic environments.

Although the model-based approaches [2, 15, 17, 19, 20] have been evaluated such that,

the navigation systems are capable of driving the mobile robots to navigate autonomously

and safely towards a given goal, they still suffer essential weaknesses that seriously hinder

the robot capabilities to navigate in dynamic environments. For example, in these papers,

the authors have to hand-craft all the features of the surrounding environments and then

incorporate them into the robot navigation system. In addition, several parameters are

empirical set by the authors experiences for a specific environment. Moreover, this parameter

set often need to be tuned individually, and can vary significantly for different environments.

In order to overcome the aforementioned drawbacks, recently, a few machine learning

techniques-based navigation systems have been proposed to enable the mobile robots to

navigate autonomously and safely in dynamic environments [4, 6, 21]. In these papers,

the authors utilized the inverse reinforcement learning technique to develop the navigation

systems of the mobile robot. Using the inverse reinforcement learning-based autonomous

mobile robot navigation systems, the mobile robots are taught using the demonstrations of

the human experts. The mobile robots will learn and get the policy of each action they

have learnt. The trained mobile robots then can work in the same situation. Although these

methods have enabled the mobile robots to deal with dynamic environments, and the mobile

robots can learn to adapt to the surrounding environments. However, the environments are

very dynamic, unknown, clustered, and unstructured. Therefore, the authors cannot teach

the mobile robots by hand in each single situations.

To overcome the above-mentioned drawbacks, we propose an efficient navigation frame-

work for autonomous mobile robots in dynamic environments using a reinforcement learning

algorithm [18]. Because, the reinforcement learning is a useful way for robots to learn control

policies. In addition, the main advantage of the reinforcement learning is the complete inde-

pendence from human labeling. In other words, using the reinforcement learning algorithms,

the mobile robots can learn without expert supervision. Furthermore, reinforcement learning

is an online learning algorithm. Thus it offers to robotics a framework, which enables a mo-

bile robot to autonomously discover an optimal action through trial-and-error interactions

with surrounding environment [7].

The remainder of the paper is organized as follows. Section 2 presents the proposed

navigation framework for autonomous mobile robot in dynamic environments. Section 3

provides the simulation results of the proposed model in a simulated environment. We

conclude this paper in Section 4.

2. THE PROPOSED FRAMEWORK

2.1. Efficient mobile robot navigation framework

Our primary objective is to develop a navigation system that enable a mobile robot

to navigate safely and autonomously in dynamic environments. To achieve that goal, in

this paper, we propose an efficient mobile robot navigation system, as shown in Fig. 1.

The efficient navigation system is developed based on the conventional navigation scheme
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Figure 1. An efficient navigation framework for autonomous mobile robots in dynamic envi-
ronments using a learning approach.

introduced by Siegwart et al. [16], and consists of two major parts: (i) the conventional

navigation scheme, and (ii) the extended part (in the dash line box). In the first part, the

conventional navigation scheme is based on the composition of four typical functional blocks:

perception, localization, motion planning, and motor control. In the extended part, the

navigation framework aims at extracting the obstacles information, including their position

and the motion in the robots vicinity. These obstacles information, and the safety constraints

such as the minimum distance from the robot to the surrounding obstacles, are then used

as inputs of the q-learning algorithm with neural networks. The output of this model is

the optimal action of the mobile robot. This optimal action is then combined with a path

planning technique to allow the mobile robot to navigate autonomously and safely in the

dynamic environments.

2.2. Q-learning with neural networks-based mobile robot navigation system

2.2.1. Reinforcement learning algorithms

Reinforcement learning [18], is a type of machine learning techniques, which allows agents

and machines to automatically determine an optimal behavior within a specific context, to

maximize their performance. Figure 2 shows a typical framework of the reinforcement learn-

ing algorithm, in which at each step, the agent executes an action, receives an observation

(new sate), and receives a reward; while the environment receives an action, emits an obser-

vation (new sate), and emits a reward.

Reinforcement learning is a useful way for robotics to learn control policies [7]. The

main advantages of the reinforcement learning algorithms are the complete independence

from human labeling and the potential of automating design of the data representations.

Therefore, reinforcement learning abstracted considerable attentions in the recent years.

Conventional reinforcement learning methods are normally utilized to improve the controller

performances in path-planning of robot-arms [22] and controlling of helicopters [10], but they

are rarely applied to autonomous mobile robots.

A typical model of the reinforcement learning techniques is the q-learning algorithm

[5], which is a model-free reinforcement learning technique. The main idea of q-learning
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Figure 2. A typical framework of the reinforcement learning algorithm. An agent takes an
action in an environment. The agent then transits to a new state and gets a reward, which
is fed into the agent

algorithm is that, we can iteratively approximate the q-function using the Bellman equation,

as presented in Eq. 1.

Q(s, a) = r + γmax
a′

Q(s′, a′). (1)

In the simplest case, the q-function is implemented as a table, with states as columns and

actions as rows. A pseudocode of the q-learning algorithm is presented in Algorithm 1. The

inputs of the q-learning algorithm are the set of states S, set of possible actions A, learning

rate α, discount factor γ. The output is the table Q(s, a), whose column size U is the number

of the states, and row size V is the number of the possible actions. Thus the size of the table

Q(s, a) is U × V . The table Q(s, a) is then used to select an optimal action of this system

based on the current states of the system. A detailed description of the q-learning algorithm

was given in [5].

Algorithm 1: Q-learning algorithm

input : Set of states S, set of possible actions A, learning rate α, discount factor γ
output: Q(s, a), state s ∈ S, action a ∈ A

1 begin
2 Initialize Q(s, a) arbitrarily for s ∈ S, a ∈ A
3 for (each episode):
4 Initialize state s
5 while (s is not a terminal state):
6 Choose a from s using policy derived from Q
7 Take action a, observe s′, compute reward r
8 Q(s, a) += α (r + γ maxa′ Q(s′, a′) - Q(s, a))
9 s = s′

10 end while
11 end for

Q-learning algorithm has been applied to real mobile robot platforms and has achieved

considerable success [7]. However, the limitation of the original q-learning in robotics is

that, the state space is so large, that combines with all possible actions, hence there is an

exhaustive exploration of all state-action pairs. In other words, it is not feasible to store
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every element of table Q(s, a) separately. For example, lets take a robot manipulator with

seven degrees-of-freedom, a representation of the robots state would consist of its joint angles

and velocities for each of its seven degrees of freedom as well as the Cartesian position and

velocity of the end effector. That accounts for 2 × (7 + 3) = 20 states and 7-dimensional

continuous actions. If we assume that each dimension of the state-space is discretized into

ten levels, we have 10 states for a one-dimensional state-space. Therefore, we will have 1020

unique states. In addition, in general, the states space of the the robot is continuous (the

information from the sensors). In order to tackle these issues, function approximation is

made use of in this paper.

2.2.2. QQQ-learning with neural networks

In this study, the neural networks-based function approximation is utilized instead of

using a table Q(s, a) from the original q-learning algorithm. Because, the neural networks

offer many advantages, such as quality of the generalization, limited memory requirement for

storing the knowledge, and continuous state space of the system. In this case, the memory is

used to store only the weights of the neural networks. Therefore, the memory size required

by the system to store the knowledge is defined by the number of connections of the neural

networks. And it is independent of the number of explored state-action pairs.

Like the original q-learning model, this new model will accept a state and an action, and

spit out a value of a state-action pair. Importantly, however, unlike the lookup table Q(s, a),

the state-action pair is the output of a neural networks. In addition, the neural networks

also has a bunch of parameters associated with it. These are the architecture of the neural

networks and its weights θ. Therefore, our Q function actually looks like this Q(s, a, θ),

where θ is a vector of parameters. Moreover, in the training process, instead of iteratively

updating values in the table Q(s, a), the system will iteratively update the weights θ of the

neural networks, therefore it learns to provide us with better estimation of the value of the

state-action pairs.

In this study, a procedure of the q-learning with neural networks used to develop the

autonomous mobile robot navigation system is presented in Algorithm 2. The inputs of

the algorithm are the laser data X = (x1, x2, ..., xN ), robots pose (position, orientation and

motion of the mobile robot), learning rate α, discount factor γ, epsilon-greedy policy ε,

and safety constraints. The output of the algorithm is the Q(s, a, θ) value, which allows

the mobile robot to select an optimal action based on the current states of the robot. The

possible actions of the mobile robot consist of move forward, left, right, or backward. The

safety constraint is the safety distance from the robot to the obstacles, and are used to

compute the reward of the q-learning with neural networks model.

In the q-learning algorithm, the mobile robot learns a q-function that can be used to

determine an optimal action. To accomplish that, there are two things that are useful for

the robot to do: (i) exploit the knowledge that it has found for the current state s by doing

one of the actions a that maximizes Q(s, a, θ) (line 12 of the Algorithm 2); (ii) explore in order

to build a better estimate of the optimal q-function. That is, it should select a different action

from the one that it currently thinks is the best (line 11 of the Algorithm 2). There have been

a number of suggested ways to trade off between the exploration and exploitation. In this
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Algorithm 2: Q-learning with neural networks-based navigation framework for
autonomous mobile robots.

input : Laser data X = (x1, x2, ..., xN ), learning rate α, discount factor γ,
epsilon-greedy policy ε, robots pose, safety constraints.

output: Q(s, a; θ), state s ∈ S, action a ∈ A, weights θ
1 begin
2 Initialize replay memory D to capacity N
3 Initialize Q(s, a; θ) with random weights θ
4 Initialize Q′(s, a′; θ′) with weights θ′=θ
5 for episode = 1,M do
6 Randomly set the robots pose in the scenario
7 Observe initial states of robot s
8 for t = 1, T do
9 Select an action at

10 with probability ε select a random action at
11 otherwise select at = arg maxa′ Q(st, a

′; θ)
12 Execute action at, observe state st+1, compute reward Rt

13 Store transition (st, at, Rt, st+1) in replay memory D
14 Sample random minibatch of transitions (sj , aj , Rj , sj+1) from D
15 Calculate the predicted value Q(sj , aj ; θ)
16 Calculate target value for each mimibatch transition
17 if sj+1 is terminal state then yj = Rj

18 otherwise yj = Rj + γmaxa′j
Q′(s′j , a

′
j ; θ
′)

19 Train neural networks using (yj −Q(sj , aj ; θ))
2 as loss function

20 end for
21 end for

paper, the epsilon− greedy policy ε is used to select the greedy action (one that maximizes

Q(s, a, θ)), where 0 < ε < 1. It is possible to change ε value through time. Intuitively,

early in the life of the robot it should select a more random strategy to encourage initial

exploration and, as time progresses, it should act more greedily.

In order for the mobile robot to perform well in long-term, it need to take into account

not only the immediate rewards, but also the awards it is going to get in the future. In

addition, because environments are stochastic, the robot can never be sure, it will get the

same rewards the next time when it perform the same actions. The more into the future

the robot moves, the more it may diverge. For that reason, in this study, we use a future

discounted reward. The future discounted factor Rt (line 13 of the Algorithm 2) return at

time t is defined as follows

Rt = rt + γrt+1 + γ2rt+2 + ...+ γT−trT , 0 ≤ γ ≤ 1 (2)

where, rt is the immediate reward, and T is the time-step at which the robot action termi-

nates. Using Eq. 2, the more into the future the reward is, the less the robot takes it into

consideration. If we set the discount factor γ = 0, then our strategy will be short-sighted
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and we rely only on the immediate reward. If we want to balance between immediate and

future rewards, we should set discount factor to something like γ = 0.9. If our environment

is deterministic and the same actions always result in same rewards, then we can set discount

factor γ = 1. The goal of the robot is to interact with the environment by selecting actions

in a way that maximizes future rewards. Rt indicates how well the robot is doing at step

t. The robot’s job is to maximise cumulative reward reinforcement learning based on the

reward hypothesis.

It has been known that, the type of correlation between successive sample is bad news for

any iterative optimizer. In order to solve this issue, the experience replay [13] is utilized. The

main idea of this technique is that, we simply keep old events in a memory and replay them

back as training examples in a random order. To do that, during the robot navigation all the

experiences (st, at, Rt, st+1) are stored in a replay memory D (line 14 of the Algorithm 2). In

the training process of the neural networks, random samples from the replay memory are used

instead of the most recent transition (line 15 of the Algorithm 2). This breaks the similarity of

subsequent training samples, which otherwise might drive the network into a local minimum.

Also experience replay makes the training task more similar to usual supervised learning,

which simplifies debugging and testing the algorithm. One could actually collect all those

experiences from human expert and train the neural networks on these.

For updating of weights θ of the neural networks, we first sample random minibatch of

transitions from replay memory D (line 15 of the Algorithm 2), with the minibatch size is

set to be N . For each given minibatch transition (sj , aj , Rj , sj+1), the algorithm does the

following steps: (1) do a feedforward pass the neural networks for the current state sj to get

predicted value Q(sj , aj ; θ) (line 16 of the Algorithm 2); (2) if the sampled transition is a

collision sample, the evaluation for this (sj , aj) pair is directly set as the termination reward

(line 18 of the Algorithm 2). Otherwise, do a feedforward pass the neural networks for the

next state s′, calculate maximum overall network outputs maxa′j
Q′(s′j , a

′
j ; θ
′), and compute

the target for action using the Bellman equation (r + maxa′j
Q′(s′j , a

′
j ; θ
′)) (line 19 of the

Algorithm 2). For all other actions, set the target value to the same as originally returned

from step 1, making the error 0 for those others. (3) Finally, the loss function (squared error)

is defined as follows

L(θ) =
1

N

n∑
i=1

(yj −Q(xj , aj ; θ))
2. (3)

Using the loss function L(θ), the weights θ of the neural networks will be updated through

back-propagation and stochastic gradient descent (line 20 of the Algorithm 2). When the

training process is completed, the mobile robot will save the trained neural networks into it

brain and will use it in the future testing and working processes.

3. SIMULATION

In order to demonstrate the effectiveness of the proposed mobile robot navigation frame-

work, in this section, we conduct experiments in a simulated environment.



114 XUAN-TUNG TRUONG, HONG TOAN DINH, CONG DINH NGUYEN

3.1. Simulation setup

Figure 3. A simulated office-like scenario with walls, dynamic obstacles (red circles), dy-
namic targets (blue circles), and a mobile robot. The mobile robot is equipped with a laser
rangfinder, providing angular field of view of 360o, and requested to approach the dynamic
targets while avoiding dynamic obstacles.

To narrow the gap between the simulated and real-world environments we have created

a simulated office-like scenario with walls, dynamic obstacles (red circles), dynamic targets

(blue circles), and a mobile robot for testing the proposed navigation framework, as shown

in Fig. 3. The mobile robot is requested to catch up dynamic targets while avoiding dynamic

obstacles.

3.1.1. Mobile robot model

In this paper, we chose a mobile robot model, which can only do four possible actions,

including move to the left, right, forward or backward. The obstacles and targets bounce

around the scenario. The mobile robot is equipped with a simulated laser rangfinder, pro-

viding the angular field of view of 360◦, and the resolution of 12◦. In other words, the mobile

robot has 30 eyes pointing out in all directions. We assume that, in each direction the robot

can observes 5 variables in its vicinity: (1) the range from the robot to the walls, obstacles

and targets; the type of sensed objects including (2) targets, and (3) obstacles; and the ve-

locity of the sensed objects including (4) targets, and (5) obstacles. In addition, the mobile

robot’s proprioception includes two additional sensors for its own speed in both directions

vx and vy. Therefore, there is a total of (30× 5) + 2 = 152 dimensional state spaces, which

is very high-dimensional. This indicates that, using a neural networks model-based function

approximation to approximate the Q(s, a) value is an appropriate choice.
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Figure 4. The topology of the used back-propagation neural networks. The inputs are the
states of the robot, the outputs are the q-value corresponding to each possible action of the
mobile robot.

3.1.2. Neural network settings

In this study, a back-propagation neural networks (BPNN) is used for the function ap-

proximation. The key of the back-propagation is a method for calculating the gradient of the

error with respect to the weights for a given input by propagating error backwards through

the network. More detailed information of the training process is available in [12]. In the

previous section, the dimension of the state spaces of the mobile robot is 152. This vector is

used as an input vector of the BPNN. The dimension of BPNN output layer is 4, one for each

of the possible actions of the mobile robot (forward, backward, left, right). By guesswork

and experience, we choose the topology of BPNN to be 152-264-250-4, as shown in Fig. 4.

The activation function, which is used in our proposed method, is log-sigmoid. Thus, the

output value of the network is constrained between 0 and 1.

When the training phase is completed, we save the trained model as a brain of the mobile

robot. Then, whenever we distribute the trained mobile robot in a dynamic environment,

it will load this trained model and utilize it to navigate in the environment. Using the

trained model, the mobile robot will choose a appropriate action, which is corresponding

to the maximum value of the output of the back-propagation neural networks. In addition,

in order to evaluate the performance of the proposed mobile robot navigation framework,

the collision index proposed by Truong et al. [20] is used. The immediate reward awarded

to the mobile robot is +1 for catching up a target and -1 for making contact with any

obstacle. The parameters of the Algorithm 2 are set including the discount factor γ = 0.9,

the epsilon-greedy policy ε = 0.2, and the learning rate α = 0.005.

3.2. Simulation results

In this section, using the trained model, we conduct two experiments in two different

scenarios to verify the performance of the proposed mobile robot navigation framework.

The simulation results are shown in Fig. 5.
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Figure 5. Simulation results of the proposed mobile robot navigation framework in two
different scenarios: (a) the stationary scenario, and (b) the dynamic scenario.

3.2.1. Experiment 1 – stationary scenario

In the first experiment, a mobile robot and sixty targets and obstacles randomly dis-

tributed in the scenario. The robot is equipped with our proposed navigation framework,

but the targets and obstacles are stationary. As can be seen in the video, the mobile robot is

able to catch up the static targets (green circles) and avoid the static obstacles (red circles).

In addition, Fig. 5(a) indicates that, the mobile robot always keeps a safety distance to the

stationary obstacles. In other words, the mobile robot is capable of autonomously and safely

navigating in the stationary environment.

3.2.2. Experiment 2 – dynamic scenario

In this experiment, a mobile robot, and fifty targets and obstacles are randomly dis-

tributed in the scenario. The mobile robot is equipped with our proposed navigation frame-

work, however the targets and obstacles are randomly move around the scenario. As can

be seen in the video, the mobile robot is capable of catching up the dynamic targets and

avoiding the moving obstacles. Moreover, Fig. 5(b) shows that, the mobile robot always

keeps a safety distance to the dynamic obstacles in the robots vicinity. In other words, the

mobile robot is capable of autonomously and safely navigating in the dynamic environment.

Overall, the proposed efficient navigation framework enables an autonomous mobile robot

to catch up dynamic targets and avoid moving obstacles in the dynamic environments, pro-

viding the safety for the mobile robot and the surrounding objects.
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4. CONCLUSION

We have presented an efficient navigation framework for autonomous mobile robots in

dynamic environments using q-learning algorithm with neural networks. The main idea of

the proposed algorithm is to provide the mobile robots the relative position and motion of

the obstacles to the robots, the safety constraints such as minimum distance from the robot

to the obstacles, and a learning model. We then distribute the mobile robots into a dynamic

environment. The robots will automatically learn to adapt to the environment by their

own experienced through the trial-and-error interaction with the surrounding environment.

The simulation results in a simulated environment show that, our proposed framework is

capable of guiding the mobile robots to navigate autonomously and safely in the dynamic

environments.

In the future, we will verify our proposed navigation framework with dynamic actions

of mobile robot (the actions relative to the dynamic model of the mobile robot), instead of

using only four discrete actions. In addition, we will implement the proposed framework in

our mobile robot platform for real-world experiments. Furthermore, deep neural networks

[14], deep reinforcement learning techniques [9], and continuous actions (acceleration and

steering) [3] should also be considered to improve the learning efficiency and navigation task

of the mobile robot.
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