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Abstract. This article describes a process to model the differential motion of a mobile manipu-

lator which is a two-degree-of-freedom robotic arm (pan-tilt) mounted on a wheeled mobile robot

(WMR). Next, a new visual servoing is designed for this pan-tilt arm with the purpose of making

the image feature of a target converge to the center of the image plane of a camera attached to

the arm’s end-effector. Furthermore, this new visual servoing is able to deal with the uncertainties

due to the unknown motions of both the flying target considered as a material point and the WMR

moving on the floor. The global uniform asymptotic stability of this visual servoing is guaranteed by

Lyapunov criteria. Simulation results implemented by Matlab/Simulink software have confirmed the

both validity and performance of the entire control system.

Keywords. Global uniform asymptotic stability, image feature, mobile manipulator, track a flying

target, unknown trajectory.

1. INTRODUCTION

In recent years, mobile manipulators are increasingly applied in many various areas which
demand high performance all over the world such as assembly, mining, construction, part
transfer in complex works composed of a variety of obstacles (may be known or unknown)
and so on.

When it comes to the motion problem of mobile manipulators, many researchers have
been developing control strategies for the mobile manipulators, or, more precisely, the goal
of solving a motion problem is to control a mobile manipulator from an initial configuration
to another configuration where the end-effector is a desired location. To be specific, the
methods in [1-3] have been some remarkable strategies to solve these motion problems. In
addition, the work in [4] has expressed an adaptive tracking control method for a welding
mobile manipulator with a kinematic model in the presence of some unknown dimensional
parameters. Based on Lyapunov stability theory, the author in [5] has addressed a position
control problem with kinematic and dynamic uncertainties and unknown obstacles. Further-
more, a torque compensation controller has been proposed in [6] for motion controlling of a
mobile arm.

Recently, many works with the purpose of integrating visual servoing into mobile robots
have been proposed for grasping tasks [7–8] and for addressing visual based tracking problem
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[9–10], which leads to vision-based mobile autonomous manipulation systems. Moreover,
experts have proposed a path-planning algorithm in addtition to a reactive visual servoing
strategy. The planning stage considers various critical constraints or system uncertainties,
achieving a more robust visual servoing system.

As regards to vision, whenever an articulated arm manipulates in dynamic and unstruc-
tured work spaces, it is necessary to receive sensory information from feedback signals like
visual information in a closed loop control system [11]. Vision is a helpful sensor for such an
articulated arm as it copies biomimetic eyes to get information in the absence of any contact
with the object.

For robotic manipulators, visual servoing is the name of control methods composed of
a combination of robotic kinematics, dynamics, and computer vision to efficiently drive a
manipulator’s motion. These methods are categorized as two groups [12], namely, position-
based visual servoing (PBVS) and image-based visual servoing (IBVS).

Image features, in PBVS, are dealt with so as to estimate the relative three-dimensional
(3D) position between the camera and the target, followed by a strategy to control the
motion of a robotic arm with a camera, where the 3D position is used as an error signal [13].
In other words, based on image data, the references have been designed and expressed in 3D
Cartesian space. The control objective here is to drive the camera (or the hand) from an
arbitrarily initial to a desired relative position.

Alternatively, in IBVS, errors are calculated directly in terms of image features whose
differential motions in the image plane are related to the differential motion of the mobile
arm through Jacobian matrice [9-16]. It should be noted that as opposed to PBVS, IBVS
has some advantages as follows: 1) the 3D coordinate of a target is not essential; 2) IBVS
has more robustness than PBVS in performance with respect to disturbance, for instance,
calibration errors; 3) IBVS is more convenient and easier than PBVS to track a moving
target so that this target is always in the field of view of the camera.

The main contribution of this paper is that we show a completely new method to compute
the derivative of the image feature of a flying target by modeling the differential motion of
a camera mounted on a mobile arm. Afterwards, a new visual servoing law is proposed in
order to control the angular velocities of the pan-tilt joints with the purpose of making the
image feature of the flying target converge asymptotically to the center of the image plane
of the camera even though the target’s motion trajectory is unknown. Furthermore, apart
from tracking the flying target, this visual servoing controller has to also compensate the
motion of the WMR which is also moving on the floor with another unknown trajectory.

In comparison with other methods in [14-21], the advantages of our visual servoing include
two strong points as follows:

• Firstly, this method does not use the pseudo-inverse of the image interaction ma-
trix (image Jacobi matrix) to control the angular velocities of the pan-tilt’s joints for
tracking a flying target. Instead of using the pseudo-inverse, it uses the inverse of an
invertible 2×2 matrix which is derived from both the image interaction matrix of the
camera and the robotics Jacobian matrix of the mobile manipulator. Therefore, the
robustness in performance is enhanced.

• Secondly, instead of separately estimating the variations of the image errors due to both
the target’s unknown motion and the depth of the target, our method estimates an
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expression consisting of both of them. Therefore, this makes the expression of this new
visual servoing easier than that of other ones. Consequently, the burden of computing
the control law is also reduced.

The paper is organized as follows. Section 2 describes how to model differential motion
of a camera attached to the end-effector of a pan-tilt platform by using Paul’s algorithm
[22]. Section 3 represents a process by which a new visual servoing for tracking a flying
target is designed. Simulation results and discussions are expressed in Section 4. Finally,
our conclusion is shown in Section 5.
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Figure 1. A two-degree-of-freedom manipulator (pan-tilt) with a camera on a wheeled mobile
robot

2. MODELLING THE DIFFERENTIAL MOTION OF A CAMERA ON A
MOBILE MANIPULATOR

2.1. Describing coordinate systems

To begin with, let us consider a mobile manipulator with a camera as Figure 1. We define
a coordinate system O2X2Y2Z2 as Figure 2. Particularly, its origin O2 coincides with point
M, and its axes are always parallel to those of the base frame O0X0Y0Z0.

O3X3Y3Z3 is attached to the platform of the WMR as Figures 1, 2, and 3. O4X4Y4Z4 is
attached to the link pan as Figure 1 and Figure 3. OCXCYCZC is attached to the platform
of the camera (see Figures 1, 3 and 4). It should be noted here that O4 is at the intersection
of the pan axis and the tilt axis.

Finally, the homogeneous matrix expressing the position and direction of OCXCYCZC

in O0X0Y0Z0 is shown in the following formula
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T0
C =


−s34 −c34s5 c34c5 xM + xc
c34 −s34s5 s34c5 yM + yc
0 c5 s5 hT + zc
0 0 0 1

 , (1)

where si = sin θi, ci = cos θi, sij = sin (θi + θj), cij = cos (θi + θj), θ3 is the direction of the
mobile platform, xM , yM are Cartesian position coordinates of point M in the base frame
(Figure 2), θ4 is the angular coordinate of the pan joint, θ5 is the angular coordinate of the
tilt joint, hT is the height of the tilt axis (see Figures 3 and 4), (xc, yc, zc)

T is the position
coordinate vector of Oc in O4X4Y4Z4.

For convenience, we define extra variables as follows

xx = −s34, yx = −c34s5, zx = c34c5, px = xM + xc,
xy = c34, yy = −s34s5, zy = s34c5, py = yM + yc,
xz = 0, yz = c5, zz = s5, pz = hT + zc.

Therefore, (1) can be expressed as follows

T0
C =


xx yx zx px
xy yy zy py
xz yz zz pz
0 0 0 1

 ,
2.2. Differential motion

As OCXCYCZC is attached to the body of the camera, in order to model the differential
motion of the camera, we only model that of OCXCYCZC (see Figure 5).
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Figure 2. The mobile platform and two coordinate systems O2X2Y2Z2 and O3X3Y3Z3 in
base frame

On one hand, if OCXCYCZC experiences differential translations d0trans along the axes
of the base frame O0X0, O0Y0, O0Z0 and rotates differential rotations d0rot about the axes of
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the base frame, then its new posture (consisting of both location and direction) with respect
to the base frame will be illustrated by premultiplying T0

C by the differential translations
and rotations as follows

new posture = d0trans.d0rot.T0
C = dT0

C + T0
C .

Thus, differential change dT0
C is computed by

dT0
C =

(
d0trans.d0rot− I

)
T0

C = ΞΞΞ0.T0
C , (2)

where

ΞΞΞ0 = d0trans.d0rot− I =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1




1 −δz δy 0
δz 1 −δx 0
−δy δx 1 0
0 0 0 1

− I (3)

=


0 −δz δy dx
δz 0 −δx dy
−δy δx 0 dz
0 0 0 0

 ,
where dx, dy, and dz are very small distances in d0trans of OCXCYCZC along axes O0X0,
O0Y0, O0Z0 respectively. In addition, δx, δy and δz are tiny angles in d0rot of OCXCYCZC

about axes O0X0, O0Y0, O0Z0.

On the other hand, if the camera witnesses differential translations dCtrans along OCXC ,
OCYC , OCZC with very small distances dCx , dCy , dCz respectively and differential rotations

dCrot about OCXC , OCYC , OCZC with tiny angles δCx , δCy and δCz (see Figure 5) respectively,

then its new status with respect to OCXCYCZC will be described by postmultiplying TC
0

with dCtrans and dCrot

new posture = T0
C + dT0

C = T0
C .d

Ctrans.dCrot. (4)

We can rewrite (4) as follows

dT0
C = T0

C .
(
dCtrans.dCrot− I

)
= T0

C .ΞΞΞ
C , (5)

where

ΞΞΞC = dCtrans.dCrot− I =


0 −δCz δCy dCx
δCz 0 −δCx dCy
−δCy δCx 0 dCz
0 0 0 0

 . (6)

Combining (2) and (5) results in

ΞΞΞC =
(
T0

C

)−1
.ΞΞΞ0.T0

C . (7)

For convenience, from (1) and (3), we define new vectors as follows
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Figure 3. The front side of the system, and the position and direction of O4X4Y4Z4 in
O3X3Y3Z3

x =
[
xx xy xz

]T
, y =

[
yx yy yz

]T
, z =

[
zx zy zz

]T
,

p =
[
px py pz

]T
, δδδ =

[
δx δy δz

]T
, d =

[
dx dy dz

]T
.

That is to say, (7) can be rewritten as follows

ΞΞΞC =


0 −δδδT .z δδδT .y xT [(δδδ × p) + d]

δδδT .z 0 −δδδT .x yT [(δδδ × p) + d]

−δδδT .y δδδT .x 0 zT [(δδδ × p) + d]
0 0 0 0

 , (8)

where (δδδ × p) is the cross product of these two vectors.

Comparing (6) and (8) yields

dCx = xT [(δδδ × p) + d] , (9)

dCy = yT [(δδδ × p) + d] , (10)

dCz = zT [(δδδ × p) + d] , (11)

δCx = δδδT .x, (12)

δCy = δδδT .y, (13)

δCz = δδδT .z. (14)
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Figure 4. The position and direction of OCXCYCZC in O4X4Y4Z4, and the model pinhole
of the camera

Let us define the differential motion vector of the camera with respect to the camera
frame OCXCYCZC as follows

D =
[
dCx dCy dCz δCx δCy δCz

]T
. (15)

Alternatively, we compute the robotic Jacobian matrix J so that it satisfies the following
fomula

D = J
[
dxM dyM dθ3 dθ4 dθ5

]T
, (16)

where
J =

[
J1 J2 J3 J4 J5

]
=

[
∂D

∂xM

∂D

∂yM

∂D

∂θ3

∂D

∂θ4

∂D

∂θ5

]
.

(17)

For the differential translation along the O0X0 (see Figure 5), we have d =
[
dxM 0 0

]T
and δδδ =

[
0 0 0

]T
. Therefore, according to (1), (9)-(14) and (17), the following formula

is achieved

J1 =
[
−s34 −c34s5 c34c5 0 0 0

]T
. (18)

Similarly, for the differential translation along the O0Y0 (see Figure 5), we have d =[
0 dyM 0

]T
and δδδ =

[
0 0 0

]T
. It also results in

J2 =
[
c34 −s34s5 s34c5 0 0 0

]T
. (19)

Now, if we consider differential rotations about the corresponding axes O2Z2, O3Z3,
O4Z4 respectively, then the role of T0

C in both (1) and (7) will be respectively replaced by
the corresponding matrices as follows

T2
C =


−s34 −c34s5 c34c5 xc
c34 −s34s5 s34c5 yc
0 c5 s5 hT + zc
0 0 0 1

 , (20)
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which represents the position and direction of OCXCYCZC in O2X2Y2Z2,

T3
C =


−s4 −c4s5 c4c5 xc
c4 −s4s5 s4c5 yc
0 c5 s5 hT + zc
0 0 0 1

 , (21)

which represents the position and direction of OCXCYCZC in O3X3Y3Z3, and

T4
C =


0 − sin θ5 cos θ5 xc
0 cos θ5 sin θ5 yc
−1 0 0 zc
0 0 0 1

 , (22)

which illustrates the position and direction of OCXCYCZC in O4X4Y4Z4 (see Figure 1). In

these three cases, we have δδδ =
[

0 0 dθi
]T

, i = 3, 4, 5, and d =
[

0 0 0
]T

. Combining
(9)-(14), (17), and (20)-(22), results in that the Jacobian vectors in (17) can be written as
follows

J3 =
[

0 0 0 0 c5 s5
]T
, (23)

J4 =
[

0 0 0 0 c5 s5
]T
, (24)

J5 =
[

0 0 0 −1 0 0
]T
. (25)

Combining (18)-(19) and (23)-(25) allows one to show the robotics Jacobian matrix as
follows

J =



−s34 c34 0 0 0
−c34s5 −s34s5 0 0 0
c34c5 s34c5 0 0 0
0 0 0 0 −1
0 0 c5 c5 0
0 0 s5 s5 0

 . (26)

2.3. Calculating the derivative of the image feature

Figure 4 shows the pinhole model of the camera, where u, v are the image coordinates of
the target in the image plane. The image feature vector of the target is computed as follows

ξξξ =

[
u
v

]
= − ρ

zTc

[
xTc

yTc

]
, (27)

where ρ is the focus length of the camera, rTc =
[
xTc yTc zTc

]T
is the coordinate vector

of the target in the camera frame (OCXCYCZC).
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Let dC =
[
dCx dCy dCz

]T
be the differential translation vector, δδδC =

[
δCx δCy δCz

]T
be the differential rotation vector of the camera with respect to OCXCYCZC . The differential
motion of the target in OCXCYCZC is computed by an equation as follows [11]

drTc =
[
dxc dyc dzc

]T
= −δδδC × rTc − dC +

∂rTc

∂t
dt, (28)

where
∂rTc

∂t
dt expresses a component which only depends on the unknown motion of the

target in 3D-space. In other words, it does not depend on the motion of the camera.

In particular, we can rewrite (28) as follows

dxTc = −zTc

(
δCy +

v

ρ
δCz

)
− dCx +

∂xTc

∂t
dt, (29)

dyTc = zTc

(
u

ρ
δCz + δCx

)
− dCy +

∂yTc

∂t
dt, (30)

dzTc =
zTc

ρ

(
vδCx − uδCy

)
− dCz +

∂zTc

∂t
dt. (31)

According to (27), the differential expressions of the image coordinates are represented
in the following forms
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du = −ρzTcdxTc − xTcdzTc

z2Tc

, (32)

dv = −ρzTcdyTc − yTcdzTc

z2Tc

. (33)

Substituting (29), (30), and (31) into (32)-(33) leads to

dξξξ =

[
du
dv

]
= Jim.D− ζζζdt, (34)

where

Jim =


ρ

zc
0

u

zc
−uv
ρ

u2 + ρ2

ρ
v

0
ρ

zc

v

zc
−v

2 + ρ2

ρ

uv

ρ
−u


is the image Jacobian matrix (interaction matrix) of the camera, and

ζζζ =

[ (
ρ

zc

∂xc
∂t

+
u

zc

∂zc
∂t

) (
ρ

zc

∂yc
∂t

+
v

zc

∂zc
∂t

) ]T
.

Substituting (16) into (34) results in

dξξξ = Jim.J.dθθθ − ζζζdt, (35)

where θθθ =
[
xM yM θ3 θ4 θ5

]T
. Now, dividing both the sides of (35) by differential of

time, dt, forms the following derivative equation of the image feature

ξ̇̇ξ̇ξ = Jim.J.θ̇̇θ̇θ − ζζζ. (36)

3. DESIGNING CONTROL LAW

3.1. Problem statement and proposition

The requirement of the visual servoing for tracking a flying target is to control the
angular velocities of the pan-tilt joints so that the image feature of the target (Figure 6)
tends asymptotically to the center of the image plane (see Figure 4) even though the motion
trajectories of both the WMR and the flying target are unknown and independent each
other.

To solve this control problem, we propose a scheme of the overall system as Figure 7. This
scheme consists of two closed-loops. The outer loop includes a kinematic controller shown in
Subsection 3.2. The inner loop involves a dynamic controller represented in Subsection 3.3.
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Figure 7. Scheme of the proposed visual servoing for tracking a flying target

3.2. Kinematic control law

We can rearrange (36) as follows

ξ̇̇ξ̇ξ = A

[
θ̇4
θ̇5

]
+

[
v
−u

]
s5θ̇4 +ψψψ, (37)

where,

A =


(
ρ2 + u2

)
c5

ρ

uv

ρ
uvc5
ρ

ρ2 + v2

ρ

 ,
ψψψ = Hθ3 + K

[
ẋM
ẏM

]
− ζζζ, H =

1

ρ

[ (
ρ2 + u2

)
c5 + ρvs5

uvc5 − ρus5

]
,

K =
1

zc

[
(−ρs34 + uc34c5) (−ρc34 + us34c5)
(−ρc34s5 + vc34c5) (−ρs34s5 + vs34c5)

]
,

ψψψ describes the variation of the image feature error ξξξ because of the unknown motion of the
flying target.

In (37), depending on the unknown motion of both the WMR and the flying target, and
above all, the depth, zTc, of target, ψψψ is unknown. However, when the sampling interval of
signals is tiny enough for real-time property to be guaranteed, ψψψ may be estimated as follows
[14]

ψ̂̂ψ̂ψ = ξ̇̇ξ̇ξ
pre −A

[
θ̇pre4

θ̇pre5

]
−
[
v
−u

]
s5θ̇

pre
4 , (38)

where ψ̂̂ψ̂ψ is the estimated vector of ψψψ. Furthermore, ξ̇̇ξ̇ξ
pre
, θ̇pre4 , and θ̇pre5 are the latest discrete

data of ξ̇̇ξ̇ξ, θ̇4, and θ̇5, respectively.
Since the desired position of the image feature is the center of the image plane, the desired

vector of ξξξ is ξξξd = [0, 0]T . Hence, the image error is also ξξξ.
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Because of det (A) =
(
ρ2 + u2 + v2

)
c5, there is an undeniable fact that A is an invertible

matrix if |θ5| <
π

2
. As a result, if |θ5| <

π

2
, then in order to remove the image error ξξξ, we

can choose the desired angular velocities for the pan-tilt joints as follows[
θ̇4d
θ̇5d

]
= A−1

(
−Nξξξ − n ξξξ

‖ξξξ‖
− ψ̂̂ψ̂ψ

)
, (39)

where N is a positive-definite diagonal constant matrix, n is a positive constant. Both N
and n can be chosen arbitrarily.

Replacing
[
θ̇4 θ̇5

]T
in (37) by

[
θ̇4d θ̇5d

]T
in (39), we get the following equation

ξ̇̇ξ̇ξ = −Nξξξ − n ξξξ

‖ξξξ‖
+

[
v
−u

]
s5θ̇4d + ψ̃̃ψ̃ψ, (40)

where ψ̃̃ψ̃ψ = ψψψ − ψ̂ψψ.

Trajectories of both the WMR (blue) and the flying target (red) in 3D space. 
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3.3. Dynamic control law

The dynamic model of the platform of the pan-tilt is expressed as follows

τττ = M (q) v̇ + B (q,v) v + g (q) , (41)
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where q =
[
θ4 θ5

]T
, v =

[
θ̇4 θ̇5

]T
, τττ = [τ4, τ5], τ4 is the torque at the pan joint, τ5 is

the torque at the tilt joint (see Fig. 3). All M (q), B (q,v), and g (q) are shown specifically
in the appendix.

Remark 1. M (q) is always a symmetric and positive-definite matrix.

Remark 2. Ṁ (q)− 2B (q,v) is a skew-symmetric matrix, that is,

ϕϕϕT
[
Ṁ (q)− 2B (q,v)

]
ϕϕϕ = 0, ∀ϕϕϕ ∈ R2×1. (42)

To design the dynamic control law, the torque vector is selected as follows

τττ = −ΓΓΓe + M (q) v̇vvd + B (q,v) vd + g (q) , (43)

where vd =
[
θ̇4d θ̇5d

]T
, e = v−vd, ΓΓΓ is a constant, positive-definite, diagonal gain matrix

and can be chosen arbitrarily.

Substituting (43) into (41), it leads to

M (q) ė̇ėe = −B (q,v) e−ΓΓΓe. (44)

3.4. Stability

A positively definite Lyapunov candidate function is chosen as follows

L =
1

2
eTM (q) e +

1

2
ξξξTξξξ. (45)

Taking the first derivative of (45), we have

L̇ =
1

2
eTṀ (q) e + eTM (q) ė + ξξξT ξ̇ξξ. (46)

Substituting both (40) and (44) into (46) and combining with (42) results in

L̇ = −eTΓe− ξξξTNξξξ − n ‖ξξξ‖+ ξξξT
[
v
−u

]
s5θ̇4d + ξξξT ψ̃ψψ. (47)

It is noticeable that ξξξT
[
v
−u

]
= 0, so (47) is reduced to

L̇ = −eTΓe− ξξξTNξξξ − n ‖ξξξ‖+ ξξξT ψ̃ψψ. (48)

It is assumed that ψ̃ψψ is bounded and there exists an upper bound as Ψ. It means that∥∥∥ψ̃ψψ∥∥∥ ≤ Ψ. Therefore, ξξξT ψ̃ψψ ≤ ‖ξξξ‖ .
∥∥∥ψ̃ψψ∥∥∥ ≤ Ψ ‖ξξξ‖.

Now, we can illustrate an inequality as follows

L̇ ≤ −eTΓΓΓe− ξξξTNξξξ − n ‖ξξξ‖+ ΨΨΨ ‖ξξξ‖ . (49)

If n = Ψ + Ω is chosen where Ω is a positive constant, then (49) is rewritten as follows

L̇ ≤ −eTΓΓΓe− ξξξTNξξξ − Ω ‖ξξξ‖ . (50)



352 NGUYEN TIEN KIEM, et al.

It is clear that L̇ ≤ 0 for all e, ξξξ. Particularly, “=” occurs when and only when both e
and ξξξ equal to zero vectors at the same time. It infers that L̇ is a negatively definite function.
Consequently, according to Lyapunov theory, L̇→ 0 asymptotically. As a result, both e and
ξξξ tend to zero asymptotically.

Clearly, the trend in which L converges to zero, L→ 0, does not depend on time history.
It means that this trend has uniformity.

In summary, the stability of the entire control system is uniformly asymptotically stable.

4. SIMULATION RESULTS

Without loss of generality, suppose that the trajectories of the WMR and the target were
shown in Table 1. These trajectories were illustrated in Figure 8.

In order to implement simulation by Matlab/Simulink software, the parameters of the
pan-tilt’s platform (see the APPENDIX) and the camera were assumed as Table 2. The

parameters of the controller were chosen as follows N = ΓΓΓ =

[
10 0
0 10

]
, n = 0.25, the

sampling interval T = 0.001 (s).

In the initial condition, it is assumed that the target had been in the field of view of the
camera.
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Figure 9a expressed the trajectory of the image feature in the image plane. The evolution
of the image coordinates with time was represented in Figure 9b. It is obvious that this image
trajectory converged asymptotically to the center of the image plane. This implies that the
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Figure 12. Evolution of the torques

control objective, or, more precisely, the requirement of the control problem in Subsection
3.1, has been satisfied.

It is interesting that combining Figure 9 and Figure 10, one can see that both e and ξξξ
have converged asymptotically to the zero vectors. Therefore, what has been discussed after
(50) is fully exact.

Figure 11 represented the evolution of the angular coordinates of the pan-tilt joints. It

is noticeable that θ5 always satisfies the condition |θ5| <
π

2
. This means that A in (39) is

always an invertible matrix. For this reason, the kinematic control law in (39) is reasonable.

Next, Figure 12 described the torques at the pan-tilt joints. They are smooth and finite.

To conclude, the proposed image-based visual servoing is feasible and correct.

Table 1. The trajectories of both mobile robot and target

Coordinates of ob-
jects inthe base frame

Mobile robot
(WMR)

Target

X0(m) xM = 5 sin (0.2t) , xT = 6,

Y0 (m) yM = −5 cos (0.2t) , yT = −0.1 + 0.5t+ 0.1 cos (3t) ,

Z0(m) zM = 0, zT = 3− 0.2t+ 0.15 sin (4t) ,

Direction (rad) θ3 = 0.2t, Undetermined

5. CONCLUSION

This article has shown a process for modelling the differential motion of a mobile manip-
ulator by using Paul’s algorithm. Subsequently, a fully novel visual servoing for tracking a
flying target is designed with the purpose of making the target’s image feature tend asymp-
totically to the center of the image plane when both the mobile robot and the target are
moving with unknown trajectories. As opposed to other methods, the advantages of the
visual servoing comprise two strong points. The first strong point is that this method has
not used the pseudo-inverse of the interaction matrix. The second one is that it has also
not estimated the depth of the target. Therefore, this visual servoing method gets the more
robustness in performance than other ones. The uniform asymptotic stability of the whole
system is ensured by Lyapunov criteria. Simulation results executed by Matlab/Simulink
certify the correctness and performance of our proposed control method.
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APPENDIX

The terms of the dynamic model (43)

M (q) =

[
M11 0
0 IXc

]
, M11 = IP + IY c

1 + cos (2θ5)

2
+ IZc

1− cos (2θ5)

2
,

B (q, q̇) =

[
B11 B12

−B12 0

]
, B11 =

1

2
(IZc − IY c) sin (2θ5) θ̇5,

B12 =
1

2
(IZc − IY c) sin (2θ5) θ̇4.

The gravity vector g (q) =

[
0
9.8mbη cos θ5

]
.

IP is the moment of inertia of the link pan’s platform about its rotational axis.

IXc, IY c, and IZc respectively are the moments of inertia of the body including both the
camera and the link tilt (see Figure 3 and Figure 4).(

0 0 −η
)T
, with η > 0, is the position of the center of mass of the body in

OCXCYCZC .

mb is the mass of this body.

Table 2. Parameters of the pan tilt platform and camera

IP = 0.025kg.m2 IXc = 0.015kg.m2

IY c = 0.005kg.m2 IZc = 0.004kg.m2

mb = 0.5kg η = 0.01m

ρ = 0.005m
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