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Abstract. In this paper, Lagrange formula is employed with the purpose of modelling both the

kinematics and dynamics of a nonholonomic wheeled mobile robot (WMR) subject to unknown

wheel slips, model uncertainties such as unstructured unmodelled dynamic components, and unknown

external disturbances such as unknown external forces. Afterwards, an adaptive tracking controller

based on a radial basis function neural network (RBFNN) with an online weight tuning algorithm

is proposed for tracking a predefined trajectory. Prior neural network offline training is not needed

for the weights since they are easily initialized. Thanks to this proposed control approach, a desired

tracking performance is obtained in which position tracking errors uniformly ultimately converge to

an arbitrarily small neighborhood of the origin. In the sense of Lyapunov and LaSalle extension, the

stability of the whole closed-loop system is guaranteed to achieve this desired tracking performance.

The comparative results of computer simulation have validated the rightness and efficiency of the

proposed controller.

Keywords. Online weight tuning algorithm, wheeled mobile robot, uniformly ultimately bounded,

unknown wheel slip.

1. INTRODUCTION

It is well known that wheeled mobile robots (WMR) have ability to work in a wide area, and

furthermore they are capable of performing tasks intelligently without any human action. Besides,

they can replace people on dangerous tasks such as looking for explosive materials, transporting

of goods in poisonous environments, rescue, etc. Therefore, they have been applied widely and

increasingly popular in various areas such as industry, entertainment, health care, automation in

logistics, transport, etc.

In recent years, many researchers in the world have paid their attention to research motion control

problems for WMRs. In [3, 4, 5, 7, 8], the controllers were designed to take account of kinematic and

dynamic model of WMR without slipping motions.

Nonetheless, unfortunately, the condition “pure rolling without slip” has been not always satisfied

in practice. To put it simply, there has been the existence of wheel slip. The wheel slip depends on a

number of various factors namely an unknown centrifugal force acting on a WMR when it moves in

a circular path, an external force acting on a WMR when it collides with another unknown object,

a weak frictional force between the slippery floor and the wheels, etc. Consequently, if one wants
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a motion control problem to be effectively addressed in such context, then during designing motion

controllers for WMR, the wheel slip must be considered. With the aim of compensating for the

harmful effect of the wheel slip, an adaptive tracking controller has been developed via slip-ratios

[9]. The approaches based on gyros and accelerometers to cope with the wheel slip have been also

illustrated in [2, 13]. The authors in [15] have illustrated the models of WMRs taking account of

both wheel longitudinal and lateral slippage and then analyzed their controllability according to their

maneuverability. Approaches for designing controllers have also been investigated in [10, 11] for the

path following and tracking of WMRs in the presence of longitudinal and lateral slippage. In [17], S.

J. Yoo has designed a neural-network-based adaptive control method for tracking path and avoiding

obstacle for a class of WMRs in the presence of unknown skidding, slipping, and torque saturation.

The work in [12] has addressed the slippage phenomenon for exactly kinematic modeling and then

controlling for a WMR. In [6], the slip ratios of all wheels could be estimated via an experimental

study. The authors in [14] have proposed a feedback linearization controller for a WMR tracking

a desired trajectory with longitudinal and lateral slip under an ideal condition where there did not

exist both model uncertainties and unknown external disturbances, and further the accelerations and

velocities of the wheel slips were measured exactly. However, it is impossible to achieve a desired

tracking performance in real applications because the ideal condition is not realistic.

To sum up, most of these aforementioned works except for [1, 16] have been based on an assump-

tion that the measurements of the wheel slips were ready so as to analyze and design slip-compensation

controllers. The drawback of this assumption is the extra demand of expensive and complex sensors

to measure the wheel slip namely global position system (GPS), gyroscope, accelerometer, etc.

These results have motivated us to propose a novel neural network-based adaptive controller for a

WMR with the both longitudinal and lateral wheel slip in such a way that the WMR tracks a desired

trajectory with a desired tracking performance. Moreover, those measurements of wheel slip are no

longer necessary.

The main purpose of this paper is that a neural network (NN) adaptive tracking controller is

proposed for a WMR in the presence of unknown wheel slip, model uncertainties, and unknown

external disturbances to track a predefined trajectory. Firstly, to do this, the Lagrange dynamic

approach has been used to derive both the kinematics and the dynamics of the WMR in this situation.

Secondly, with purpose of overcoming the harmful effect of unknown wheel slip, model uncertainties,

and unknown external disturbances, a RBFNN adaptive tracking controller has been proposed. In

this controller, the RBFNN with online weight tuning algorithm is employed to approximate unknown

nonlinear smooth functions due to no prior knowledge of the dynamic model of this WMR. Finally,

a Matlab/Simulink simulation was implemented to certify the effectiveness and the performance of

the proposed controller.

The remainder of this article is structured as follows. Section 2 represents the progress by which

both the kinematics and the dynamics of a WMR are modeled in the presence of both lateral and

longitudinal slip between the driving wheels and the floor. In section 3, a RBFNN adaptive tracking

controller with an online weight tuning algorithm is proposed, and the uniformly ultimately bounded

stability of the closed-loop system to an adjustable neighborhood of the origin is proven in Lyapunov

theory and LaSalle extension. Next, a computer simulation is shown in section 4 to certify the

effectiveness and the performance of the proposed controller. Finally, section 5 illustrates our research

conclusions.
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2. THE KINEMATICS AND DYNAMICS OF A NONHOLONOMIC WMR
WITH UNKNOWN WHEEL SLIP

2.1. The kinematic model

Let us consider a nonholonomic WMR which comprises two driving wheels and a caster wheel as

Figure 1. To be specific, G is the center of mass of the platform of the WMR. M is the midpoint

of the wheel shaft. F1 and F2 are the total longitudinal friction forces at the right and left wheel,

respectively. F3 is the total lateral friction force along the wheel shaft. F4 and $ are external force

and moment acting on G, respectively. r is the radius of each wheel. b is the haft of the wheel shaft.

a is the distance between M and G.

Let xM , yM denote the coordinates of M . Likewise, let xG, yG denote those of G. θ is the

orientation of the WMR. When there does not exist wheel slip between the wheels and the floor, the

linear and angular velocities of the WMR, computed at M, are represented respectively as follows [8]

Θ =
r
(

Φ̇R + Φ̇L

)
2

, µ =
r
(

Φ̇R − Φ̇L

)
2b

, (1)

where Φ̇R, Φ̇L are the angular velocities of the right and left driving wheel about the wheel shaft,

respectively.

Hence, the kinematics of the WMR is written as follows [7]
ẋM = Θ cos θ,
ẏM = Θ sin θ,

θ̇ = µ.

(2)

On the other hand, when the WMR moves in the presence of slip between the wheels and the

floor, (1) - (2) are no longer true. Now, let γR and γL denote the coordinates of the longitudinal slip

of the right and left driving wheel, respectively (see Figure 1). Similarly, η denotes the coordinate of

the lateral slip along the wheel shaft. In this case, the actual linear velocity of the WMR along the

longitudinal direction is shown as follows [14]

Ω =
r
(

Φ̇R + Φ̇L

)
2

+
γ̇R + γ̇L

2
= Θ +

γ̇R + γ̇L
2

. (3)

The actual angular velocity of the WMR is computed as follows [14]

ω =
r
(

Φ̇R − Φ̇L

)
2b

+
γ̇R − γ̇L

2b
= µ+ ϑ, with ϑ =

γ̇R − γ̇L
2b

. (4)

Thus, the kinematic model of this WMR can be written in terms of the coordinates of M as

follows [14] 
ẋM = Ω cos θ − η̇ sin θ,
ẏM = Ω sin θ + η̇ cos θ,

θ̇ = ω.

(5)

Due to the wheel slip, the perturbed nonholonomic constrain equations can be written as follows

[16]
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γ̇R = −rΦ̇R + ẋM cos θ + ẏM sin θ + bω, (6)

γ̇L = −rΦ̇L + ẋM cos θ + ẏM sin θ − bω, (7)

η̇ = −ẋM sin θ + ẏM cos θ (8)
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Figure 1. The nonholonomic WMR subjected to the wheel slip

2.2. Dynamic model of the WMR with wheel slip

The derivatives with respect to time of the coordinates of the mass center, G, are computed as

follows

ẋG = Ω cos θ − η̇ sin θ − aω sin θ, (9)

ẏG = Ω sin θ + η̇ cos θ + aω cos θ. (10)

Let mG be the mass of the platform of the WMR without the driving wheels. IG is the moment

of inertia of this platform about the vertical axis through G. The kinetic energy of this platform is

computed as follows [8]

KG =
1

2
mG

(
ẋ2
G + ẏ2

G

)
+

1

2
IGω

2. (11)

The kinetic energies of the right and left driving wheel are computed, respectively, as follows [8]

KR =
1

2
mW

[(
rΦ̇R + γ̇R

)2
+ η̇2

]
+

1

2
IW Φ̇2

R +
1

2
IDω

2, (12)

KL =
1

2
mW

[(
rΦ̇L + γ̇L

)2
+ η̇2

]
+

1

2
IW Φ̇2

L +
1

2
IDω

2, (13)
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where IW or ID respectively is the inertial moment of each driving wheel about its rotational and

diameter (vertical) axis.

The total kinetic energy of the whole system is

K = KG +KL +KR. (14)

Let q = [xG, yG, θ, η, γR, γL,ΦR,ΦL]T be the Lagrange coordinate vector, the perturbed non-

holonomic constraint equations (6), (7), and (8) can be rewritten as follows

A (q) q̇ = 0 where A (q) =

 cos θ sin θ b 0 −1 0 −r 0
cos θ sin θ −b 0 0 −1 0 −r
− sin θ cos θ a −1 0 0 0 0

 (15)

The potential energy of the whole system always equals to zero, so its Lagrange function is

L = K. The Lagrange equation can be written in the following form [7]

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ τ̄ττd = Nτ + ATλλλ (16)

where λλλ = [λ1, λ2, λ3]T is the vector of Lagrange multipliers which are considered as constraint forces

acting on the WMR so that its motion satisfies the nonholonomic constraint (15). τττ = [τR, τL]T

is the input vector with τR and τL being the torques at the right and left driving wheel about the

wheel shaft, respectively. τ̄ττd is a vector illustrating both model uncertainties such as unstructured

unmodelled dynamics and unknown bounded disturbances namely unknown external forces as F1,

F2, F3, F4, $ (see Figure 1). N is the input transformation matrix. Solving this Lagrange equation,

the dynamic equation of the whole system can be represented by

M̄q̈ + τ̄ττd = Nτ + A (q)T λλλ, (17)

where

M̄ =



mG 0 0 0 0 0 0 0
0 mG 0 0 0 0 0 0
0 0 IG + 2ID 0 0 0 0 0
0 0 0 2mW 0 0 0 0
0 0 0 0 mW 0 mW r 0
0 0 0 0 0 mW 0 mW r
0 0 0 0 mW r 0 mW r

2 + IW 0
0 0 0 0 0 mW r 0 mW r

2 + IW


,

N =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1


.
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Alternatively, it is easy to achieve the following equation [14]

q̇ = S1 (q) v + S2 (q) γ̇̇γ̇γ + S3 (q) η̇, (18)

where v =
[
Φ̇R, Φ̇L

]T
, γγγ = [γR, γL]T , S1 (q) ,S2 (q) ,S3 (q) are expressed by

S1 =



(r
2

cos θ − ar

2b
sin θ

) (r
2

cos θ +
ar

2b
sin θ

)(r
2

sin θ +
ar

2b
cos θ

) (r
2

sin θ − ar

2b
cos θ

)
r

2b
− r

2b
0 0
0 0
0 0
1 0
0 1


,

S2 =



(
1

2
cos θ − a

2b
sin θ

) (
1

2
cos θ +

a

2b
sin θ

)
(

1

2
sin θ +

a

2b
cos θ

) (
1

2
sin θ − a

2b
cos θ

)
1

2b
− 1

2b
0 0
1 0
0 1
0 0
0 0


S3 =

[
− sin θ cos θ 0 1 0 0 0 0

]T
.

Next, taking the time derivative of (18), we obtain

q̈ = Ṡ1 (q) v + S1 (q) v̇ + S2 (q) γ̈γγ + Ṡ2 (q) γ̇γγ + Ṡ3 (q) η̇ + S3 (q) η̈, (19)

ST
1 (q) AT (q) = 02×3, ST

1 (q) S̈1 (q) = 02×2, ST
1 (q) N = I2×2, where Ii×j is an unit

i× j matrix, and 0i×j is a zero i× j matrix.

Substituting (19) into (17), and then pre-multiplying the both sides of the new equation by

ST
1 (q), we get

Mv̇ + Bv + B̄v + Qγ̈ + Cωη̇ + Gη̈ + τττd = τττ , (20)

where τ̄ττd = S1 (q) τ̄ττd,

M = ST
1 M̄S1 =

[
m11 m12

m12 m11

]
, Q = ST

1 M̄S2 =

[
Q11 Q12

Q12 Q11

]
,Cω = ST

1 MṠ3 = mG
r

2

[
1
1

]
ω,

m11 = mG

(
r2

4
+
a2r2

4b2

)
+

r2

4b2
(IG + 2ID) +mW r

2 + IW ,
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m12 = mG

(
r2

4
− a2r2

4b2

)
− r2

4b2
(IG + 2ID) ,

Q11 = mG
r

4

(
1 +

a2

b2

)
+

r

4b
(IG + 2ID) , Q12 = mG

r

4

(
1− a2

b2

)
− r

4b
(IG + 2ID) ,

G = ST
1 MS3 = mG

ar

2b

[
1
−1

]
, B = ST

1 MṠ1 = mG
ar2

2b
µ

[
0 1
−1 0

]
,

and B̄ = ST
1 MṠ1 = mG

ar2

2b
ϑ

[
0 1
−1 0

]
, with µ =

Φ̇R − Φ̇L

2
, ϑ =

γ̇R − γ̇L
2

.

3. CONTROL DESIGNING

3.1. Problem Statement

Let D(xD, yD) be a target which is moving in a known desired trajectory (see Figure 2). Without

loss of generality, the motion equation of D can be supposed as follows{
xD = TD.t−R cos(υ.t) + x0

yD = βTD.t+R sin(υ.t) + y0,
(21)

where β, TD, R, υ, x0, y0 are constant parameters, and time t varies from zero to infinity.

We assume that the tool location is at point P. So, the requirement of the position tracking

control problem is to control the WMR so that P has to track D with the position tracking errors

being uniformly ultimately bounded.

Remark 1. In Figure 2, we denote (xP , yP ) as the position of P . Let (xP , yP , θ) be the

actual posture of the WMR, and (xPd, yPd, θd) be the desired one of the WMR. The presence of

both the longitudinal and lateral slips makes it impossible to control the WMR in the way that the

actual posture (xP , yP , θ) tracks the desired one (xPd, yPd, θd) with an arbitrarily good tracking

performance. Instead of this, it is fully possible to control the WMR with the purpose of making

the actual position (xP , yP ) track the desired one (xPd, yPd) with an arbitrarily good tracking

performance.

3.2. Describing the vector of position tracking errors and the the vector of
filtered tracking errors

Let O-XY be the global coordinate system, M-XY be the body coordinate system which is

attached to the platform of the WMR (see Figure 2). The coordinate of the target is represented in

M-XY as follows [14]

ζζζ =

[
ζ1

ζ2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xD − xM
yD − yM

]
. (22)

Taking the second order derivative with respect to time of (22) yields [14]

ζ̈ζζ = −hv̇ + ΨΨΨ1 + ΨΨΨ2, (23)
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where h =


(
ζ2

1

b
− 1

)
r

2
−
(
ζ2

1

b
+ 1

)
r

2

−ζ1
r

2b
ζ1
r

2b

, and ΨΨΨ1, ΨΨΨ2 are nonlinear components revealed

as follows

ΨΨΨ1 = ḣv +

[
ẍD cos θ + ÿD sin θ − ẋDµ sin θ + ẏDµ cos θ
−ẍD sin θ + ÿD cos θ − ẋDµ cos θ − ẏDµ sin θ

]
,

ΨΨΨ2 =

[
−χ̈− ẋDϑ sin θ + ẏDϑ cos θ
−η̈ − ẋDϑ cos θ − ẏDϑ sin θ

]
,

where µ =
r
(

Φ̇R − Φ̇L

)
2

, χ =
γR + γL

2
, ϑ =

γ̇R − γ̇L
2

.

,Ψ Ψ

D D DD D DD D DD D DD D DD D DD D D Ds ss ss ss s DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D D n cn cDDé ùx yx y
= + D D Dx yx yD D Dé ùx y

ê úΨ hv= + é ùcoD D DD D DD D DD D DcoD D DD D DD D DD D DD D DD D DD D Dx yD D DD D DD D DD D Dx yD D DD D DD D DD D DD D DD D DD D D ,
x yD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D D Ds sinDDs sDx yD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D DD D D
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Figure 2. The coordinate of the target is represented in the body coordinate system M-XY

Remark 2. If ζ1 6= 0, then h is an invertible matrix.

Let us define the position tracking error vector as e = [e1, e2]T = ζζζ−ζζζd, where ζζζd is the desired

coordinate vector of the target in M-XY. According to the requirement of the position tracking control

problem mentioned above and Figure 2, one can easily set ζζζd = [C, 0]T .

The filtered tracking error vector is defined as follows

ϕϕϕ = ė + ΛΛΛe (24)

where ΛΛΛ is a 2×2 diagonal, constant, positive definite matrix and is chosen arbitrarily.

3.3. Radial basis function neural network

One cannot deny that artificial neural networks (ANN) have ability of approximating nonlinear

and sufficiently smooth functions with arbitrary accuracy. Among those ANNs, the radial basis

function neural network (RBFNN) is confirmed to be suitable for the purpose of approximating

unknown nonlinear smooth functions. In this sub-section, the RBFNN is introduced briefly. As

illustrated in Figure 3, the output of the RBFNN can be computed as follows [9]
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y (x) = WTσσσ (x) (25)

where W is the weight matrix of the output layer which interconnects the hidden- with output-layer,

and σσσ (x) is the vector of activation functions in the hidden layer, x is the input vector of the RBFNN.

  

    

 w2j  

Input layer Hidden layer Output layer 

x1 

x2   

1 

 
  

 j 

xN1 

 wLj 

Figure 3. Structure of RBFNN

In particular, if there are L neurons in the hidden layer and N neurons in the output layer, then

W ∈ R(L+1)×N and σσσ(x) ∈ R(1+L)×1 are respectively expressed as follows

W =


θ1 θ2 · · · · · · θN
w11 w21 · · · · · · w1N

w12 w22 · · · · · · w2N
...

...
...

. . .
...

wL1 wL2 · · · · · · wLN

 , and σσσ (x) =


1
σ1

σ2
...

σL

, where θi are the threshold

offsets of the output layer (see Figure 3). It is noticeable that putting 1 into the first component of

σσσ (x) allows one to comprise the threshold vector [θ1, θ2, ..., θL]T as the first row of W. That is to

say, any tuning of W consists of tuning of both the weights wij of the connections from the hidden-

to output-layer and thresholds θij at the output-layer.

For the activation functions of the hidden layer, the Gaussian type function is employed as follows

σi = exp

(
− 1

2ρ2
i

‖x−ΞΞΞi‖2
)

where ΞΞΞi and ρi are the center and width of the i-th hidden neuron, i= 1,2,. . . , L.
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Given any bounded and continuous function f (x) : RM → RN , there is an ideal matrix W so

that we can express f (x) as follows [9]

f (x) = y (x) + εεε = WTσσσ (x) + εεε, (26)

where εεε ∈ RN×1 is a vector illustrating reconstruction errors.

Assumption 1. With a large enough number L of the hidden-layer neurons, there exists bε such

that ‖εεε‖ ≤ bε.
An approximation of f (x) is revealed by f̂ (x) = Ŵ

T
σσσ (x), where Ŵ is an estimation matrix of

W and is provided by an online weight tuning algorithm to be discussed subsequently.

The function approximation error vector is computed by

f̃ = f (x)− f̂ (x) = WTσσσ (x) + εεε− Ŵ
T
σσσ (x) . (27)

3.4. Controller structure and error system dynamics

In (23), since directly depending on the accelerations and velocities of the wheel slips which are

not measured in this work, ΨΨΨ2 is unknown. Therefore, let us define an auxiliary variable which can

be measured easily as follows

v̇c = h−1
(
−ζ̇ζζd + ΛΛΛė + ΨΨΨ1

)
. (28)

Alternatively, one can rewrite (20) as follows

Mv̇ = τττ − Bv− d (29)

where d = B̄v + Qγ̈ + Cωη̇ + Gη̈ + τττd.

Subtracting Mv̇c from both of the sides of (29) and then combining the result and (23), (24),

and (28) leads to

− Mh−1ϕ̇ϕϕ = τττ −Mv̇c − Bv− d−Mh−1ΨΨΨ2. (30)

However, it is difficult to exactly know the parameters of the dynamic model of this WMR such

as mass, moments of inertia, etc. Consequently, it is impossible to precisely describe all expressions

including these quantities. For this reason, let M̂ be an approximation of M. One can rewrite (30)

as follows

− M̂h
−1
ϕ̇ϕϕ = τττ − M̃h

−1
ϕ̇ϕϕ−Mv̇c −Bv− d−Mh−1ΨΨΨ2, (31)

where M̃ = M− M̂.

Remark 3. It should be noted that both M, M̂ are always symmetric, invertible, positive definite

matrices.

Multiplying both of the sides of (31) by −hM̂
−1

yields

ϕ̇ϕϕ = −hM̂
−1
τττ + f (x) + ∆∆∆, (32)

where f (x) = hM̂
−1

(Mv̇c + Bv), and ∆∆∆ = hM̂
−1
(
M̃h

−1
ϕ̇ϕϕ+ d + Mh−1ΨΨΨ2

)
.



80 TINH NGUYEN, HUNG LINH LE

The vector x demanded so as to calculate f (x) can be determined by x =
[

vT v̇T
c

]T
. Clearly,

x can be measured easily.

In (32), f (x) can be approximated by the RBFNN described by (26). Therefore, one can choose

a torque-computing control law as follows

τττ = M̂h
−1
(

Kϕϕϕ+ Γ
ϕϕϕ

‖ϕϕϕ‖
+ f̂

)
(33)

where K is a 2×2 diagonal, constant, positive definite matrix and can be chosen arbitrarily. f̂ is the

output of the RBFNN described by (??) and is an estimation of f (x) in (32). Γ
ϕϕϕ

‖ϕϕϕ‖
is a robust term

which is used to overcome the model uncertainties, unknown external disturbances, and the unknown

wheel slips described by ∆∆∆ in (32). Γ is a positive constant value and can be selected arbitrarily.
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Figure 4. Scheme of control system

Combining (33) and (32) yields:

ϕ̇ϕϕ = −Kϕϕϕ−ΓΓΓ
ϕϕϕ

‖ϕϕϕ‖
+ f̃ (x) + ∆∆∆ (34)

where f̃ (x) = f (x)− f̂ (x) is represented in (27).

Substitution of (27) into (34) makes the filtered tracking error dynamics become

ϕ̇ϕϕ = −Kϕϕϕ−ΓΓΓ
ϕϕϕ

‖ϕϕϕ‖
+ W̃

T
σσσ + εεε+ ∆∆∆ (35)

where W̃ as the weight deviation by W̃ = W− Ŵ.

With such structure of the RBFNN, a suitable tuning rule for the weights should be determined

to train the RBFNN. In this work, let us propose the online weight tuning algorithm for the RBFNN

as follows

˙̂
W = HσσσϕϕϕT (36)

where H is a (L+ 1)× (L+ 1) positive definition constant matrix. H can be chosen arbitrarily.

Assumption 2. It is assumed that ∆∆∆ is bounded. Let b∆ be the upper bound of ∆∆∆. It means that

‖∆∆∆‖ ≤ b∆.
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Theorem 1. Let us consider the WMR subjected to the wheel slips with the dynamics shown
as (20). Let assumptions 1-3 hold. Let us choose the control input as (33) and the scheme of
the whole system as Figure 4. Let us provide the weight tuning algorithm by (36). By doing
this, the filtered tracking error vector ϕϕϕ uniformly ultimately converge to an arbitrarily small
neighborhood of the origin. Moreover, ϕϕϕ can be made be as small as possible by choosing K
and ΓΓΓ to be suitable.

Proof.
Let us define a Lyapunov candidate function as follows

V =
1

2
ϕϕϕTϕϕϕ+

1

2
tr
(
W̃

T
H−1W̃

)
, (37)

where tr(.) is the trace of matrix.

Taking the first derivative with respective to time yields

V̇ = ϕϕϕT ϕ̇ϕϕ+ tr
(
W̃

T
H−1 ˙̃W

)
. (38)

Due to, (38) becomes

V̇ = ϕϕϕT ϕ̇ϕϕ− tr
(
W̃

T
H−1 ˙̂

W
)
. (39)

Substitution of (35) and (36) into (39) results in

V̇ = ϕϕϕT

[
−Kϕϕϕ−ΓΓΓ

ϕϕϕ

‖ϕϕϕ‖
+ W̃

T
σσσ + εεε+ ∆∆∆

]
− tr

[
W̃

T
σσσϕϕϕT

]
. (40)

Due to ϕϕϕTW̃
T
σσσ = tr

(
W̃

T
σσσϕϕϕT

)
, (40) becomes

V̇ = −ϕϕϕTKϕϕϕ−ΓΓΓ ‖ϕϕϕ‖ −ϕϕϕTεεε−ϕϕϕT∆∆∆. (41)

According to Assumption 1, Assumption 2, one can easily obtain the following inequality

V̇ ≤ −‖ϕϕϕ‖ [Kmin ‖ϕϕϕ‖+ ΓΓΓ− bε − b∆] , (42)

where Kmin is the minimum singular value of K.

Observing (42) reveals that V̇ is guaranteed to be negative definiteness as long as the term in

the braces is positive. This term is assured to be positive as long as

Kmin ‖ϕϕϕ‖+ Γ > bε + b∆. (43)

Therefore, applying Lyapunov criteria and LaSalle extension results in that ϕϕϕ is uniformly ulti-

mately bounded in a compact set as follows

U = {ϕϕϕ |Kmin ‖ϕϕϕ‖+ Γ ≤ bε + b∆ } . (44)

It is remarkable to note that both ϕϕϕ can be made be as small as possible by choosing K, and

Γ suitably. Particularly, the bigger K and Γ are, the smaller ϕϕϕ is. This illustrates the uniformly

ultimately bounded property of ϕϕϕ in the sense of Lyapunov and LaSalle extension.

As a result of convergence of ϕϕϕ to an adjustable small neighborhood of the origin, the position

tracking error e in (24) also has converged to an adjustable small neighborhood of the origin.
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Figure 5. The evolutions of wheel slip

4. SIMULATION AND DISCUSSION

To verify the proposed control law, we have implemented a simulation for trajectory tracking of

the WMR whose parameters is shown in Table 1 in the presence of the unknown wheel slips. In the

initial condition, assume that the initial posture of M in the global coordinate system is xM = 0 (m),

yM = 0 (m), and θ = 0.1 (rad). It infers that xP = C= 0.5 (m), yP = 0 (m). Furthermore, we

have made a comparison between the performances of this proposed control and the control method

in [14]. To represent the compensation capability of the proposed control method on the uncertainty

effects, the vector of the both model uncertainties and bounded external disturbances is assumed as

τττd =
[

3 + sin(0.5t), 2.5 + cos (0.4t)
]T

(N.m) and M̂ = 0.7M.

The control parameters were chosen as K = diag([6, 6]), ΛΛΛ = diag([2, 2]). The hidden layer

has 10 neurons. The weight tuning gain was set as H=diag(10)11×11. The initial condition of the

weight matrix was chosen to random numbers in [0, 1] as Ŵ0 = [rand(0, 1)]11×2.

The target (point D) moved with a motion equation described as follows{
xD = 6− 3 cos (0.25t)
yD = −2− 3 sin (0.25t)

(45)

Without loss of generality, assume that the wheel slips between the floor and the driving wheels

have been illustrated as Figure 5.

The computer simulation results were performed by Matlab/Simulink software. Obviously, in

Figures 6 and 7, we can easily see that when the accelerations and velocities of unknown wheel slips

have not been measured and further there existed model uncertainties as well as unknown bounded

disturbances, in comparison with the tracking results and position tracking errors of the feedback

linearization control method in [14], those of the proposed control method are better. In other words,

the performance of the proposed control method is better than that of the feedback linearization

control method.

Figure 8 has shown that the outputs of the RBFNN have been bounded.

It is apparent that the position tracking error vector, e, in (24) has converged to an adjustable

small neighborhood of the origin, so ξ1 has converged to an adjustable small neighborhood of C.
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As a result, according to Remark 2, one can easily conclude that h in (28), (30), (31), and (33) is

invertible.

From these simulation results, we can conclude that the proposed control method has robustness

against the unknown wheel slips, the model uncertainties, and the unknown external disturbances.

Furthermore, all signals in the whole closed-loop system have been bounded.

Table 1. The parameters of the WMR

Symbol Quantity Value

mG The mass of the platform of the WMR 40 (kg)

IG The inertial moment of the platform about the vertical
axis through point G (Fig. 1)

4 (kg.m2)

a The distance between point G and point M (Fig. 1) 0.2 (m)

C The distance between point P and point M (Fig. 2) 0.5 (m)

mW The mass of each wheel 2 (kg)

IW The inertial moment of each wheel about its rotational
axis

0.1 (kg.m2)

ID The inertial moment of each wheel about its diameter
axis

0.05 (kg.m2)

b half-distance between two the wheels 0.3 (m)

r The radius of each wheel 0.15 (m)

5. CONCLUSIONS

In this work, well-known Lagrange formula was employed in order to derive both the kinematics

and dynamics of the nonholonomic WMR in the presence of the unknown wheel slips. Then, the

adaptive tracking controller based on the RBFNN with the online weight tuning algorithm has been

developed to allow the WMR to track the desired trajectory with the desired tracking performance.

The RBFNN functional approximation errors and the effect of the unknown wheel slips have been

dealt with in the same way as the model uncertainties as well as the unknown external disturbances,

since they all have the same influence on the closed-loop system. A priori offline train for the weights

of the RBFNN was not needed since they can be initialized without difficulty. It has been shown that

the convergence of the position tracking errors to an arbitrarily small neighborhood of the origin is

guaranteed by the standard Lyapunov theory and LaSalle extension. The results of Matlab/Simulink

simulation confirmed the effectiveness and advantage of the proposed controller.
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