CONTINUOUS REGULARIZATION METHOD FOR ILL-POSED OPERATOR EQUATIONS OF HAMMERSTEIN TYPE

NGUYEN BUONG¹, DANG THI HAI HA²

¹ Viện Công nghệ thông tin, Viện Khoa học và Công nghệ Việt Nam ² Vietnamese Forestry University, Xuan Mai, Ha Tay

Abstract. The aim of this paper is to study a method of approximating a solution of the operator equation of Hammerstein type $x + F_2F_1(x) = f$ on the base of constructing a system of differential equations of the first order, where F_i , i = 1, 2, are the continuous monotone operators in real Hilbert space H. Then this method is considered in connection with finite-dimensional approximations for H.

Tóm tắt. Mục đích của bài báo là nghiên cứu một phương pháp xấp xỉ nghiệm của phương trình toán từ loại Hammerstein $x + F_2F_1(x) = f$ dựa trên việc xây dựng hệ phương trình vi phân cấp một, ở dây các toán từ F_i , i = 1, 2, là đơn điệu và liên tục trong không gian Hilbert H. Sau đó, phương pháp này được xét liên kết với việc xấp xỉ hữu hạn chiều của H.

1. INTRODUCTION

Let *H* be a real Hilbert space with norm and scalar product denoted by $\|.\|$ and $\langle x^*, x \rangle$, respectively. Let F_i , i = 1, 2, be monotone, in general nonlinear, bounded (i.e. image of any bounded subset is bounded) and continuous operators.

Our main aim of this paper is to study a stable method of finding an approximative solution for the equation of Hammerstein type

$$x + F_2 F_1(x) = f, f \in \mathcal{R}(I + F_2 F_1),$$
 (1.1)

where I and $\mathcal{R}(A)$ denote the identity operator in H and the range of the operator A, respectively. Note that the solution set of (1.1), denoted by S_0 , is closed convex (see [1]).

Usually instead of $F_i, i = 1, 2$, and f we know their monotone continuous approximations F_i^h and f_δ such that

$$||F_1^h(x) - F_1(x)|| \le hg(||x||), ||F_2^h(x) - F_2(x)|| \le hg(||x||) \quad \forall x \in H,$$

^{*}This work was supported by the Vietnamese Fundamental Research Program in Natural Sciences, MS 100506.

where g(t) is a real nonnegative, non-decreasing, bounded function (the image of a bounded set is bounded), and $||f_{\delta} - f|| \leq \delta$. Without additional conditions for the operators F_i such as the strongly monotone property, equation (1.1) is ill-posed. For example, consider the case $H = \mathbf{E}^2$, the Euclidean space, and

$$F_1 = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \quad F_2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}, \quad x = (x_1, x_2).$$

It is easy to verify that $\langle F_1x, x \rangle = x_1^2 \ge 0$, and $\langle F_2x, x \rangle = x_2^2 \ge 0 \forall x \in \mathbf{E}^2$. It means that $F_i, i = 1, 2$, are monotone. Equation (1.1) has the form $0x_1 = f_1$, $2x_1 = f_2$ with $f = (f_1, f_2)$. Obviously, this system of equations has a unique solution when $f = (0, f_2)$ for arbitrary f_2 . When $f_{\delta} = (f_1^{\delta}, f_2)$ with $f_1^{\delta} \ne 0$ equation (1.1) in this case does not have solution. So, equation (1.1) with the monotone operators $F_1, i = 1, 2$, in general is ill-posed.

To solve (1.1) we need use stable methods. One of the those is the operator equation

$$x + F_{2,\alpha}^h F_{1,\alpha}^h(x) = f_\delta \tag{1.2}$$

(see [1], [5]), where $F_{i,\alpha}^h = F_i^h + \alpha I$, $\alpha > 0$ is the small parameter of regularization. For every $\alpha > 0$ equation (1.2) has a unique solution $x_{\alpha}^{h,\delta}$, and the sequence $\{x_{\alpha}^{h,\delta}\}$ converges to a solution x_0 of satisfying

$$|x_0|^2 + ||x_0^*||^2 = \min_{x \in S_0} \left(||x||^2 + ||F_1(x)||^2 \right), x_0^* = F_1(x_0),$$

as $(h+\delta)/\alpha, \alpha \to 0$. Moreover, this solution $x_{\alpha}^{h,\delta}$, for every fixed $\alpha > 0$, depends continuously on $F_i^h, i = 1, 2$ and f_{δ} .

Recently, the use of differential equations for regularizing ill-posed convex optimization and nonlinear monotone problems is intensively investigated (see [6]-[14] and references therein), because by discretiting them one can obtain much different iterative processes. In this paper, this idea is developed for non-monotone, in general, Hammerstein equation, i.e., we find a strong differentiable function $u(t) : [t_0, +\infty) \to H, t_0 \ge 0$, which is a solution of some differential equation such that

$$\lim_{t \to +\infty} u(t) = x_0. \tag{1.3}$$

In Section 2, we give a system of differential equations with the solution u(t), $u^*(t)$ where u(t) satisfies (1.3). The Galerkin approximations $u_n(t)$ for u(t) with the property

$$\lim_{n,t\to+\infty}u_n(t)=x_0,$$

are considered in Section 3.

Above and below, the symbols \rightarrow and \rightarrow denote the weak convergence and convergence in the norm, respectively.

2. THE INFINITE-DIMENSIONAL CONTINUOUS REGULARIZATION

Consider the system of differential equations

$$\frac{du(t)}{dt} + \gamma(t) \left[F_1^{h(t)}(u(t)) + \alpha(t)u(t) - u^*(t) \right] = \theta,
\frac{du^*(t)}{dt} + \gamma(t) \left[F_2^{h(t)}(u^*(t)) + \alpha(t)u^*(t) + u(t) - f(t) \right] = \theta,
u(t_0) = u_0, u^*(t_0) = u_0^*, t \ge t_0 \ge 0,$$
(2.1)

where u_0, u_0^* are the fixed elements in H, θ denotes the zero element, $h = h(t), \alpha = \alpha(t) > 0, t \ge 0, \alpha(t)$ is a convex decreasing differentiable function, $\gamma(t)$ is a nondecreasing positive and differentiable function such that

$$\lim_{t \to +\infty} \alpha(t) = \lim_{t \to +\infty} h(t) = 0,$$

$$\lim_{t \to +\infty} \frac{h(t)}{\alpha(t)} = \lim_{t \to +\infty} \frac{\alpha'(t)}{\alpha^2(t)\gamma(t)} = \lim_{t \to +\infty} \frac{\gamma'(t)}{\alpha(t)\gamma^2(t)} = 0.$$
(2.2)

In order to prove that $\lim_{t\to+\infty} u(t) = x_0$, we study the system of differential equations

$$\frac{dy(t,\tau)}{dt} + \gamma(t) \Big[F_1(y(t,\tau)) + \alpha(\tau)y(t,\tau) - y^*(t,\tau) \Big] = \theta,
\frac{dy^*(t,\tau)}{dt} + \gamma(t) \Big[F_2(y^*(t,\tau)) + \alpha(\tau)y^*(t,\tau) + y(t,\tau) - f \Big] = \theta,
y(t_0,\tau) = u_0, y^*(t_0,\tau) = u_0^*, \forall t \ge t_0$$
(2.3)

depending on the parameter $\tau \ge t_0$.

We have a result.

Theorem 2.1. Assume that the following conditions hold:

(i) problems (2.1) and (2.3) possess solutions in the class $C^1[t_0, +\infty)$ for any $u_0, u_0^* \in H$ with $||u(t)||, ||u^*(t)|| \leq d_1, d_1 > 0, t \geq t_0$.

(ii) the functions $\alpha(t)$, h(t) and $\gamma(t)$ satisfy the above conditions.

Then, $\lim_{\tau \to +\infty} u(\tau) = x_0$.

Proof. Set

$$\tilde{r}(t,\tau) = \tilde{r}_1(t,\tau) + \tilde{r}_2(t,\tau),
\tilde{r}_1(t,\tau) = \|y(t,\tau) - x_\alpha(\tau)\|^2,
\tilde{r}_2(t,\tau) = \|y^*(t,\tau) - x^*_\alpha(\tau)\|^2,$$

where $(x_{\alpha}(\tau), x_{\alpha}^{*}(\tau)), x_{\alpha}^{*}(\tau) = F_{1}(x_{\alpha}(\tau))$, is the unique solution of the system of operator equations

$$F_1(x_\alpha(\tau)) + \alpha(\tau)x_\alpha(\tau) - x_\alpha^*(\tau) = \theta,$$

$$F_2(x_\alpha^*(\tau)) + \alpha(\tau)x_\alpha^*(\tau) + x_\alpha(\tau) - f = \theta,$$
(2.4)

and $\lim_{\tau \to +\infty} x_{\alpha}(\tau) = x_0$ (see [1]). Since F_1 is continuous, then $x_0^* = \lim_{\tau \to +\infty} x_{\alpha}^*(\tau)$. Now, from (2.3) and (2.4) it follows

$$\langle \frac{d(y(t,\tau) - x_{\alpha}(\tau))}{dt}, y(t,\tau) - x_{\alpha}(\tau) \rangle + \gamma(t) \left[\langle F_1(y(t,\tau)) - F_1(x_{\alpha}(\tau)), y(t,\tau) - x_{\alpha}(\tau) \rangle + \alpha(\tau) \tilde{r}_1(t,\tau) + \langle x_{\alpha}^*(\tau) - y^*(t,\tau), y(t,\tau) - x_{\alpha}(\tau) \rangle \right] = 0,$$

$$\langle \frac{d(y^*(t,\tau) - x_{\alpha}^*(\tau))}{dt}, y^*(t,\tau) - x_{\alpha}^*(\tau) \rangle + \gamma(t) \left[\langle F_2(y^*(t,\tau)) - F_2(x_{\alpha}^*(\tau)), y^*(t,\tau) - x_{\alpha}^*(\tau) \rangle + \alpha(\tau) \tilde{r}_2(t,\tau) + \langle y(t,\tau) - x_{\alpha}(\tau), y^*(t,\tau) - x_{\alpha}^*(\tau) \rangle \right] = 0.$$

Substituting the two last equalities and using the relation $\frac{d\|x(t)\|^2}{2\sqrt{dx(t)}} = \frac{1}{2\sqrt{dx(t)}} dx(t)$

$$\frac{d\|x(t)\|^2}{dt} = 2\langle \frac{dx(t)}{dt}, x(t) \rangle$$

and the monotone property of F_i , i = 1, 2, we have got $d\tilde{r}(t, \tau)$

$$\frac{dr(t,\tau)}{dt} + 2\gamma(t)\alpha(\tau)\tilde{r}(t,\tau) \leqslant 0.$$

Hence,

$$\tilde{r}(t,\tau) \leqslant \tilde{r}(t_0,\tau) \exp[-2\alpha(\tau) \int_{t_0}^t \gamma(t) dt], \qquad (2.5)$$

where

$$\tilde{r}(t_0,\tau) = \|y(t_0,\tau) - x_\alpha(\tau)\|^2 + \|y^*(t_0,\tau) - x^*_\alpha(\tau)\|^2$$

$$\leqslant 2[\|y(t_0,\tau)\|^2 + \|x_\alpha(\tau)\|^2 + \|y^*(t_0,\tau)\|^2 + \|x^*_\alpha(\tau)\|^2]$$

$$\leqslant 2[\|u_0\|^2 + \|u^*_0\|^2 + \|x_0\|^2 + \|F_1(x_0)\|^2].$$

Consequently, from (2.2), (2.5) and the properties of $\gamma(t), \alpha(t)$ we can obtain (see [13] for details)

$$\lim_{\tau \to +\infty} \tilde{r}(\tau, \tau) = 0$$

and the boundness of $\{y(t,\tau)\}$ and $\{y^*(t,\tau)\}.$ Therefore,

$$\lim_{\tau \to +\infty} y(\tau, \tau) = x_0,$$

and there exists a positive constant d_2 such that $||y(t,\tau)||, ||y^*(t,\tau)|| \leq d_2$. Further, set

$$\tilde{R}(t,\tau) = \tilde{R}_1(t,\tau) + \tilde{R}_2(t,\tau),$$

$$\tilde{R}_1(t,\tau) = \|u(t) - y(t,\tau)\|^2,$$

$$\tilde{R}_2(t,\tau) = \|u^*(t) - y^*(t,\tau)\|^2.$$

On the base of (2.1) and (2.3) we can write

$$\langle \frac{d(u(t) - y(t, \tau))}{dt}, u(t) - y(t, \tau) \rangle + \gamma(t) \Big[\langle F_1^{h(t)}(u(t)) - F_1(y(t, \tau)), u(t) - y(t, \tau) \rangle \\ u(t) - y(t, \tau) \rangle + \langle \alpha(t)u(t) - \alpha(\tau)y(t, \tau), u(t) - y(t, \tau) \rangle \\ + \langle y^*(t, \tau) - u^*(t), u(t) - y(t, \tau) \rangle \Big] = 0,$$

$$\langle \frac{d(u^*(t) - y^*(t, \tau))}{dt}, u^*(t) - y^*(t, \tau) \rangle + \gamma(t) \Big[\langle F_2^{h(t)}(u^*(t)) - F_2(y^*(t, \tau)), u^*(t) - y^*(t, \tau) \rangle \\ u^*(t) - y^*(t, \tau) \rangle + \langle \alpha(t)u^*(t) - \alpha(\tau)y^*(t, \tau), u^*(t) - y^*(t, \tau) \rangle \\ + \langle u(t) - y(t, \tau), u^*(t) - y^*(t, \tau) \rangle \Big] = 0.$$

Thus,

$$\begin{aligned} \frac{d\tilde{R}(t,\tau)}{dt} + & 2\gamma(t)\alpha(\tau)\tilde{R}(t,\tau) \leqslant \\ & \gamma(t)[h(t)g(||y(t,\tau)||) + |\alpha(t) - \alpha(\tau)|||y(t,\tau)||]||u(t) - y(t,\tau)|| + \\ & \gamma(t)[h(t)g(||y^*(t,\tau)||) + |\alpha(t) - \alpha(\tau)|||y^*(t,\tau)||]||u^*(t) - y^*(t,\tau)||. \end{aligned}$$

Hence,

$$\frac{d\tilde{R}(t,\tau)}{dt} \leq D\gamma(t)[h(t) + |\alpha(t) - \alpha(\tau)|] - 2\tilde{\alpha}(t)\tilde{R}(t,\tau),$$

$$\tilde{\alpha}(t) = \gamma(t)\alpha(\tau), D = 2\max\{g(d_2)(d_1 + d_2), d_2\}.$$

It is not difficult to verify that

102

$$\begin{split} \tilde{R}(\tau,\tau) &\leqslant R_1(\tau) + R_2(\tau) \\ R_1(\tau) &= D \int_{t_0}^{\tau} \gamma(t) h(t) \xi(t) dt / \xi(\tau), \\ R_2(\tau) &= D \int_{t_0}^{\tau} \gamma(t) \alpha'(t) (t-\tau) \xi(t) dt / \xi(\tau), \\ \xi(s) &= exp(\int_{t_0}^s \tilde{\alpha}(t) dt. \end{split}$$

Therefore, $\lim_{t\to+\infty} R_1(\tau) = \lim_{t\to+\infty} R_2(\tau) = 0$. Since $||x_0 - u(\tau)|| \leq ||x_0 - x_\alpha(\tau)|| + ||x_\alpha(\tau) - y(\tau,\tau)|| + ||y(\tau,\tau) - u(\tau)||$, then $\lim_{\tau\to+\infty} u(\tau) = x_0$. Theorem is proved.

Remark. The solution existence of (2.1) or (2.3) is followed from [7], [15] and [16], when $F_i^{h(t)}$ are weakly continuous or Lipschitz continuous for each $t \ge t_0$.

3. FINITE-DIMENSIONAL REGULARIZATION

Consider the system of finite-dimensional problems

$$\frac{du_n(t)}{dt} + \gamma(t) \left[F_{1,n}^{h(t)}(u_n(t)) + \alpha(t)u_n(t) - u_n^*(t) \right] = \theta,
\frac{du_n^*(t)}{dt} + \gamma(t) \left[F_{2,n}^{h(t)}(u_n^*(t)) + \alpha(t)u_n^*(t) + u_n(t) - f_n(t) \right] = \theta,
u_n(t_0) = P_n u_0, u_n^*(t_0) = P_n u_0^*,$$
(3.1)

where $F_{1,n}^{h(t)} = P_n^* F_1^{h(t)} P_n$, $F_{2,n}^{h(t)} = P_n F_2^{h(t)} P_n^*$, $f_n(t) = P_n f(t)$, P_n is a linear projection from H onto its finite-dimensional subspace H_n such that $H_n \subset H_{n+1}$, $P_n x \to x$, as $n \to \infty$ for every $x \in H$, and P_n^* is the dual of P_n with $||P_n|| \leq \tilde{c} = \text{constant}$, for all n, and $u_n(t), u_n^*(t) : [t_0, +\infty) \to H_n$.

To prove

$$\lim_{n,t\to+\infty}u_n(t)=x_0,$$

as in the Section 2, we use the system of finite-dimensional equations

$$\frac{dy_n(t,\tau)}{dt} + \gamma(t) \Big[F_{1,n}(y_n(t,\tau)) + \alpha(\tau)y_n(t,\tau) - y_n^*(t,\tau) \Big] = \theta,
\frac{dy_n^*(t,\tau)}{dt} + \gamma(t) \Big[F_{2,n}(y_n^*(t,\tau)) + \alpha(\tau)y_n^*(t,\tau) + y_n(t,\tau) - f_n \Big] = \theta,
y_n(t_0,\tau) = P_n u_0, y_n^*(t_0,\tau) = P_n u_0^*, \forall t \ge t_0,$$
(3.2)

depending on the parameter $\tau \ge t_0$, where $F_{1,n} = P_n F_1 P_n^*$, $F_{2,n} = P_n^* F_2 P_n$, and $f_n = P_n f$. We have a result.

Theorem 3.1. Assume that the following conditions hold:

(i) problems (3.1) and (3.2) possess solutions in the class $C^1[t_0, +\infty)$ for any $u_0, u_0^* \in H$ with $||u_n(t)||, ||u_n^*(t)|| \leq d_3, d_3 > 0, t \geq t_0$.

(ii) the functions $\alpha(t)$, h(t) and $\gamma(t)$ satisfy the above conditions.

(iii) F_i , i = 1, 2, are Fréchet differentiable with Lipschitz continuous derivatives (common Lipschitz constant L), there exist x^1 and x^2 such that

$$F'_1(x_0)^* x^1 + x^2 = x_0,$$

$$F'_2(x_0^*)^* x^2 - x^1 = x_0^*,$$

 $L \max_{i=1,2} \|x^i\|/2 < 1, and$

$$\lim_{n,\tau\to+\infty}\xi_n/\alpha(\tau)=0,$$

where

$$\xi_n = \max\{\|(I - P_n)x_0\|, \|(I - P_n^*)F_1(x_0)\|, \|(I - P_n)f\|, \|(I - P_n^*)x^1\|, \|(I - P_n)x^2\|\}.$$

Then, $\lim_{n,\tau\to+\infty} u_n(\tau) = x_0.$

Proof. We recall that the finite-dimensional problems

$$x + F_{2,\alpha}^n F_{1,\alpha}^n(x) = f_n, \ x \in H_n,$$

where $F_{2,\alpha}^n = F_{2,n} + \alpha(\tau)I$, $F_{1,\alpha}^n = F_{1,n} + \alpha(\tau)I$, have a unique solution $x_{\alpha,n}(\tau)$. This solution and $x_{\alpha,n}^*(\tau)$ are the solution of the following equations

$$F_{1,n}(x_{\alpha,n}(\tau)) + \alpha(\tau)x_{\alpha,n}(\tau) - x_{\alpha,n}^*(\tau) = \theta,$$

$$F_{2,n}(x_{\alpha,n}^*(\tau)) + \alpha(\tau)x_{\alpha,n}^*(\tau) + x_{\alpha,n}(\tau) - f_n = \theta,$$
(3.3)

and under condition (iii) plus $\lim_{\tau\to+\infty}\alpha(\tau)=0$ we have

$$\lim_{n,\tau\to+\infty} x_{\alpha,n}(\tau) = x_0, \lim_{n,\tau\to+\infty} x_{\alpha,n}^*(\tau) = x_0^*$$

(see [5] or Appendix).

$$\tilde{r}_n(t,\tau) = \tilde{r}_{1,n}(t,\tau) + \tilde{r}_{2,n}(t,\tau),
\tilde{r}_{1,n}(t,\tau) = \|y_n(t,\tau) - x_{\alpha,n}(\tau)\|^2,
\tilde{r}_{2,n}(t,\tau) = \|y_n^*(t,\tau) - x_{\alpha,n}^*(\tau)\|^2.$$

From (3.2) and (3.3) it follows

$$\begin{split} \langle \frac{d(y_n(t,\tau)-x_{\alpha,n}(\tau))}{dt}, y_n(t,\tau)-x_{\alpha,n}(\tau)\rangle + \gamma(t) \Big[\langle F_{1,n}(y_n(t,\tau)) \\ -F_{1,n}(x_{\alpha,n}(\tau)), y_n(t,\tau)-x_{\alpha,n}(\tau)\rangle + \alpha(\tau)\tilde{r}_{1,n}(t,\tau) \\ + \langle x_{\alpha,n}^*(\tau)-y_n^*(t,\tau), y_n(t,\tau)-x_{\alpha,n}(\tau)\rangle \Big] &= 0, \\ \langle \frac{d(y_n^*(t,\tau)-x_{\alpha,n}^*(\tau))}{dt}, y_n^*(t,\tau)-x_{\alpha,n}^*(\tau)\rangle + \gamma(t) \Big[\langle F_{2,n}(y_n^*(t,\tau)) \\ -F_{2,n}(x_{\alpha,n}^*(\tau)), y_n^*(t,\tau)-x_{\alpha,n}^*(\tau)\rangle + \alpha(\tau)\tilde{r}_{2,n}(t,\tau) \\ + \langle x_{\alpha,n}(\tau)-y_n(t,\tau), y_n^*(t,\tau)-x_{\alpha,n}^*(\tau)\rangle \Big] &= 0. \end{split}$$

Therefore,

$$\frac{d\tilde{r}_n(t,\tau)}{dt} + 2\gamma(t)\alpha(\tau)\tilde{r}_n(t,\tau) \leqslant 0.$$

Hence,

$$\tilde{r}_n(t,\tau) \leqslant \tilde{r}_n(t_0,\tau) \exp[-2\alpha(\tau) \int_{t_0}^t \gamma(t) dt]$$

with

104

$$\tilde{r}_{n}(t_{0},\tau) = \|y_{n}(t_{0},\tau) - x_{\alpha,n}(\tau)\|^{2} + \|y_{n}^{*}(t_{0},\tau) - x_{\alpha,n}^{*}(\tau)\|^{2} \\ \leq 2c[\|y(t_{0},\tau)\|^{2} + \|x_{\alpha}(\tau)\|^{2} + \|y^{*}(t_{0},\tau)\|^{2} + \|x_{\alpha}^{*}(\tau)\|^{2}] \\ \leq 2c[\|u_{0}\|^{2} + \|u_{0}^{*}\|^{2} + \|x_{0}\|^{2} + \|F_{1}(x_{0})\|^{2}].$$

Thus,

$$\lim_{n,\tau\to+\infty}\tilde{r}_n(\tau,\tau)=0.$$

Consequently,

$$\lim_{\tau \to +\infty} y_n(\tau, \tau) = x_0,$$

and there exists a positive constant d_4 such that $||y_n(t,\tau)||, ||y_n^*(t,\tau)|| \leq d_4$.

Further, set

$$\tilde{R}_n(t,\tau) = \tilde{R}_{1,n}(t,\tau) + \tilde{R}_{2,n}(t,\tau),$$

$$\tilde{R}_{1,n}(t,\tau) = \|u_n(t) - y_n(t,\tau)\|^2,$$

$$\tilde{R}_{2,n}(t,\tau) = \|u_n^*(t) - y_n^*(t,\tau)\|^2.$$

Then, from (3.1) and (3.3) we obtain the following equalities From (3.2) and (3.3) it follows $d(u, (t) - u, (t, \tau))$

$$\langle \frac{d(u_{n}(t) - y_{n}(t,\tau))}{dt}, u_{n}(t) - y_{n}(t,\tau) \rangle + \gamma(t) \Big[\langle F_{1,n}^{h(t)}(u_{n}(t)) - F_{1,n}(y_{n}(t,\tau)), u_{n}(t,\tau) - y_{n}(t,\tau) \rangle \\ + \langle u_{n}(t) - y_{n}(t,\tau) \rangle + \langle \alpha(t)u_{n}(t) - \alpha(\tau)y_{n}(t,\tau), u_{n}(t) - y_{n}(t,\tau) \rangle \\ + \langle y_{n}^{*}(t,\tau) - u_{n}^{*}(t), u_{n}(t) - y_{n}(t,\tau) \rangle \Big] = 0,$$

$$\langle \frac{d(u_{n}^{*}(t) - y_{n}^{*}(t,\tau))}{dt}, u_{n}^{*}(t) - y_{n}^{*}(t,\tau) \rangle + \gamma(t) \Big[\langle F_{2,n}^{h(t)}(u_{n}^{*}(t)) - F_{2,n}(y_{n}^{*}(t,\tau)), u_{n}^{*}(t) - y_{n}^{*}(t,\tau) \rangle \\ + \langle u_{n}(t) - y_{n}(t,\tau), u_{n}^{*}(t) - y_{n}^{*}(t,\tau) \rangle \Big] = 0.$$

Thus,

$$\begin{aligned} \frac{d\tilde{R}_{n}(t,\tau)}{dt} + & 2\gamma(t)\alpha(\tau)\tilde{R}_{n}(t,\tau) \leqslant \\ & \gamma(t)[h(t)g(\|y_{n}(t,\tau)\|) + |\alpha(t) - \alpha(\tau)|\|y(t,\tau)\|]\|u_{n}(t) - y_{n}(t,\tau)\| + \\ & \gamma(t)[h(t)g(\|y_{n}^{*}(t,\tau)\|) + |\alpha(t) - \alpha(\tau)|\|y_{n}^{*}(t,\tau)\|]\|u_{n}^{*}(t) - y_{n}^{*}(t,\tau)\|. \end{aligned}$$

Hence,

$$\frac{d\tilde{R}_n(t,\tau)}{dt} \leqslant D_1\gamma(t)[h(t) + |\alpha(t) - \alpha(\tau)|] - 2\tilde{\alpha}(t)\tilde{R}_n(t,\tau),$$
$$\tilde{\alpha}(t) = \gamma(t)\alpha(\tau), D_1 = 2\max\{g(d_4)(d_3 + d_4), d_4\}.$$

By the argument as in the proof of the theorem 2.1, we have $\tilde{R}_{-}(\tau,\tau) < R_{-}^{n}(\tau) + R_{-}^{n}(\tau)$

$$R_n(\tau,\tau) \leqslant R_1^n(\tau) + R_2^n(\tau)$$

$$R_1^n(\tau) = D_1 \int_{t_0}^{\tau} \gamma(t)h(t)\xi(t)dt/\xi(\tau),$$

$$R_2^n(\tau) = D_1 \int_{t_0}^{\tau} \gamma(t)\alpha'(t)(t-\tau)\xi(t)dt/\xi(\tau),$$

$$\xi(s) = exp(\int_{t_0}^s \tilde{\alpha}(t)dt.$$

Therefore, $\lim_{n,\tau\to+\infty} R_1^n(\tau) = \lim_{n,\tau\to+\infty} R_2^n(\tau) = 0$. Since

$$||x_0 - u_n(\tau)|| \le ||x_0 - x_{\alpha,n}(\tau)|| + ||x_{\alpha,n}(\tau) - y_n(\tau,\tau)|| + ||y_n(\tau,\tau) - u_n(\tau)||,$$

and $||x_0 - x_{\alpha,n}(\tau)|| \to 0$ is followed from condition (iii) of the theorem (see [5], [6]), then $\lim_{n,\tau\to+\infty} u(\tau) = x_0$. Theorem is proved.

Appendix. If condition (iii) and $\lim_{\tau \to +\infty} \alpha(\tau) = 0$ are satisfied, then $\lim_{n,\tau \to +\infty} x_{\alpha,n}(\tau) = x_0$.

Proof. Set

$$B = \|x_{0,n} - x_{\alpha,n}(\tau)\|^2 + \|x_{0,n}^* - x_{\alpha,n}^*(\tau)\|^2,$$

where $x_{0,n} = P_n x_0$, and $x_{0,n}^* = P_n^* x_0^*$. From (1.1), (3.3), the monotone property of $F_{i,n}$, i = 1, 2, and $x_{0,n} + P_n F_2(x_0^*) = f_n$ it implies that

$$\begin{split} B = & \left\langle x_{0,n}, x_{0,n} - x_{\alpha,n}(\tau) \right\rangle + \left\langle x_{0,n}^{*}, x_{0,n}^{*} - x_{\alpha,n}^{*}(\tau) \right\rangle \\ & + \frac{1}{\alpha(\tau)} \Big[\left\langle x_{\alpha,n}^{*}(\tau) - F_{1,n}(x_{\alpha,n}(\tau)), x_{\alpha,n}(\tau) - x_{0,n} \right\rangle \\ & + \left\langle f_{n} - x_{\alpha,n}(\tau) - F_{2,n}(x_{\alpha,n}^{*}(\tau)), x_{\alpha,n}^{*}(\tau) - x_{0,n}^{*} \right\rangle \Big] \\ = & \left\langle x_{0}, x_{0,n} - x_{\alpha,n}(\tau) \right\rangle + \left\langle x_{0}^{*}, x_{0,n}^{*} - x_{\alpha,n}^{*}(\tau) \right\rangle \\ & + \frac{1}{\alpha(\tau)} \Big[\left\langle x_{\alpha,n}^{*}(\tau) - x_{0,n}^{*} + P_{n}^{*}x_{0}^{*} - F_{1,n}(x_{\alpha,n}(\tau)), x_{\alpha,n}(\tau) - x_{0,n} \right\rangle \\ & + \left\langle x_{0,n} - x_{\alpha,n}(\tau) + P_{n}F_{2}(x_{0}^{*}) - F_{2,n}(x_{\alpha,n}^{*}(\tau)), x_{\alpha,n}^{*}(\tau) - x_{0,n}^{*} \right\rangle \Big] \\ \leqslant & \left\langle x_{0}, x_{0,n} - x_{\alpha,n}(\tau) \right\rangle + \left\langle x_{0}^{*}, x_{0,n}^{*} - x_{\alpha,n}^{*}(\tau) \right\rangle \\ & + \frac{1}{\alpha(\tau)} \Big[\left\langle F_{1}(x_{0}) - F_{1}(x_{0,n}), x_{\alpha,n}(\tau) - x_{0,n} \right\rangle \\ & + \left\langle F_{2}(x_{0}^{*}) - F_{2}(x_{0,n}^{*}), x_{\alpha,n}^{*}(\tau) - x_{0,n}^{*} \right\rangle \Big] \\ \leqslant & \left\langle x_{0}, x_{0,n} - x_{\alpha,n}(\tau) \right\rangle + \left\langle x_{0}^{*}, x_{0,n}^{*} - x_{\alpha,n}^{*}(\tau) \right\rangle \\ & + \frac{\gamma_{n}}{\alpha(\tau)} \Big[C_{1} \| x_{\alpha,n}(\tau) - x_{0,n} \| + C_{2} \| x_{\alpha,n}^{*}(\tau) - x_{0,n}^{*} \| \Big], C_{i} > 0, i = 1, 2. \end{split}$$

Hence, $\{x_{\alpha,n}(\tau)\}$ and $\{x_{\alpha,n}^*(\tau)\}$ are bounded, as $n, \tau \to +\infty$ and $\gamma_n/\alpha(\tau) \to 0$. On the other hand,

$$\begin{split} \left\langle x_0, x_{0,n} - x_{\alpha,n}(\tau) \right\rangle &\leqslant \gamma_n \|x_0\| + \left\langle x_0, x_0 - x_{\alpha,n}(\tau) \right\rangle \\ &\leqslant O(\gamma_n) + \left\langle x^1, F_1(x_0) - F_1(x_{\alpha,n}(\tau)) \right\rangle + \left\langle x^2, x_0 - x_{\alpha,n}(\tau) \right\rangle \\ &\quad + \frac{\tilde{L} \|x^1\|}{2} \|x_{0,n} - x_{\alpha,n}(\tau)\|^2. \end{split}$$

In the similar way, we also have

$$\left\langle x_0^*, x_{0,n}^* - x_{\alpha,n}^*(\tau) \right\rangle \leqslant O(\gamma_n) + \left\langle x^2, F_2(x_0^*) - F_2(x_{\alpha,n}^*(\tau)) \right\rangle - \left\langle x^1, x_0^* - x_{\alpha,n}^*(\tau) \right\rangle$$

$$+ \frac{\tilde{L} ||x^2||}{2} ||x_{0,n}^* - x_{\alpha,n}^*(\tau)||^2.$$

106

Because of

$$\langle x^{1}, F_{1}(x_{0}) - F_{1}(x_{\alpha,n}(\tau)) \rangle = \langle x^{1}, x_{0}^{*} - x_{\alpha,n}^{*}(\tau) \rangle + \langle x^{1}, x_{\alpha,n}^{*}(\tau) - F_{1,n}(x_{\alpha,n}(\tau)) \rangle - \langle (I - P_{n})x^{1}, F_{1}(x_{\alpha,n}(\tau)) \rangle \leq O(\gamma_{n}) + \langle x^{1}, x_{0}^{*} - x_{\alpha,n}^{*}(\tau) \rangle + \alpha(\tau) ||x^{1}|| ||x_{\alpha,n}(\tau)||, \langle x^{2}, F_{2}(x_{0}^{*}) - F_{2}(x_{\alpha,n}^{*}(\tau)) \rangle = \langle x^{2}, -x_{0} + x_{\alpha,n}(\tau) \rangle + \langle x^{2}, f - f_{n} \rangle + \langle x^{2}, f_{n} - x_{\alpha,n}(\tau) - F_{2,n}(x_{\alpha,n}^{*}(\tau)) \rangle - \langle (I - P_{n}^{*})x^{2}, F_{2}(x_{\alpha,n}^{*}(\tau)) \rangle \leq O(\gamma_{n}) - \langle x^{2}, x_{0} - x_{\alpha,n}(\tau) \rangle + \alpha(\tau) ||x^{2}|| ||x_{\alpha,n}^{*}(\tau)||,$$

we obtain

$$(1 - \frac{L \|x^1\|}{2}) \|x_{\alpha,n}(\tau) - x_{0,n}\|^2 \leq (1 - \frac{L \|x^1\|}{2}) \|x_{\alpha,n}(\tau) - x_{0,n}\|^2 + (1 - \frac{L \|x^2\|}{2}) \|x_{\alpha,n}^*(\tau) - x_{0,n}^*\|^2 \leq O((\gamma_n + \alpha(\tau) + \gamma_n/\alpha(\tau)).$$

Hence,

$$\lim_{n,\tau \to +\infty} x_{\alpha,n}(\tau) = x_0,$$
$$\lim_{n,\tau \to +\infty} x_{\alpha,n}^*(\tau) = x_0^*.$$

REFERENCES

- [1] Nguyen Buong, On solutions of the equations of Hammerstein type in Banach spaces, *Zh. Vychisl. Matematiki i Matem. Fiziki* **25** (1985) 1256–1280 (in Russian).
- [2] Nguyen Buong, On solution of Hammerstein's equation with monotone perturbations, Vietnamese Math. Journal 3 (1985) 28–32 (in Vietnamese).
- [3] Nguyen Buong, Convergence rates in regularization for Hammerstein equations, Zh. Vychisl. Matematiki i Matem. Fiziki **39** (1999) 3–7.
- [4] Nguyen Buong, Convergence rates in regularization for the case of monotone perturbations, Ukrainian Math. Zh. 52 (2000) 285–293.
- [5] Nguyen Buong, Solution of the Hammerstein equations under non-monotone perturbations, New Zealand J. of Math. 33 (2004) 1–11.
- [6] A.S. Antipin, Minimization of convex functions on convex sets by mean of differential equations, *Differential Equations, Belorussian* **30** C (1994) 1365–1375 (in Russian).
- [7] J. Botle, Continuous gradient projection method in Hilbert spaces, J. Optim. Theory and Appl. 119 (2003) 235–259.
- [8] A. G. Ramm, Dynamical systems method for ill-posed equations with monotone operators, J. Math. Anal. Appl. 258 (2001) 448–456.
- [9] A.G.Ramm, Global convergence for ill-posed equations with monotone operator: the dynamical systems method, J.Phys. A,36 (2003) L248–L254.
- [10] A.G. Ramm, Dynamical systems method for solving nonlinear operator equations, Int. J. Appl. Math. Sci. 1 (2004) 97–110.
- [11] A. G. Ramm, Dynamical systems method (DSM) for nonlinear equation in Banach spaces, Proc. AMS. 134 (2006) 1059–1063.

- [12] I. P. Ryazantseva, On several mehtods of continuous regularization for monotone equations, Zh. Vychisl. Matematiki i Matem. Fiziki 24C (1994) 1572–1576 (in Russian).
- [13] I. P. Ryazantseva, A first order continuous regularization method for monotone variational inequalities in Banach spaces, *Differential Equations, Belorussian* **39C** (2003) 113–117 (in Russian).
- [14] I. P. Ryazantseva, A first order continuous and iterative methods with generalized projector for monotone variational inequalities, Zh. Vychisl. Matematiki i Matem. Fiziki 45C (2005) 400–410 (in Russian).
- [15] W.E. Fitzgibbon, Weak continuous accretive operators, Bull. AMS. 79 (1973) 473–474.
- [16] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 4 (1967) 508–520.

Received on October 24 - 2006