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CONTINUOUS REGULARIZATION METHOD
FOR ILL-POSED OPERATOR EQUATIONS OF HAMMERSTEIN TYPE
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2Vietnamese Forestry University, Xuan Mai, Ha Tay

Abstract. The aim of this paper is to study a method of approximating a solution of the operator
equation of Hammerstein type x + FoF}(x) = f on the base of constructing a system of differential
equations of the first order, where Fj, 7 = 1, 2, are the continuous monotone operators in real Hilbert
space H. Then this method is considered in connection with finite-dimentional approximations for

H.

Tém tat. Muc dich cia bai bdo 13 nghién cttu mét phurong phap xap xi nghiém cia phwong trinh
toan tir loai Hammerstein « + FoFy(x) = f duya trén viéc xay dung hé phuwong trinh vi phan cap
mot, & day céc todn tir F;, ¢ = 1,2, 1a don diéu va lién tuc trong khong gian Hilbert H. Sau dd,
phuwong phap ndy dwoc xét lién két véi viée xdp xi hiru han chiéu cda H.

1. INTRODUCTION

Let H be a real Hilbert space with norm and scalar product denoted by ||.|| and <:E*, :U>7
respectively. Let Fj,i = 1,2, be monotone, in general nonlinear, bounded (i.e. image of any
bounded subset is bounded) and continuous operators.

Our main aim of this paper is to study a stable method of finding an approximative solution
for the equation of Hammerstein type

:L'—|—F2F1(£L') =f f € R(I+F2F1), (1.1)

where I and R(A) denote the identity operator in H and the range of the operator A, respec-
tively. Note that the solution set of (1.1), denoted by Sy, is closed convex (see [1]).

Usually instead of F;, ¢ = 1,2, and f we know their monotone continuous approximations
Fz-h and fs such that

1FY (2) — Fi(x)

IF3 () — Bx(@)]| < hg(lll) vz € H,
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where g(t) is a real nonnegative, non-decreasing, bounded function (the image of a bounded
set is bounded), and || f5 — f|| < 6. Without additional conditions for the operators F; such
as the strongly monotone property, equation (1.1) is ill-posed. For example, consider the case
H = E?, the Euclidean space, and

1 -1
1 0

0 -1

F1: ; F2: 1 1]7 $:($17$2)'

It is easy to verify that (Fiz,z) = 22 > 0, and (Fyz,x) = 23 > OVz € E2. It means that
F;,i= 1,2, are monotone. Equation (1.1) has the form Ox1 = f1, 2z1 = fo with f = (f1, fo2).
Obviously, this system of equations has a unique solution when f = (0, f3) for arbitrary fo.
When f5 = (f7, f2) with f{ # 0 equation (1.1) in this case does not have solution. So,
equation (1.1) with the monotone operators Fi,i = 1,2, in general is ill-posed.

To solve (1.1) we need use stable methods. One of the those is the operator equation

$+F£aF{fa(m) = fs (1.2)

(see [1], [5]), where Fiffa = F!' + al, a > 0 is the small parameter of regularization. For

every a > 0 equation (1.2) has a unique solution :UZ’57 and the sequence {:L'Z’é} converges to a
solution xg of satisfying

ol + llzgl1? = min (1lall? + |Fi@) ), o = Fizo)
TESH

as (h+0)/a,a — 0. Moreover, this solution :UZ’57 for every fixed a > 0, depends continuously
on Fih,i =1,2 and f;.

Recently, the use of differential equations for regularizing ill-posed convex optimization and
nonlinear monotone problems is intensively investigated (see [6]-[14] and references therein),
because by discretiting them one can obtain much different iterative processes. In this paper,
this idea is developed for non-monotone, in general, Hammerstein equation, i.e., we find a
strong differentiable function u(t) : [to, +00) — H,tp > 0, which is a solution of some differetial
equation such that

lim wu(t) = xo. (1.3)

t——+o0
In Section 2, we give a system of differential equations with the solution w(t), w*(t) where u(t)
satisfies (1.3). The Galerkin approximations uy,(t) for u(¢) with the property

n,tligli-oo tn (t) - o

are considered in Section 3.
Above and below, the symbols — and — denote the weak convergence and convergence in
the norm, respectively.

2. THE INFINITE-DIMENSIONAL CONTINUOUS REGULARIZATION

Consider the system of differential equations

dz—? + () |:F1h(t) (u(t)) + o(t)u(t) — u*(t)} — 9,
du;# +7(t) [th&) (u* (1)) + a(t)u* () + u(t) — f(t)} _ 9, (2.1)

u(t(]) = u07U*(t0) = uzk]vt =t 2 07
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where ug, uf are the fixed elements in H, § denotes the zero element, h = h(t), a = a(t) >
0,t > 0, a(t) is a convex decreasing differentiable function, y(t) is a nondecreasing positive
and differentiable function such that

tlg-noo Oé(t) o l}inoo h( )
lim w = lim ﬂ — lim ﬂ _ (2'2)
oo alt)  t—teoa2(D)y(E) oo a(t)2(D)

In order to prove that lim_, o u(t) = 2, we study the system of differential equations

dyg/f?; 2 +7(t) [Fl(y(tv 7))+ a(r)y(t, 7) — y* (L, 7-)} — 9,
% + (1) [Fz(y*(t, )+ alr)y*(t,7) + y(t, 7) — f} _9, (2.3)

y(to, 7) = uo, y" (to, 7) = ug, Vt > to
depending on the parameter 7 > #g.
We have a result.

Theorem 2.1. Assume that the following conditions hold:

(i) problems (2.1) and (2.3) possess solutions in the class Ct[ty, +00) for any ug,uf € H
with ||u(t)]], [ (t)]| < di,d1 > 0,t >t

(it) the functions a(t), h(t) and v(t) satisfy the above conditions.

Then, lim; o u(T) = xg.

Proof. Set
7(t, 7) = 71(t, 7) + 72(t, 7),
it 7) = |ly(t, 7) — za(7)|?,
ma(t, ) = Iy (8, 7) — 25 ()|,
where (xq(7),25(7)),25(7) = Fi(z4(7)), is the unique solution of the system of operator

equations
Fi(2a(7)) + a(T)x0(T) — 25(T) =6,
Fy(2a(7)) + alm)ag (1) + 2a(r) = f =0,
and lim; o zo(7) = zo (see [1]). Since Fj is continuous, then z§ = lim,_ 4 2} (7). Now,

from (2.3) and (2.4) it follows
t

<d(y( ,T)dt Ta(T)) y(t,7) — za(T)) + (1) [(Fl(y(t, 7)) — Fi(za(T)),

y(t,7) = 2a(7)) + a(T)r1(t, 7) + (2 () = y* (¢, 7), y(t, 7) = l’a(7)>} =0,

(AT 220 (1) — g () 40 (Bt 0, 7)) — Bata (),

Y (t,7) — (1) + aT)alt,7) + {y(t, ) — (7). (0, 7) — 7(7))] = 0.
Substituting the two last equalities and using the relation

e _,, de(t)
dt = dt (t))

and the monotone property of F;, i = 1,2, we have got

L) 4 aritr) <0

(2.4)
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Hence,

7(t,7) < 7(to, 7) exp[—2a(7‘)/t ~(t)dt], (2.5)

where - " *
(to, ) = lly(to, 7) — za(T) > + lly* (to, 7) — 25(7) |17

< 2[ly(to, DI + lwa (™I + lly* (to, DI + l25(7)]I7]
< 2[luol® + lugll® + llzoll* + (171 (x0) %]

Consequently, from (2.2), (2.5) and the properties of v(t), a(t) we can obtain (see [13] for
details)

TEI—‘POO 7(1,7) =0

and the boundness of {y(t,7)} and {y*(¢,7)}. Therefore,

lim y(7,7) = o,
T—+00

and there exists a positive constant dy such that [|y(¢, 7)), [y*(t, 7)|| < da. Further, set
R(t,7) = Ri(t,7) + Ra(t,7),
Ra(t,7) = luft) —y(t,7)|”,
Rolt,7) = I (1) — ' (1, 7)1
On the base of (2.1) and (2.3) we can write
@O 1)yt )+ 40 [(FO(0) ~ Fio(t. 7))
u(t) = (6, 7) + altult) — a(y(t,7), u(t) ~ y(t,7)
' (8, 7) = ' (), u(t) — y(t.7)] = 0.
(A TED) ) — (1) + 40 [ 1) ~ By (1.7),
(1) (7)) + (@D (1) — ey (1, 7), () — 7 (1 7))
H(ut)=y(t,7),u () — ¥ (7)) | = 0.

Thus, ~

dRS;’ ") Lo (ta(r) R(t, 7) <
HOM (e 7))+ 1a(t) — o)yt Ihet) — 50, 7l +
SO (6 7)) + o) o)l () (1) —y* (¢, ).
Hence,
BT < D) [h(1) + atr) — a(r)l] — 2a(1) (1, 7),

a(t) = y(t)a(r), D = 2max{g(dz)(di + d), da}.

It is not difficult to verify that
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R(7,7) < Ry(7) + Ra(7)

Ri(r) =D [ ~(O)h(t)E(E)dE/E(T),

Ry(r) =D tT ()l (B)(t — T)E(E)dt/E(),
&(s) = e:np(/tS a(t)dt.

Therefore, limy 400 R1(7) = limy_ 400 Ra(7) = 0. Since ||zg — u(7)]| < ||zo — zal7)|| +
|lxa(T) —y(m, )| + ||ly(7, 7) — w(7T)]|, then lim,_ 4 u(7T) = xg. Theorem is proved.

Remark. The solution existence of (2.1) or (2.3) is followed from [7], [15] and [16], when

Fih(t) are weakly continuous or Lipschitz continuous for each t > tg.

3. FINITE-DIMENSIONAL REGULARIZATION

Consider the system of finite-dimensional problems

du;t(t) +(t) [Flhgf) (Un(t)) + a(t)un (t) — u;(t)} _ 9,

WD) 4o 0) [ @) + a8+ unt) — Ful)] =6

un(to) = P,uyg, u;(tg) = Pnug,

(3.1)

where Flhgf) = P;:Flh(t)Pn, F;S) = Panh(t)P;Lk7 fu(t) = Pof(t), P, is a linear projection from

H onto its finite-dimensional subspace H,, such that H, C Hypy1, Pox — x, as n — oo for

every x € H, and P} is the dual of P, with ||P,|| < & = constant, for all n, and w,(t), u}(t) :

[to, —{-OO) — Hn
To prove

n,tli{{li-oo tn (t) - o

as in the Section 2, we use the system of finite-dimensional equations

dy"é%ﬂ +7(1) [Fl,n(yn(t, ) 4 a(T)yn(t, 7) — yi(t, 7.)} — 9,
dy;;%ﬂ +7(t) [Fz,n(y;i(t, ) 4 alm) it 7) + ynlt, T) — fn} _9, (3.2)

yn(t(]vT) = PnU(],y:;(t(],T) = Pnuzk]a\v/t = to,

depending on the parameter 7 > to, where Fy , = P, 1P, Fb ,, = P, 2P, and f,, = P, f.
We have a result.

Theorem 3.1. Assume that the following conditions hold:

(i) problems (3.1) and (3.2) possess solutions in the class C*[tg, +00) for any ug,uly € H
with [Juy ()], |Jui(t)]] < ds,ds > 0,t > tg.

(it) the functions a(t), h(t) and v(t) satisfy the above conditions.

(iti) F;,i = 1,2, are Fréchet differentiable with Lipschitz continuous derivatives ( common
Lipschitz constant L), there exist x' and x? such that
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F{(ZL'())*$1 —|—$2 = 29,

Fj(a3)"a® — 2" =

Lmax;—1 9 ||7']|/2 < 1, and
lim &,/a(r) =0,

n,T—-+00

where

&n = max{||(I — Pu)aoll, (1 = Py)Fi(zo)ll, I(1 = Pu) Il (= B)at |l (2 — Pa)a®|I}-

Then, limy, ;4o Uy (T) = x0.
Proof. We recall that the finite-dimensional problems

v+ Y (%) = fo, T € Hy,

where I3, = Fy, + (7)1, FT', = F1, + (1), have a unique solution x4 (7). This solution
and z, ,(7) are the solution of the follwing equations
Fin(2a,n(7)) + (7)2an(T) = 24, (1) = 0,

Fon(@ (7)) + 0()n(7) + Tan(7) — fu = b, 3.3)

and under condition (iii) plus lim,_ 4~ a(7) = 0 we have

lim fEa,n(T) = To, lim ‘/EZ n(T) = Zy
n,T—+400 n,7—+o0

(see [5] or Appendix).
Set Tn(t, T) = T1n(t, ) + Ton(t, 7),
Pt 7) = [yn(t, 7) = Tan(T)II?,
Fon(t, 7) = [y (8, 7) — 28 (7).

From (3.2) and (3.3) it follows
<d(yn(tv 7_) - $a,n(7—))
dt

Un(t,7) = Tan(7) + YO | (Fin(yn(t,7))
—F10(Tan(7)), yn(t, 7) — Tan (7)) + a(T)FLn(t, 7)
 (@hn(T) = a6 7), Yn(t7) = an(7))] = 0,

<d(y;i(t, 7) — 2an(T))
dt

() = () + 9 (0)[(Fon(yi(t,7)
o (@ (7)), 9t 7) = (7)) + 7)ot 7)
+ (Tan(T) = ynt: 7), ys(t7) = (7)] = 0.

Therefore, drp(t, )

7 + 2y (t)a(T)Tp(t, 7) < 0.

Hence, t
Tn(t, ) < 7p(to, 7) exp[—2a(7‘)/ ~(t)dt]

to

with
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Pu(to, 7) = [y (to, ) = 2an(T)|* + llyn (o, 7) = 25 (7)I?
< 2¢[lly(to, )P + lza(m)II* + ly* (to, 7)II* + i (7))
< 2¢[lfuol|* + llugll* + lloll* + | F1 (o) |I°]-

Thus, lim 7,(r,7)=0.

n,T—-+00

Consequently,
Jlim (7, 7) = o,

and there exists a positive constant dy such that ||y, (¢, 7)||, ||lvi (¢, 7)]| < da.
Further, set

(t,T) Rln(t T)+R2n(t 7’)
Rl n(ta 7_) Hun( ) - yn(tv 7_)||27
Ra(t,7) = llup(8) — yn(t, 7).

Then, from (3.1) and (3.3) we obtain the following equalities From (3.2) and (3.3) it follows
(A0 ETD) 1) — gt ) 4 (0) (LD (0 (8) — Fraont ),
un(t) = yn(t, 7)) + (a()un(t) — a(T)yn(t, 7), un(t) — yn(t, 7))

(7 (8 7) = (6), un(t) = yalt, 7] =0,

(O IaOT) 1) g1, 7) 440 [(FO (s (8) — o (t.7))

dt T
U (t) = yn(t, 7)) + {a(O)uyn(t) — a(T)yn (8, 7), un(t) — yn(t, 7))

() =yn(t, ), () — yi (t, T)>} —0.

Thus, R
"d(f D Loy (ta(r) Rult, 7) <
(@) [h()gllyn(t, TI) + la(t) — a(m)[lly (&, 7)Ilun(t) — ya(t, 7)) +
Y@ [P g [y, T + ) — alm)|lyn (&, D] lup (8) — vy (& 7]
Hence,
dRy,(t,7)

o S Pry0[h() +a(t) — a(r)l] - 2a(t t) R (t, 7),
a(t) = y(t)a(r), D1 = 2max{g(ds)(ds + d1), ds}.

By the argument as in the proof of the theorem 2.1, we have
Ry (7,7) < RY(7) + Ry(7)

Ri(r) = Dy / A (OREWLE(T),
Ri(r) = Dy / (O ()t — TIE()dE/E(r),
&(s) = e:np(/tS a(t)dt.
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Therefore, limy, 400 R (7) = limy, 7400 R5(7) = 0. Since
[0 = un(T)|| < ll20 = Zan (T + [|2a.n(T) = yn (T, T + lyn (7, 7) — un (7)),
and ||zg — Zan(7)|] — 0 is followed from condition (iii) of the theorem (see [5], [6]), then

limy, ;400 u(T) = . Theorem is proved.

Appendix. If condition (iii) and lim,_, ;o a(7) = 0 are satisfied, then limy, 4o T n(T) =
Q.
Proof. Set

B = [|lzo,n = Taun(T)II* + |25 — 26 (D%,

where xg , = P70, and x5, = Pyzg. From (1.1), (3.3), the monotone property of Fj ,,i = 1, 2,
and zg , + PpF>(z() = fy, it implies that

B :<$O,na Lon — $a,n(7—)> + <$8,n7 ‘/Ezk],n - 1’27n(7')>

1

m |:<$Z,n(7—) - Fl,n(l'a,n(T))a l'a,n(T) - $O,n>

+ (o = Tan(r) = Fonl@h n(r)s Th.n(r) = 60|
:<5E07 Zon — $a,n(7)> + <‘/E87 ‘/I"Ek],n - $Z,n(7)>

1 * * kLK
+ iy (a7 = s P = Fin(an(7)), Zan(r) = 2on)

+ (@0 = Tan(r) + PaFa(a}) = Fon(wh (7)), () = 25.0)]

<<5E07 Ton — $a,n(7)> + <‘/E87 ‘/Ezk],n - $Z,n(7)>
1

+ a(r) [<F1(170) = Fi(2o), Tan(T) = Tom)

+ (Fa(w§) = Fa(wh ), wan(r) = 76|
<<$07 ZTon — $a,n(7—)> + <$87 $8,n - $Z,n(7—)>

+ a5 [Cullzan() = zoall + oot u(7) = .|, Ci > 0.6 = 1,2

Hence, {%q,,(7)} and {z}, ,(7)} are bounded, as n, 7 — 400 and v, /(1) — 0.
On the other hand,

<$07 Lon — $a,n(7—)> < '7n||$0|| + <$07 €Ty — $a,n(7—)>
<O(7n) + <51717 Fi(zo) — F1($a,n(7)> + <$2a Ty — $a,n(7)>
L Ll
2

0.0 — Zan (7)II*.

In the similar way, we also have

(@5 %5, — Tan(7)) SO(n) + (2, Fa(25) — Fa(2n(7))) — (21, 25 — 25,(7))

Ljja?|
5 1760 = 25 (DI

+
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Because of

<£U1, Fi(xo) — Fl(:na7n(7'))> = <£B1, xh — mzn(7)>
+ <$17 mz,n(T) - Fl,n($a,n(7'))> - <(I - Pn)mla F1($a,n(7'))>
< O(yn) + (ot af — 25, (1)) + a(m) |2 | |zan ()],
<£L'2, Fa(x5) — Fg(mzn(T))> = <:E2, —x0 + iL'a7n(7')> + <:E2, f— fn>
+ (@, fo = Tan(T) = Fon(ah,u(1)) = ((I = Py)a®, Fa(x (7))
< O(ym) = (2% 20 = Tan(1)) + a(m) 2?25 (D],

we obtain . .
(- fagnr) — ol < (10 = HE D ) — 2
4 (1= o (1) = a2 < O((3+ () + 70/0(7).
Hence,
nﬁh_{r_li_oofna,n(ﬂ = Xo,
nTILIriOO$Zn(T) = x;.
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