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Abstract. The aim of this paper is to study a method of approximating a solution of the operator

equation of Hammerstein type x + F2F1(x) = f on the base of constructing a system of differential

equations of the first order, where Fi, i = 1, 2, are the continuous monotone operators in real Hilbert

space H . Then this method is considered in connection with finite-dimentional approximations for

H .

Tóm tắt. Mu.c d́ıch cu’a bài báo là nghiên cú.u mô.t phu.o.ng pháp xấp xı’ nghiê.m cu’a phu.o.ng tr̀ınh

toán tu.’ loa.i Hammerstein x + F2F1(x) = f du.. a trên viê.c xây du.. ng hê. phu.o.ng tr̀ınh vi phân cấp

mô.t, o.’ dây các toán tu.’ Fi, i = 1, 2, là do.n diê.u và liên tu. c trong không gian Hilbert H . Sau dó,

phu.o.ng pháp này du.o.. c xét liên kết vó.i viê.c xấp xı’ hũ.u ha.n chiè̂u cu’a H.

1. INTRODUCTION

Let H be a real Hilbert space with norm and scalar product denoted by ‖.‖ and
〈

x∗, x
〉

,
respectively. Let Fi, i = 1, 2, be monotone, in general nonlinear, bounded (i.e. image of any
bounded subset is bounded) and continuous operators.

Our main aim of this paper is to study a stable method of finding an approximative solution
for the equation of Hammerstein type

x + F2F1(x) = f, f ∈ R(I + F2F1), (1.1)

where I and R(A) denote the identity operator in H and the range of the operator A, respec-
tively. Note that the solution set of (1.1), denoted by S0, is closed convex (see [1]).

Usually instead of Fi, i = 1, 2, and f we know their monotone continuous approximations
Fh

i and fδ such that

‖Fh
1 (x)− F1(x)‖ 6 hg(‖x‖),

‖Fh
2 (x)− F2(x)‖ 6 hg(‖x‖) ∀x ∈ H,
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where g(t) is a real nonnegative, non-decreasing, bounded function (the image of a bounded
set is bounded), and ‖fδ − f‖ 6 δ. Without additional conditions for the operators Fi such
as the strongly monotone property, equation (1.1) is ill-posed. For example, consider the case
H = E2, the Euclidean space, and

F1 =

[

1 −1
1 0

]

, F2 =

[

0 −1
1 1

]

, x = (x1, x2).

It is easy to verify that 〈F1x, x〉 = x2
1 > 0, and 〈F2x, x〉 = x2

2 > 0∀x ∈ E2. It means that
Fi, i = 1, 2, are monotone. Equation (1.1) has the form 0x1 = f1, 2x1 = f2 with f = (f1, f2).
Obviously, this system of equations has a unique solution when f = (0, f2) for arbitrary f2.
When fδ = (f δ

1 , f2) with f δ
1 6= 0 equation (1.1) in this case does not have solution. So,

equation (1.1) with the monotone operators F1, i = 1, 2, in general is ill-posed.
To solve (1.1) we need use stable methods. One of the those is the operator equation

x + Fh
2,αFh

1,α(x) = fδ (1.2)

(see [1], [5]), where Fh
i,α = Fh

i + αI , α > 0 is the small parameter of regularization. For

every α > 0 equation (1.2) has a unique solution xh,δ
α , and the sequence {xh,δ

α } converges to a
solution x0 of satisfying

‖x0‖
2 + ‖x∗

0‖
2 = min

x∈S0

(

‖x‖2 + ‖F1(x)‖2
)

, x∗

0 = F1(x0),

as (h+ δ)/α, α → 0. Moreover, this solution xh,δ
α , for every fixed α > 0, depends continuously

on Fh
i , i = 1, 2 and fδ.

Recently, the use of differential equations for regularizing ill-posed convex optimization and
nonlinear monotone problems is intensively investigated (see [6]-[14] and references therein),
because by discretiting them one can obtain much different iterative processes. In this paper,
this idea is developed for non-monotone, in general, Hammerstein equation, i.e., we find a
strong differentiable function u(t) : [t0, +∞) → H, t0 > 0, which is a solution of some differetial
equation such that

lim
t→+∞

u(t) = x0. (1.3)

In Section 2, we give a system of differential equations with the solution u(t), u∗(t) where u(t)

satisfies (1.3). The Galerkin approximations un(t) for u(t) with the property

lim
n,t→+∞

un(t) = x0,

are considered in Section 3.
Above and below, the symbols ⇀ and → denote the weak convergence and convergence in

the norm, respectively.

2. THE INFINITE-DIMENSIONAL CONTINUOUS REGULARIZATION

Consider the system of differential equations
du(t)

dt
+ γ(t)

[

F
h(t)
1 (u(t)) + α(t)u(t) − u∗(t)

]

= θ,

du∗(t)

dt
+ γ(t)

[

F
h(t)
2 (u∗(t)) + α(t)u∗(t) + u(t) − f(t)

]

= θ,

u(t0) = u0, u
∗(t0) = u∗

0, t > t0 > 0,

(2.1)
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where u0, u
∗

0 are the fixed elements in H , θ denotes the zero element, h = h(t), α = α(t) >

0, t > 0, α(t) is a convex decreasing differentiable function, γ(t) is a nondecreasing positive
and differentiable function such that

lim
t→+∞

α(t) = lim
t→+∞

h(t) = 0,

lim
t→+∞

h(t)

α(t)
= lim

t→+∞

α′(t)

α2(t)γ(t)
= lim

t→+∞

γ ′(t)

α(t)γ2(t)
= 0.

(2.2)

In order to prove that limt→+∞ u(t) = x0, we study the system of differential equations
dy(t, τ)

dt
+ γ(t)

[

F1(y(t, τ)) + α(τ)y(t, τ)− y∗(t, τ)
]

= θ,

dy∗(t, τ)

dt
+ γ(t)

[

F2(y
∗(t, τ)) + α(τ)y∗(t, τ) + y(t, τ)− f

]

= θ,

y(t0, τ) = u0, y
∗(t0, τ) = u∗

0, ∀t > t0

(2.3)

depending on the parameter τ > t0.
We have a result.

Theorem 2.1. Assume that the following conditions hold:
(i) problems (2.1) and (2.3) possess solutions in the class C1[t0, +∞) for any u0, u

∗

0 ∈ H

with ‖u(t)‖, ‖u∗(t)‖ 6 d1, d1 > 0, t > t0.
(ii) the functions α(t), h(t) and γ(t) satisfy the above conditions.
Then, limτ→+∞ u(τ) = x0.

Proof. Set
r̃(t, τ) = r̃1(t, τ) + r̃2(t, τ),

r̃1(t, τ) = ‖y(t, τ)− xα(τ)‖2,

r̃2(t, τ) = ‖y∗(t, τ)− x∗

α(τ)‖2,

where (xα(τ), x∗

α(τ)), x∗

α(τ) = F1(xα(τ)), is the unique solution of the system of operator
equations

F1(xα(τ)) + α(τ)xα(τ) − x∗

α(τ) = θ,

F2(x
∗

α(τ)) + α(τ)x∗

α(τ) + xα(τ)− f = θ,
(2.4)

and limτ→+∞ xα(τ) = x0 (see [1]). Since F1 is continuous, then x∗

0 = limτ→+∞ x∗

α(τ). Now,
from (2.3) and (2.4) it follows

〈
d(y(t, τ)− xα(τ))

dt
, y(t, τ)− xα(τ)〉+ γ(t)

[

〈F1(y(t, τ))− F1(xα(τ)),

y(t, τ)− xα(τ)〉+ α(τ)r̃1(t, τ) + 〈x∗

α(τ)− y∗(t, τ), y(t, τ)− xα(τ)〉
]

= 0,

〈
d(y∗(t, τ)− x∗

α(τ))

dt
, y∗(t, τ)− x∗

α(τ)〉+ γ(t)
[

〈F2(y
∗(t, τ))− F2(x

∗

α(τ)),

y∗(t, τ)− x∗

α(τ)〉+ α(τ)r̃2(t, τ) + 〈y(t, τ) − xα(τ), y∗(t, τ)− x∗

α(τ)〉
]

= 0.

Substituting the two last equalities and using the relation
d‖x(t)‖2

dt
= 2〈

dx(t)

dt
, x(t)〉

and the monotone property of Fi, i = 1, 2, we have got
dr̃(t, τ)

dt
+ 2γ(t)α(τ)r̃(t, τ) 6 0.
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Hence,
r̃(t, τ) 6 r̃(t0, τ) exp[−2α(τ)

∫ t

t0

γ(t)dt], (2.5)

where
r̃(t0, τ) = ‖y(t0, τ)− xα(τ)‖2 + ‖y∗(t0, τ)− x∗

α(τ)‖2

6 2[‖y(t0, τ)‖2 + ‖xα(τ)‖2 + ‖y∗(t0, τ)‖2 + ‖x∗

α(τ)‖2]

6 2[‖u0‖
2 + ‖u∗

0‖
2 + ‖x0‖

2 + ‖F1(x0)‖
2].

Consequently, from (2.2), (2.5) and the properties of γ(t), α(t) we can obtain (see [13] for
details)

lim
τ→+∞

r̃(τ, τ) = 0

and the boundness of {y(t, τ)} and {y∗(t, τ)}. Therefore,

lim
τ→+∞

y(τ, τ) = x0,

and there exists a positive constant d2 such that ‖y(t, τ)‖, ‖y∗(t, τ)‖ 6 d2. Further, set

R̃(t, τ) = R̃1(t, τ) + R̃2(t, τ),

R̃1(t, τ) = ‖u(t) − y(t, τ)‖2,

R̃2(t, τ) = ‖u∗(t) − y∗(t, τ)‖2.

On the base of (2.1) and (2.3) we can write

〈
d(u(t)− y(t, τ))

dt
, u(t)− y(t, τ)〉+ γ(t)

[

〈F
h(t)
1 (u(t))− F1(y(t, τ)),

u(t) − y(t, τ)〉+ 〈α(t)u(t)− α(τ)y(t, τ), u(t)− y(t, τ)〉

+〈y∗(t, τ)− u∗(t), u(t)− y(t, τ)〉
]

= 0,

〈
d(u∗(t) − y∗(t, τ))

dt
, u∗(t) − y∗(t, τ)〉+ γ(t)

[

〈F
h(t)
2 (u∗(t)) − F2(y

∗(t, τ)),

u∗(t) − y∗(t, τ)〉+ 〈α(t)u∗(t)− α(τ)y∗(t, τ), u∗(t) − y∗(t, τ)〉

+〈u(t)−y(t, τ), u∗(t) − y∗(t, τ)〉
]

= 0.

Thus,
dR̃(t, τ)

dt
+2γ(t)α(τ)R̃(t, τ) 6

γ(t)[h(t)g(‖y(t, τ)‖)+ |α(t)− α(τ)|‖y(t, τ)‖]‖u(t)− y(t, τ)‖+

γ(t)[h(t)g(‖y∗(t, τ)‖) + |α(t) − α(τ)|‖y∗(t, τ)‖]‖u∗(t) − y∗(t, τ)‖.

Hence,

dR̃(t, τ)

dt
6 Dγ(t)[h(t) + |α(t) − α(τ)|]− 2α̃(t)R̃(t, τ),

α̃(t) = γ(t)α(τ), D = 2 max{g(d2)(d1 + d2), d2}.

It is not difficult to verify that
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R̃(τ, τ) 6 R1(τ) + R2(τ)

R1(τ) = D

∫ τ

t0

γ(t)h(t)ξ(t)dt/ξ(τ),

R2(τ) = D

∫ τ

t0

γ(t)α′(t)(t − τ)ξ(t)dt/ξ(τ),

ξ(s) = exp(

∫ s

t0

α̃(t)dt.

Therefore, limt→+∞ R1(τ) = limt→+∞ R2(τ) = 0. Since ‖x0 − u(τ)‖ 6 ‖x0 − xα(τ)‖ +

‖xα(τ)− y(τ, τ)‖+ ‖y(τ, τ)− u(τ)‖, then limτ→+∞ u(τ) = x0. Theorem is proved.

Remark. The solution existence of (2.1) or (2.3) is followed from [7], [15] and [16], when

F
h(t)
i are weakly continuous or Lipschitz continuous for each t > t0.

3. FINITE-DIMENSIONAL REGULARIZATION

Consider the system of finite-dimensional problems
dun(t)

dt
+ γ(t)

[

F
h(t)
1,n (un(t)) + α(t)un(t)− u∗

n(t)
]

= θ,

du∗

n(t)

dt
+ γ(t)

[

F
h(t)
2,n (u∗

n(t)) + α(t)u∗

n(t) + un(t) − fn(t)
]

= θ,

un(t0) = Pnu0, u
∗

n(t0) = Pnu∗

0,

(3.1)

where F
h(t)
1,n = P ∗

nF
h(t)
1 Pn, F

h(t)
2,n = PnF

h(t)
2 P ∗

n , fn(t) = Pnf(t), Pn is a linear projection from
H onto its finite-dimensional subspace Hn such that Hn ⊂ Hn+1, Pnx → x, as n → ∞ for
every x ∈ H , and P ∗

n is the dual of Pn with ‖Pn‖ 6 c̃ = constant, for all n, and un(t), u∗

n(t) :

[t0, +∞) → Hn.

To prove
lim

n,t→+∞

un(t) = x0,

as in the Section 2, we use the system of finite-dimensional equations
dyn(t, τ)

dt
+ γ(t)

[

F1,n(yn(t, τ)) + α(τ)yn(t, τ)− y∗n(t, τ)
]

= θ,

dy∗n(t, τ)

dt
+ γ(t)

[

F2,n(y∗n(t, τ)) + α(τ)y∗n(t, τ) + yn(t, τ)− fn

]

= θ,

yn(t0, τ) = Pnu0, y
∗

n(t0, τ) = Pnu∗

0, ∀t > t0,

(3.2)

depending on the parameter τ > t0, where F1,n = PnF1P
∗

n , F2,n = P ∗

nF2Pn, and fn = Pnf.

We have a result.

Theorem 3.1. Assume that the following conditions hold:

(i) problems (3.1) and (3.2) possess solutions in the class C1[t0, +∞) for any u0, u
∗

0 ∈ H
with ‖un(t)‖, ‖u∗

n(t)‖ 6 d3, d3 > 0, t > t0.

(ii) the functions α(t), h(t) and γ(t) satisfy the above conditions.

(iii) Fi, i = 1, 2, are Fréchet differentiable with Lipschitz continuous derivatives ( common
Lipschitz constant L), there exist x1 and x2 such that
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F ′

1(x0)
∗x1 + x2 = x0,

F ′

2(x
∗

0)
∗x2 − x1 = x∗

0,

L maxi=1,2 ‖x
i‖/2 < 1, and

lim
n,τ→+∞

ξn/α(τ) = 0,

where

ξn = max{‖(I − Pn)x0‖, ‖(I − P ∗

n)F1(x0)‖, ‖(I − Pn)f‖, ‖(I − P ∗

n )x1‖, ‖(I − Pn)x2‖}.

Then, limn,τ→+∞ un(τ) = x0.

Proof. We recall that the finite-dimensional problems

x + Fn
2,αFn

1,α(x) = fn, x ∈ Hn,

where Fn
2,α = F2,n +α(τ)I, Fn

1,α = F1,n +α(τ)I , have a unique solution xα,n(τ). This solution
and x∗

α,n(τ) are the solution of the follwing equations
F1,n(xα,n(τ)) + α(τ)xα,n(τ) − x∗

α,n(τ) = θ,

F2,n(x∗

α,n(τ)) + α(τ)x∗

α,n(τ) + xα,n(τ) − fn = θ,
(3.3)

and under condition (iii) plus limτ→+∞ α(τ) = 0 we have

lim
n,τ→+∞

xα,n(τ) = x0, lim
n,τ→+∞

x∗

α,n(τ) = x∗

0

(see [5] or Appendix).
Set r̃n(t, τ) = r̃1,n(t, τ) + r̃2,n(t, τ),

r̃1,n(t, τ) = ‖yn(t, τ) − xα,n(τ)‖2,

r̃2,n(t, τ) = ‖y∗n(t, τ) − x∗

α,n(τ)‖2.

From (3.2) and (3.3) it follows

〈
d(yn(t, τ)− xα,n(τ))

dt
,yn(t, τ)− xα,n(τ)〉+ γ(t)

[

〈F1,n(yn(t, τ))

−F1,n(xα,n(τ)), yn(t, τ)− xα,n(τ)〉+ α(τ)r̃1,n(t, τ)

+ 〈x∗

α,n(τ)− y∗n(t, τ), yn(t, τ)− xα,n(τ)〉
]

= 0,

〈
d(y∗n(t, τ)− x∗

α,n(τ))

dt
,y∗n(t, τ)− x∗

α,n(τ)〉+ γ(t)
[

〈F2,n(y∗n(t, τ))

−F2,n(x∗

α,n(τ)), y∗n(t, τ)− x∗

α,n(τ)〉+ α(τ)r̃2,n(t, τ)

+ 〈xα,n(τ)− yn(t, τ), y∗n(t, τ)− x∗

α,n(τ)〉
]

= 0.

Therefore, dr̃n(t, τ)

dt
+ 2γ(t)α(τ)r̃n(t, τ) 6 0.

Hence,
r̃n(t, τ) 6 r̃n(t0, τ) exp[−2α(τ)

∫ t

t0

γ(t)dt]

with
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r̃n(t0, τ) = ‖yn(t0, τ)− xα,n(τ)‖2 + ‖y∗n(t0, τ)− x∗

α,n(τ)‖2

6 2c[‖y(t0, τ)‖2 + ‖xα(τ)‖2 + ‖y∗(t0, τ)‖2 + ‖x∗

α(τ)‖2]

6 2c[‖u0‖
2 + ‖u∗

0‖
2 + ‖x0‖

2 + ‖F1(x0)‖
2].

Thus, lim
n,τ→+∞

r̃n(τ, τ) = 0.

Consequently, lim
τ→+∞

yn(τ, τ) = x0,

and there exists a positive constant d4 such that ‖yn(t, τ)‖, ‖y∗n(t, τ)‖ 6 d4.

Further, set
R̃n(t, τ) = R̃1,n(t, τ) + R̃2,n(t, τ),

R̃1,n(t, τ) = ‖un(t) − yn(t, τ)‖2,

R̃2,n(t, τ) = ‖u∗

n(t) − y∗n(t, τ)‖2.

Then, from (3.1) and (3.3) we obtain the following equalities From (3.2) and (3.3) it follows

〈
d(un(t) − yn(t, τ))

dt
, un(t) − yn(t, τ)〉+ γ(t)

[

〈F
h(t)
1,n (un(t))− F1,n(yn(t, τ)),

un(t) − yn(t, τ)〉+ 〈α(t)un(t) − α(τ)yn(t, τ), un(t) − yn(t, τ)〉

+〈y∗n(t, τ)− u∗

n(t), un(t) − yn(t, τ)〉
]

= 0,

〈
d(u∗

n(t) − y∗n(t, τ))

dt
, u∗

n(t) − y∗n(t, τ)〉+ γ(t)
[

〈F
h(t)
2,n (u∗

n(t))− F2,n(y∗n(t, τ)),

u∗

n(t) − y∗n(t, τ)〉+ 〈α(t)u∗

n(t) − α(τ)y∗n(t, τ), u∗

n(t) − y∗n(t, τ)〉

+〈un(t)−yn(t, τ), u∗

n(t) − y∗n(t, τ)〉
]

= 0.

Thus,
dR̃n(t, τ)

dt
+2γ(t)α(τ)R̃n(t, τ) 6

γ(t)[h(t)g(‖yn(t, τ)‖) + |α(t) − α(τ)|‖y(t, τ)‖]‖un(t) − yn(t, τ)‖+

γ(t)[h(t)g(‖y∗n(t, τ)‖) + |α(t) − α(τ)|‖y∗n(t, τ)‖]‖u∗

n(t) − y∗n(t, τ)‖.

Hence,
dR̃n(t, τ)

dt
6 D1γ(t)[h(t) + |α(t) − α(τ)|]− 2α̃(t)R̃n(t, τ),

α̃(t) = γ(t)α(τ), D1 = 2 max{g(d4)(d3 + d4), d4}.

By the argument as in the proof of the theorem 2.1, we have

R̃n(τ, τ) 6 Rn
1 (τ) + Rn

2 (τ)

Rn
1 (τ) = D1

∫ τ

t0

γ(t)h(t)ξ(t)dt/ξ(τ),

Rn
2 (τ) = D1

∫ τ

t0

γ(t)α′(t)(t − τ)ξ(t)dt/ξ(τ),

ξ(s) = exp(

∫ s

t0

α̃(t)dt.
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Therefore, limn,τ→+∞ Rn
1 (τ) = limn,τ→+∞ Rn

2 (τ) = 0. Since

‖x0 − un(τ)‖ 6 ‖x0 − xα,n(τ)‖+ ‖xα,n(τ) − yn(τ, τ)‖+ ‖yn(τ, τ)− un(τ)‖,

and ‖x0 − xα,n(τ)‖ → 0 is followed from condition (iii) of the theorem (see [5], [6]), then
limn,τ→+∞ u(τ) = x0. Theorem is proved.

Appendix. If condition (iii) and limτ→+∞ α(τ) = 0 are satisfied, then limn,τ→+∞ xα,n(τ) =

x0.

Proof. Set

B = ‖x0,n − xα,n(τ)‖2 + ‖x∗

0,n − x∗

α,n(τ)‖2,

where x0,n = Pnx0, and x∗

0,n = P ∗

nx∗

0. From (1.1), (3.3), the monotone property of Fi,n, i = 1, 2,

and x0,n + PnF2(x
∗

0) = fn it implies that

B =
〈

x0,n, x0,n − xα,n(τ)
〉

+
〈

x∗

0,n, x∗

0,n − x∗

α,n(τ)
〉

+
1

α(τ)

[

〈

x∗

α,n(τ) − F1,n(xα,n(τ)), xα,n(τ) − x0,n

〉

+
〈

fn − xα,n(τ)− F2,n(x∗

α,n(τ)), x∗

α,n(τ)− x∗

0,n

〉

]

=
〈

x0, x0,n − xα,n(τ)
〉

+
〈

x∗

0, x
∗

0,n − x∗

α,n(τ)
〉

+
1

α(τ)

[

〈

x∗

α,n(τ) − x∗

0,n + P ∗

nx∗

0 − F1,n(xα,n(τ)), xα,n(τ) − x0,n

〉

+
〈

x0,n − xα,n(τ) + PnF2(x
∗

0) − F2,n(x∗

α,n(τ)), x∗

α,n(τ)− x∗

0,n

〉

]

6
〈

x0, x0,n − xα,n(τ)
〉

+
〈

x∗

0, x
∗

0,n − x∗

α,n(τ)
〉

+
1

α(τ)

[

〈

F1(x0) − F1(x0,n), xα,n(τ) − x0,n

〉

+
〈

F2(x
∗

0) − F2(x
∗

0,n), x∗

α,n(τ) − x∗

0,n

〉

]

6
〈

x0, x0,n − xα,n(τ)
〉

+
〈

x∗

0, x
∗

0,n − x∗

α,n(τ)
〉

+
γn

α(τ)

[

C1‖xα,n(τ)− x0,n‖ + C2‖x
∗

α,n(τ)− x∗

0,n‖
]

, Ci > 0, i = 1, 2.

Hence, {xα,n(τ)} and {x∗

α,n(τ)} are bounded, as n, τ → +∞ and γn/α(τ) → 0.

On the other hand,

〈

x0, x0,n − xα,n(τ)
〉

6 γn‖x0‖ +
〈

x0, x0 − xα,n(τ)
〉

6O(γn) +
〈

x1, F1(x0) − F1(xα,n(τ)
〉

+
〈

x2, x0 − xα,n(τ)
〉

+
L̃‖x1‖

2
‖x0,n − xα,n(τ)‖2.

In the similar way, we also have

〈

x∗

0, x
∗

0,n − x∗

α,n(τ)
〉

6O(γn) +
〈

x2, F2(x
∗

0)− F2(x
∗

α,n(τ))
〉

−
〈

x1, x∗

0 − x∗

α,n(τ)
〉

+
L̃‖x2‖

2
‖x∗

0,n − x∗

α,n(τ)‖2.
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Because of
〈

x1, F1(x0) − F1(xα,n(τ))
〉

=
〈

x1, x∗

0 − x∗

α,n(τ)
〉

+
〈

x1, x∗

α,n(τ) − F1,n(xα,n(τ))
〉

−
〈

(I − Pn)x1, F1(xα,n(τ))
〉

6 O
(

γn

)

+
〈

x1, x∗

0 − x∗

α,n(τ)
〉

+ α(τ)‖x1‖‖xα,n(τ)‖,
〈

x2, F2(x
∗

0) − F2(x
∗

α,n(τ))
〉

=
〈

x2,−x0 + xα,n(τ)
〉

+
〈

x2, f − fn

〉

+
〈

x2, fn − xα,n(τ) − F2,n(x∗

α,n(τ))
〉

−
〈

(I − P ∗

n )x2, F2(x
∗

α,n(τ))
〉

6 O
(

γn

)

−
〈

x2, x0 − xα,n(τ)
〉

+ α(τ)‖x2‖‖x∗

α,n(τ)‖,

we obtain
(

1−
L‖x1‖

2

)

‖xα,n(τ) − x0,n‖
2

6
(

1 −
L‖x1‖

2

)

‖xα,n(τ)− x0,n‖
2

+
(

1 −
L‖x2‖

2

)

‖x∗

α,n(τ)− x∗

0,n‖
2

6 O
(

(γn + α(τ) + γn/α(τ)
)

.

Hence,
lim

n,τ→+∞

xα,n(τ) = x0,

lim
n,τ→+∞

x∗

α,n(τ) = x∗

0.
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