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1. INTRODUCTION

The theory of length-variable codes has been initiated by M. P. Schützenberger in the 1950s
and then developed by many others. This theory has now become a part of theoretical
computer science and of formal languages, in particular. A code is a language such that
every text encoded by words of the language can be decoded in a unique way or, in other
words, every coded message admits only one factorization into code-words. Codes are useful
in many areas of application such as information processing, data compression, cryptography,
information transmission and so on. For background of the theory of codes we refer to [1, 7, 9].

As mentioned above, the definition of codes is essentially based on unambiguity of the
(catenation) product of words. Different modifications of such a product may lead to different
extensions of the notion of codes. Such an approach has been proposed by P. T. Huy et al.
which deals with the so-called even alternative codes and their several subclasses [6, 12]. They
demonstrated the importance characterizations (Lemmas 3-5) as well as algorithms to test for
these classes (Lemma 6). For simplicity, even alternative codes, weak left alternative codes,
weak right alternative codes and alternative codes in [6, 12] are called simply respectively
alternative codes, left alternative codes, right alternative codes and strict alternative codes
instead. Recently, in [4, 11, 12], the authors proposed some classes of codes which concern
alternative codes. Several interesting characteristic properties and algorithms to test for
such codes were established.

In this paper, some new subclasses of alternative codes are introduced and considered. In
Section 2 necessary definitions are recalled, and several facts useful in the sequel are shown.
Section 3 introduces four new classes of codes which are subclasses of alternative codes and
can be defined by alternative factorizations on two non-empty languages. Also some char-
acteristic properties and relationships of these classes are considered. The section ends with
a hierarchy of alternative codes and their subclasses. Section 4 establishes four algorithms
to test for new classes of codes. The final section discusses the problem investigations and
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presents a summary of the results obtained. Our work is motivated by the idea to define
alternative codes by alternative factorizations on two non-empty languages, and the way to
solve the problem for alternative codes as well as their well-known subclasses [6, 11, 12].

2. PRELIMINARIES

Let A throughout be a finite alphabet and A∗ the set of all the words over A. The empty
word is denoted by ε and A+ stands for A∗ \{ε}. The number of all the occurrences of letters
in a word u is the length of u, denoted by |u|. Any subset of A∗ is a language over A. A
language X is a code if for any n,m ≥ 1 and any x1, . . . , xn, y1, . . . , ym ∈ X, the condition

x1x2 . . . xn = y1y2 . . . ym

implies n = m and xi = yi for i = 1, . . . , n. Since ε.ε = ε, a code never contains the empty
word ε.

A word u is called an infix (a prefix, a suffix ) of a word v if there exist words x, y such that
v = xuy (resp. v = uy, v = xu). The infix (prefix, suffix) is proper if xy 6= ε (resp. y 6= ε,
x 6= ε). The set of non-empty proper prefixes of a word w is denoted Pref(w). We denote by
Pref(X) the set of non-empty proper prefixes of words in X ⊆ A∗. For non-empty proper
suffixes, we use the notations Suff(w) and Suff(X). The reversal of a word w = a1a2 . . . an,
where a1, a2, . . . , an are letters, is the word w̃ = anan−1 . . . a1. Similarly, for X ⊆ A∗, we
denote X̃ = {x̃ | x ∈ X}.

A language X ⊆ A+ is a prefix code (suffix code) if no word in X is a proper prefix (resp.
proper suffix) of another word in it, and X is a bifix code if it is both a prefix code and a
suffix code. Prefix codes, suffix codes and bifix codes play a fundamental role in the theory
of codes (see [1, 5, 9, 10]).

For X,Y ⊆ A∗, the product of X and Y is the set XY = {xy | x ∈ X, y ∈ Y }. The
product is said to be unambiguous if for each z ∈ XY there is exactly one pair (x, y) ∈ X×Y
such that z = xy. We also use the notations

X0 = {ε}, Xn+1 = XnX (n ≥ 0);

(XY )+ = (XY ) ∪ (XY )2 ∪ (XY )3 ∪ . . .

For w ∈ A∗, we define

w−1X = {u ∈ A∗ | wu ∈ X}, Xw−1 = {u ∈ A∗ | uw ∈ X}.

This notation is extended as usual to sets by

X−1Y =
⋃
x∈X

x−1Y, XY −1 =
⋃
y∈Y

Xy−1.

From now on, unless otherwise specified, we always consider X and Y are non-empty
subsets of A+. We say that u1u2 . . . un, n ≥ 2, is an alternative factorization on (X,Y ) if
ui ∈ X implies ui+1 ∈ Y and ui ∈ Y implies ui+1 ∈ X for all i = 1, 2, . . . , n − 1. Two
alternative factorizations u1u2 . . . un and v1v2 . . . vm on (X,Y ) are said to be left similar
(right similar) if they begin (resp. end) with words in the same set X or Y , namely u1, v1 ∈ X
or u1, v1 ∈ Y (resp. un, vm ∈ X or un, vm ∈ Y ). Two alternative factorizations on (X,Y )
are called similar if they are both left similar and right similar.
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Definition 1. A pair (X,Y ) is called an alternative code (a left alternative code, a right
alternative code) over A if no word in A+ admits two different similar (resp. left similar,
right similar) alternative factorizations on (X,Y ), and (X,Y ) is a strict alternative code over
A if every word in A+ admits at most one alternative factorization on (X,Y ).

The classes of alternative codes, left alternative codes, right alternative codes and strict
alternative codes are denoted respectively by CA, ClA, CrA and CsA. Over any alphabet
consisting of at least two letters, the following holds true:

CsA ⊂ ClA ∩ CrA, ClA ∪ CrA ⊂ CA.

For more details of alternative codes and their subclasses we refer to [4, 6, 11, 12].

Now we formulate, in the form of lemmas, several facts which will be useful in the sequel.

Lemma 1 (Sardinas-Patterson’s criterion [8], see also [1, 2, 3]). Let X be a subset of A+,
and let

U1 = X−1X \ {ε}, Un+1 = X−1Un ∪ U−1n X for n ≥ 1.

Then, X is a code if and only if none of the sets Un defined above contains the empty word
ε.

A simple characterization of the unambiguity of a product of two languages is given in
the following lemma.

Lemma 2 ([6], see also [12]). A product XY is unambiguous if and only if X−1X ∩Y Y −1 \
{ε} = ∅.

The following results claim some basic characterizations for alternative codes and their
subclasses.

Lemma 3 ([6], see also [12]). A pair (X,Y ) is an alternative code if and only if XY is a
code and the product XY is unambiguous.

Lemma 4 ([12]). A pair (X,Y ) is a left (right) alternative code if and only if it is an
alternative code and (XY )+X−1 ∩ (XY )+ = ∅ (resp. Y −1(XY )+ ∩ (XY )+ = ∅).

Lemma 5 ([6], see also [12]). A pair (X,Y ) is a strict alternative code if and only if the
four following conditions are satisfied:

(i) (X,Y ) ∈ CA;

(ii) (XY )+X−1 ∩ (XY )+ = ∅;
(iii) Y −1(XY )+ ∩ (XY )+ = ∅;
(iv) (XY )+ ∩ (Y X)+ = ∅.

Moreover the conditions (i), (ii), (iii) and (iv) are independent.

Lemma 6 ([12], see also [11]). If X and Y are regular languages, then there exists an
algorithm to decide

(i) XY is a code in O(8m+n) worst-case time;
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(ii) X−1X ∩ Y Y −1 \ {ε} = ∅ in O(m2n2) worst-case time;

(iii) (XY )+X−1 ∩ (XY )+ = ∅ in O(8m+n) worst-case time;

(iv) Y −1(XY )+ ∩ (XY )+ = ∅ in O(8m+n) worst-case time;

(v) (XY )+ ∩ (Y X)+ = ∅ in O(16m+n) worst-case time;

where m and n are respectively the number of states in the deterministic finite automata
recognizing X and Y .

3. SOME CHARACTERIZATIONS

We introduce in this section some new subclasses of alternative codes. Some characterizations
for alternative codes and their subclasses are established. Let us begin with a new class of
codes which is a subclass of left alternative codes and right alternative codes. We say that
two alternative factorizations on (X,Y ) are weak similar if they are left similar or right
similar.

Definition 2. A pair (X,Y ) is called a two-sided alternative code over A if no word in A+

admits two different weak similar alternative factorizations on (X,Y ). In other words, (X,Y )
is a two-sided alternative code if it is both a left alternative code and a right alternative code.

Let us take an example.

Example 1. Consider the sets X = {aab, baa} and Y = {aa} over A = {a, b}. It is easy to
check that (X,Y ) is both a left alternative code and a right alternative code, and hence it
is a two-sided alternative code. However, (X,Y ) is not a strict alternative code because the
word aabaa has two distinct factorizations,

aabaa = (aab)(aa) = (aa)(baa).

As an immediate consequence of Definition 2 and Lemma 4, we obtain the following
characterization for two-sided alternative codes.

Theorem 1. A pair (X,Y ) is a two-sided alternative code if and only if the three following
conditions are satisfied:

(i) (X,Y ) ∈ CA;

(ii) (XY )+X−1 ∩ (XY )+ = ∅;
(iii) Y −1(XY )+ ∩ (XY )+ = ∅.

Moreover the conditions (i), (ii) and (iii) are independent.

Two alternative factorizations u1u2 . . . un and v1v2 . . . vm on (X,Y ) are called dissimilar
if they both begin and end with words in different sets, namely both u1 ∈ X, v1 ∈ Y or
u1 ∈ Y, v1 ∈ X and un ∈ X, vm ∈ Y or un ∈ Y, vm ∈ X. A pair (X,Y ) is said to be norm
form if no word in A+ admits two different dissimilar alternative factorizations on (X,Y ).

Definition 3. A pair (X,Y ) is called a norm alternative code (left norm alternative code,
right norm alternative code) over A if it is an alternative code (resp. a left alternative code,
a right alternative code) which has norm form.
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The classes of two-sided alternative codes, left norm alternative codes, right norm alter-
native codes and norm alternative codes are denoted respectively by CtA, ClnA, CrnA and
CnA.

Example 2. Consider the sets X1 = {bna | n ≥ 1}, Y1 = {a, aba}, X2 = {a, ba}, Y2 =
{b, ab} over A = {a, b}. Then, we have X1Y1 = {bnaa, bnaaba | n ≥ 1} and X2Y2 =
{ab, aab, bab, baab}. By Lemma 1, X1Y1 is a code because U1 = {ba}, U2 = {a, aba}, U3 = ∅.
Since X1Y1 is a code and X1 is a prefix code, by Proposition 2 (we shall see below), (X1, Y1)
is an alternative code. On the other hand, it is easy to check that no word in A+ admits
two different dissimilar alternative factorizations on (X1, Y1), that means (X1, Y1) is norm
form. Thus, (X1, Y1) is a norm alternative code. However, (X1, Y1) is not a left norm alter-
native code because the word baaba has two different left similar alternative factorizations
on (X1, Y1), baaba = (ba)(a)(ba) = (ba)(aba).

Next, by Proposition 2, (X2, Y2) is an alternative code because X2 and X2Y2 are prefix
codes. It is not difficult to check that no word in A+ admits two different left similar and
two different dissimilar alternative factorizations on (X2, Y2). Hence, (X2, Y2) is a left norm
alternative code. However, (X2, Y2) is not a right norm alternative code because the word
baab has two different right similar alternative factorizations on (X2, Y2), baab = (ba)(ab) =
(b)(a)(ab).

In an entirely symmetric manner, we also obtain (X̃1, Ỹ1) is a norm alternative code but
it is not a right norm alternative code, and (X̃2, Ỹ2) is a right norm alternative code not
being a left norm alternative code.

Remark 1. For two different alternative factorizations on (X,Y ), there are only separately
possible cases as the following:

[XX,XX] (1) [Y Y, Y Y ] (2) [XY,XY ] (3) [Y X, Y X] (4) [XX,XY ] (5)

[Y Y, Y X] (6) [XX,Y X] (7) [XY, Y Y ] (8) [XY, Y X] (9) [XX,Y Y ] (10)

where [XY, Y X] denotes that the first alternative factorization begin with a word in X, end
with a word in Y , and the second alternative factorization begin with a word in Y , end with
a word in X. Then, by Definitions 1-3, the following holds true:

The class of codes (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

CA − − − − + + + + + +
ClA − − − − − − + + + +
CrA − − − − + + − − + +
CtA − − − − − − − − + +
CnA − − − − + + + + − −
ClnA − − − − − − + + − −
CrnA − − − − + + − − − −
CsA − − − − − − − − − −

where + and − denote that these classes accept and reject alternative factorizations which
have forms like (1), (2), . . . , (10) respectively.

Next, we exhibit characterizations for norm (left norm, right norm) alternative codes,
and some relationships between alternative codes and their subclasses. For this, we need two
more auxiliary propositions.
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Proposition 1. The following holds true

(i) (X,Y ) is norm form if and only if (XY )+ ∩ (Y X)+ = ∅;
(ii) (X,Y ) is norm form if Pref(X) ∩ Pref(Y ) = ∅ or Suff(X) ∩ Suff(Y ) = ∅.

Proof. (i) Assume (X,Y ) is norm form. If (XY )+ ∩ (Y X)+ 6= ∅, then there exists u ∈
(XY )+∩(Y X)+ such that u = x1y1x2y2 . . . xnyn = y′1x

′
1y
′
2x
′
2 . . . y

′
mx
′
m with xi, x

′
j ∈ X, yi, y′j ∈

Y, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Thus, the word u admits two different dissimilar alternative fac-
torizations on (X,Y ), a contradiction. Hence, (XY )+ ∩ (Y X)+ = ∅.

Conversely, suppose the contrary that (X,Y ) is not norm form. Then, there exists w ∈
A+ such that w = u1u2 . . . un = v1v2 . . . vm, where both u1 ∈ X, v1 ∈ Y or u1 ∈ Y, v1 ∈ X
and un ∈ X, vm ∈ Y or un ∈ Y, vm ∈ X. We consider separately two possible cases.

Case 1: u1, vm ∈ X, v1, un ∈ Y or u1, vm ∈ Y, v1, un ∈ X. Then, evidently w ∈ (XY )+ ∩
(Y X)+.

Case 2: u1, un ∈ X, v1, vm ∈ Y or u1, un ∈ Y, v1, um ∈ X. Then, we have ww =
u1u2 . . . unv1v2 . . . vm = v1v2 . . . vmu1u2 . . . un. Therefore, ww ∈ (XY )+ ∩ (Y X)+.

Thus, in all the cases we have proved that (XY )+ ∩ (Y X)+ 6= ∅, a contradiction. So,
(X,Y ) is norm form.

(ii) Suppose Pref(X)∩Pref(Y ) = ∅ or Suff(X)∩Suff(Y ) = ∅. If (XY )+∩(Y X)+ 6= ∅, then
there exists a word u ∈ (XY )+∩(Y X)+ such that u = x1y1x2y2 . . . xnyn = y′1x

′
1y
′
2x
′
2 . . . y

′
mx
′
m

with xi, x
′
j ∈ X, yi, y′j ∈ Y, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Therefore, Pref(x1) ∩ Pref(y′1) 6= ∅ and

Suff(x′m)∩Suff(yn) 6= ∅. This implies that Pref(X)∩Pref(Y ) 6= ∅ and Suff(X)∩Suff(Y ) 6= ∅,
a contradiction. Thus, (XY )+ ∩ (Y X)+ = ∅. Hence, by the item (i) of the proposition,
(X,Y ) is norm form.

Proposition 2. If XY is a code and X is a prefix code or Y is a suffix code, then (X,Y )
is an alternative code.

Proof. If X is a prefix code, then X−1X = {ε}, and therefore X−1X ∩ Y Y −1 \ {ε} = ∅. By
Lemma 2, the product XY is unambiguous. Hence, by Lemma 3, (X,Y ) is an alternative
code. Similarly for the case when Y is a suffix code.

As an immediate consequence of Definition 3 and Proposition 1(i), we can now formu-
late the following result which resumes characterizations for norm (left norm, right norm)
alternative codes.

Theorem 2. The following holds true

(i) (X,Y ) is a norm alternative code if and only if it is an alternative code and (XY )+ ∩
(Y X)+ = ∅;

(ii) (X,Y ) is a left norm alternative code if and only if it is a left alternative code and
(XY )+ ∩ (Y X)+ = ∅;

(iii) (X,Y ) is a right norm alternative code if and only if it is a right alternative code and
(XY )+ ∩ (Y X)+ = ∅.

The following result shows some relationships between alternative codes and their sub-
classes.
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Theorem 3. Let (X,Y ) be an alternative code over A. Then, we have

(i) If XY is a bifix (prefix, suffix) code and Pref(X)∩Pref(Y ) = ∅ or Suff(X)∩Suff(Y ) = ∅,
then (X,Y ) is a strict (resp. left norm, right norm) alternative code;

(ii) If XY is a bifix (prefix, suffix) code, then (X,Y ) is a two-sided (resp. left, right)
alternative code;

(iii) If Pref(X) ∩ Pref(Y ) = ∅ or Suff(X) ∩ Suff(Y ) = ∅, then (X,Y ) is a norm alternative
code.

Proof. We treat only the item (i). The items (ii) and (iii) follow immediately from the item
(i) of the theorem, Lemma 4 and Theorems 1-2.

Assume that (X,Y ) is an alternative code such that XY is a bifix code and Pref(X) ∩
Pref(Y ) = ∅ or Suff(X) ∩ Suff(Y ) = ∅. Firstly, by Proposition 1, (XY )+ ∩ (Y X)+ =
∅. Secondly, we have (XY )+X−1 ∩ (XY )+ = ∅ because XY is a prefix code. Indeed,
suppose the contrary. Then, there exist u ∈ (XY )+X−1 ∩ (XY )+ and x ∈ X such that
u = x1y1x2y2 . . . xnyn and ux = x′1y

′
1x
′
2y
′
2 . . . x

′
my
′
m with xi, x

′
j ∈ X, yi, y

′
j ∈ Y, 1 ≤ i ≤

n, 1 ≤ j ≤ m. Therefore, x1y1x2y2 . . . xnynx = x′1y
′
1x
′
2y
′
2 . . . x

′
my
′
m. Thus there exists i

such that xiyi is a proper prefix of x′iy
′
i or vice versa, or x′my

′
m is a proper prefix of xy

with y ∈ Y , which contradicts the fact that XY is a prefix code. Similarly, we also obtain
Y −1(XY )+∩(XY )+ = ∅ when XY is a suffix code. Hence, (X,Y ) is a strict (left norm, right
norm) alternative code by Lemma 5 (resp. by Lemma 4 and Theorem 2(ii), by Lemma 4
and Theorem 2(iii)).

Remark 2. According to Proposition 2, the items (i) and (ii) of Theorem 3 still hold if we
use the assumption X is a prefix code or Y is a suffix code instead of (X,Y ) is an alternative
code. However, under the stated assumption, the item (iii) of Theorem 3 only holds if assume
furthermore that XY is a code, namely (X,Y ) is a norm alternative code if XY is a code
and Pref(X) ∩ Pref(Y ) = ∅ or Suff(X) ∩ Suff(Y ) = ∅.

Note that Theorem 3 and Remark 2 provide us with a tool to check whether a give
alternative code (more generally a pair language) is in subclasses of alternative codes or not.

Example 3. We again consider the sets X = {a2b, ba2}, Y = {a2} in Example 1, X1 =
{bna | n ≥ 1}, Y1 = {a, aba}, X2 = {a, ba}, Y2 = {b, ab} in Example 2, andX3 = {aa, ab}, Y3 =
{bb}.

Firstly, we have XY = {a2ba2, ba4}, Pref(X) ∩ Pref(Y ) = Suff(X) ∩ Suff(Y ) = {a}, and
X,XY are bifix codes. By Theorem 3 and Remark 2, (X,Y ) is a two-sided alternative code
not being a strict alternative code.

Next, it is easy to see that Pref(X1) ∩ Pref(Y1) = {bn | n ≥ 1} ∩ {a, ab} = ∅, X2Y2 =
{ab, a2b, bab, ba2b}, Pref(X2) ∩ Pref(Y2) = {b} ∩ {a} = ∅, and X2, X2Y2 are prefix codes.
Thus, by Theorem 3 and Remark 2, (X1, Y1) is a norm alternative code, and (X2, Y2) is a
left norm alternative code.

Finally, it is clear that X3Y3 = {a2b2, ab3}, Pref(X3) ∩ Pref(Y3) = {a} ∩ {b} = ∅, and
X3, X3Y3 are bifix codes. By Remark 2, (X3, Y3) is a strict alternative code.

As an immediate consequence of Definitions 1-3, Lemmas 3-5, Theorems 1-2 and Re-
mark 1, we can now formulate the following result which resumes relative positions of the
classes of codes under consideration.
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Theorem 4. Over any alphabet consisting of at least two letters, the following holds true

(i) CsA ⊂ ClnA, CsA ⊂ CrnA, CsA ⊂ CtA,
CsA = CnA ∩ CtA = ClnA ∩ CrA = CrnA ∩ ClA = ClA ∩ CnA ∩ CrA

= ClnA ∩ CtA = CtA ∩ CrnA = CrnA ∩ ClnA = ClnA ∩ CrnA ∩ CtA;

(ii) ClnA ⊂ ClA, ClnA ⊂ CnA, CrnA ⊂ CrA, CrnA ⊂ CnA, CtA ⊂ ClA,
CtA ⊂ CrA, ClnA = ClA ∩ CnA, CrnA = CrA ∩ CnA, CtA = ClA ∩ CrA;

(iii) ClA ⊂ CA, CnA ⊂ CA, CrA ⊂ CA.

Remark 3. By Theorem 4, CsA = CnA ∩CtA. However, CnA and CtA are not comparable by
inclusion. Indeed, the two-sided alternative code (X,Y ) in Example 1 which has the word
a2ba2 ∈ (XY )+ ∩ (Y X)+ that means (XY )+ ∩ (Y X)+ 6= ∅. By Theorem 2, (X,Y ) is not a
norm alternative code. On the other hand, the norm alternative code (X1, Y1) in Example 2
is easily verified to be not a two-sided alternative code.

By virtue of Theorem 4 and Remark 3, the relative positions of the classes of codes
under consideration can be illustrated in the Figure 1, where the arrow→ stands for a strict
inclusion. It is worthy to note that if we restrict ourselves to considering only one-letter
alphabets then we have CsA = Cln = CrnA = CnA = ∅, whereas the remaining classes
represented in the Figure 1 coincide.
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Figure 1: Relative positions of alternative codes and their subclasses

4. A TEST FOR ALTERNATIVE CODES

It is not always easy to verify that a given pair language is an alternative code. The problem
is more difficult for subclasses of alternative codes. In the case where X and Y are finite
languages, or more generally they are regular languages, the following result plays a funda-
mental role which helps us to establish algorithms to test for new subclasses of alternative
codes.
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Theorem 5. If X and Y are regular languages, then there exists an algorithm to decide the
pair (X,Y ) is

(i) a two-sided alternative code in O(8m+n) worst-case time;

(ii) a norm (norm left, norm right) alternative code in O(16m+n) worst-case time;

where m and n are respectively the number of states in the deterministic finite automata
recognizing X and Y .

Proof. It follows immediately from Lemma 6 and Theorems 1-2 with note that always there
exist algorithms for testing the emptiness of regular languages.

From Lemma 6, Theorems 1-2 and Theorem 5, we can exhibit the following algorithms
to test for two-sided alternative codes and norm (left norm, right norm) alternative codes.

1 (A test for two-side alternative codes)
2 Input: X and Y are regular languages of A+.
3 Output: (X,Y ) is a two-sided alternative code or not.
4 1. If (X,Y ) /∈ CA then goto Step 5.
5 2. If (XY )+X−1 ∩ (XY )+ 6= ∅ then goto Step 5.
6 3. If Y −1(XY )+ ∩ (XY )+ 6= ∅ then goto Step 5.
7 4. (X,Y ) is a two-sided alternative code; STOP.
8 5. (X,Y ) is not a two-sided alternative code; STOP.

1 (A test for norm alternative codes)
2 Input: X and Y are regular languages of A+.
3 Output: (X,Y ) is a norm alternative code or not.
4 1. If (X,Y ) /∈ CA then goto Step 4.
5 2. If (XY )+ ∩ (Y X)+ 6= ∅ then goto Step 4.
6 3. (X,Y ) is a norm alternative code; STOP.
7 4. (X,Y ) is not a norm alternative code; STOP.

1 (A test for left norm alternative codes)
2 Input: X and Y are regular languages of A+.
3 Output: (X,Y ) is a left norm alternative code or not.
4 1. If (X,Y ) /∈ CA then goto Step 5.
5 2. If (XY )+X−1 ∩ (XY )+ 6= ∅ then goto Step 5.
6 3. If (XY )+ ∩ (Y X)+ 6= ∅ then goto Step 5.
7 4. (X,Y ) is a left norm alternative code; STOP.
8 5. (X,Y ) is not a left norm alternative code; STOP.

Let us take some examples.
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1 (A test for right norm alternative codes)
2 Input: X and Y are regular languages of A+.
3 Output: (X,Y ) is a right norm alternative code or not.
4 1. If (X,Y ) /∈ CA then goto Step 5.
5 2. If Y −1(XY )+ ∩ (XY )+ 6= ∅ then goto Step 5.
6 3. If (XY )+ ∩ (Y X)+ 6= ∅ then goto Step 5.
7 4. (X,Y ) is a right norm alternative code; STOP.
8 5. (X,Y ) is not a right norm alternative code; STOP.

Example 4. Consider the regular languages X = ab+, Y = ba+ over A = {a, b}. It is easy to
see that XY = ab+ba+ and the sets X,Y,XY are suffix codes. By Algorithm 1, we have:

1. By Proposition 2, (X,Y ) is an alternative code because X and XY are suffix codes.

2. Since (ab+ba+)(ab+)−1 = ∅, it follows that (XY )+X−1 ∩ (XY )+ = ∅.
3. Since (ba+)−1(ab+ba+) = ∅, it follows that Y −1(XY )+ ∩ (XY )+ = ∅.
4. (X,Y ) is a two-sided alternative code, and the algorithm ends.

Example 5. Consider the sets X = {b}, Y = {ab, bab} over A = {a, b}. We have XY =
{bab, bbab}, Y X = {abb, babb}. Evidently, the sets X,Y and XY are prefix codes. By
Algorithm 2, we have:

1. By Proposition 2, (X,Y ) is an alternative code because X and XY are prefix codes.

2. Because ab ∈ Suff(u), bb ∈ Suff(v) for all u ∈ (XY )+, v ∈ (Y X)+, it follows that
(XY )+ ∩ (XY )+ = ∅.

3. (X,Y ) is a norm alternative code, and the algorithm ends.

Example 6. We again consider the sets X = {b}, Y = {ab, bab} in Example 5. By Algo-
rithm 4, we may perform as follows.

1. By the above, (X,Y ) is an alternative code.

2. We have Y −1(XY )+ ∩ (XY )+ 6= ∅ because bab ∈ Y −1(XY )2 ∩XY . Hence, (X,Y ) is
not a right norm alternative code, and the algorithm ends.

5. CONCLUSIONS

The purpose of this paper was to deal with the development of the class of alternative codes.
Four new classes of codes, which are subclasses of alternative codes, were introduced and
considered. Some characteristics and relationships of these classes were proposed (Theo-
rems 1-4). One of them provided us with a tool to check whether a given alternative code
(more generally a pair language) is in subclasses of alternative codes or not. Algorithms,
with a power size complexity (Theorem 5), to test for new subclasses of alternative codes
were established (Algorithms 1-4).

In future works, we hope we can find some better algorithms and many interesting prob-
lems for alternative codes as well as their subclasses.
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