
Journal of Computer Science and Cybernetics, V.33, N.1 (2017), 50–69

DOI 10.15625/1813-9663/33/1/9315

AN IMPROVED GENETIC ALGORITHM FOR
TEST DATA GENERATION FOR SIMULINK MODELS

LE THI MY HANH, NGUYEN THANH BINH, KHUAT THANH TUNG

The University of Danang - University of Science and Technology, Vietnam
ltmhanh@dut.udn.vn; ntbinh@dut.udn.vn; thanhtung09t2@gmail.com

�

Abstract. Mutation testing is a powerful and effective software testing technique to assess the

quality of test suites. Although many research works have been done in the field of search-based

testing, automatic test data generation based on the mutation analysis method is not straightforward.

In this paper, an Improved Genetic Algorithm (IGA) is proposed to increase the quality of test data

based on mutation coverage criterion. This algorithm involves some modifications of genetic operators

and the employment of memory mechanism to enhance its effectiveness. The proposed approach is

implemented to generate test data for Simulink models. The obtained results indicated that IGA

outperformed the conventional genetic algorithm in terms of the quality of test sets, and the execution

time.
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1. INTRODUCTION

Software testing is an expensive, tedious, and time-consuming activity but it is a crucial
step to improve the quality and the reliability of software. The process of generating test
data decides the effectiveness and efficiency of software testing. The quality of test data is
normally measured by the adequacy criteria. Adequacy criteria, also referred to as coverage
criteria, pose certain requirements that should be fulfilled by test cases.

Mutation testing proposed by DeMillo et al. [6] is a powerful and effective testing tech-
nique to assess the quality of test suites. The driving principle of mutation testing is the use
of faults which mimic mistakes that a competent programmer would make. These faults are
introduced into the program under test once at a time by using mutation operators. The
purpose of injecting mutants into programs is both to guide the generation of test data to
reveal the faults, and to assess the quality of test data. A test suite is considered good if it
contains tests that are able to distinguish a large number of mutants from the original design.
If a mutant can be distinguished by at least one of the test cases in the test set, the mutant
is considered to be killed. Otherwise, the mutant is alive. The amount of coverage is usually
written as the ratio of the number of killed mutants to the entire number of non-equivalent
mutants, and called mutation score.

Model-based design is a development methodology for modern software engineering. High
level models such as Simulink are widely used to reduce the time of software development in
many industrial fields. This also allows faults to be detected at the earlier stages. Verification
and validation of Simulink models are becoming vital to users. Therefore, automated test
data generation for such models plays a crucial role in practice.
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One of the major difficulties in software testing is the automatic generation of test data
that satisfy a given adequacy criterion. Generating test cases automatically will reduce
cost and efforts significantly. In the recent work as presented in [17], the genetic algorithm
was employed to generate test data satisfying mutation coverage. Though the results were
promising, the algorithm could be enhanced. This paper proposes an Improved Genetic
Algorithm with the alteration of genetic operators by using a multi-parent crossover method
and a novel population diversity operator as well as employing a memory mechanism to
store the potential individuals which are able to kill mutants. The IGA aims to make an
improvement of the original GA in terms of the obtained mutation score, execution time, and
the number of executed mutants for the problem of test data generation. To our knowledge,
this is the first work using the genetic algorithm with multi-parent crossover incorporating
with the memory set mechanism to generate test input data based on mutation testing.

The rest of this paper is organized as follows. The definitions of mutation testing,
Simulink and mutation operators for Simulink models are presented in Section 2. Back-
ground of genetic algorithms, and the techniques for generating test data based on these
algorithms are described in Section 3. Section 4 proposes an Improved Genetic Algorithm
for the generation of test data. The case studies and results are reported and discussed in
Section 5. Conclusions and future works are presented in Section 6.

2. BACKGROUND

2.1. Simulink

Simulink [44] tool set is integrated into MATLAB and is used for modeling, and simulating
dynamic systems. Simulink models are widely utilized in the design and implementation of
embedded systems, comprising electronics, electrics, aerospace, and automobile systems.
They include functional blocks with input and output ports interconnected via lines. These
interconnections indicate the data flows among the blocks, and set up equations relating
the involved interface variables. Blocks are built-in functional units utilized to produce,
manipulate, and output signals. A block can be a parent container containing other blocks
known as the subsystem or the sub-functionality. Each block has a number of parameters,
for instance, initial values and ranges, which control the operation of the block. Lines supply
a mechanism to transmit data from inputs to outputs of a model. Fig. 1 shows an example
of a Simulink model.

2.2. Mutation testing for Simulink models

Mutation testing [6, 14] is an efficient software testing approach being able to simulate
software defects systematically and determine the quality of a test set. These defects are
called mutants, and they are generated by simple syntactic rules such as alterations of oper-
ators, constant values, data type, and variables. These rules are called mutation operators.
These operators can be seen as representing common faults usually found in software. There-
fore, they are designed referring to the experience of using the target language and the most
common faults.

We get a faulty model, which is called mutant, when applying a mutation operator to
a model. Test data then should be generated to reveal the mutants. Mutants are killed
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Figure 1. A Simulink model

when their outputs differ from those of the original program. Otherwise, mutants are called
alive. Generally, there are two possible reasons why a mutant has been left alive. The
first one is that the used test cases are not capable of revealing fault, whilst the second
one is that there is no such data. In the second case, the mutant model is functionally
equivalent to the original one, and called the equivalent mutant. Worse still, determining
whether a mutant is equivalent is undecidable [44], and so typically the decision is left for
testers to establish manually. After executing a large set of test data against mutants, there
are still several mutants that are not killed by any test data in the test suite but they are
not equivalent mutants. These mutants are seen as stubborn mutants [43], also known as
hard-to-kill mutants. Test data which are able to kill such mutants locate in the extremely
narrow range of input data. This means that the test suite is not yet adequate, and it needs
the enhancement. In contrast to hard-to-kill mutants, weak mutants [22] are killed by every
test case.

Mutation operators are the pivotal factor in mutation testing. In order to apply mutation
testing to Simulink models, faults are systematically inserted into models, and then mutant
and original models are executed on test data in order to observe how many of faults are
discovered. The more the faults can be revealed, the better test set is. In our approach, errors
are introduced into the system by perturbing the values of signals carried on wires/lines as
well as changing the operations performed within blocks. Table 1 presents the set of mutation
operators for Simulink models that were proposed in [15].

3. TEST DATA GENERATION USING GENETIC ALGORITHM

The generation of test data is one of the most important steps in software testing. This
activity is normally conducted manually. However, manual test data generation is a hard,
laborious, and very time-consuming task. Automating this step in testing can greatly reduce
the human effort and cost.

The test data generator aims to find test cases that satisfy a given coverage criterion.
Structural coverage and mutation coverage are commonly used as adequacy criteria to gen-
erate test data. There are some prominent techniques, which automate the process of gen-
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Table 1. Mutation operators for Simulink

Operator Description
VNO Variable Negation Operator
VCO Variable Change Operator
CCO Constant Change Operator
CRO Constant Replacement Operator
SCO Statement Change Operator
SSO Statement Swap Operator
ROR Relational Operator Replacement Operator
AOR Arithmetic Operator Replacement Operator
ASR Arithmetic Sign Replacement Operator
LOR Logical Operator Replacement Operator
BRO Block Removal Operator
SRO Subsystem Replacement Operator

erating test data. The most popular ones are random generation of test data [5], symbolic
execution [45, 31], search-based generation of test data [26], and recently generation of test
data based on genetic algorithm [17, 4]. This paper focuses on the last one.

In recent years, there have been a large number of studies [35, 37, 42, 34, 30] focusing
on automatic generation of test data. In [37], Vincenzi et al. figured out the adequacy,
effectiveness, and cost of manually generated test sets versus automatically created test sets
for Java programs. They observed that the use of automatic test generators can form test
cases which traverse uncovered parts of the source code that manual test cases cannot do.
Authors also showed that the combination of manual and automated test sets might increase
statement coverage and mutation score more than 10% on average in comparison with only
using manual test sets. In addition, one drawback of manual test data generation is very
costly. Therefore, automatic generation of test data is highly recommended. In [34], Singh
addressed the meaning and usefulness of automated test data generation. He reviewed the
practical applicability of existing automated methods of expected output generation. Finally,
he claimed that the existing work is very basic and preliminary in nature. Therefore, the
demand for generating expected outputs is extremely essential to support for automated
testing. Mutation analysis is an effective approach to assess the performance of test sets
based on the ability to find faults. These things motivate us to apply mutation criteria
to create an automatic tools for generating the efficient test data for Simulink models. To
support for providing useful test cases, Xu et al. [42] proposed an adaptive fitness function
based on branch hardness. That work showed its effectiveness and efficiency compared to
similar studies. However, the authors did not show how their approach might be automated
and to which field of applications it can be applied. In contrast, we study a meta-heuristic
algorithm to generate test data automatically. Besides to branch coverage, mutation criteria
is also an effective manner to generate test sets. In [35], Souza et al. introduced an
automated test generation approach for strong mutation using hill climbing. In general,
empirical results on 18 C programs showed the low mutation scores because hill climbing
is a local optimal algorithm. Meanwhile, our work aims to utilize a global optimization
technique, i.e. genetic algorithm, to obtain better mutation scores. Another research carried
out by Paduraru et al. [30] presented a parallel implementation of a genetic algorithm in
Apache Spark to reduce time for test data generation for executable programs with a given
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fitness function. Their method of fitness evaluation is based on some “probabilities” that
certain branch conditions occur in some order. This means that their approach is only used
for structural testing with no concentration on improving the ability to fault discovery of test
inputs. Meanwhile, other literature such as [28] pointed out that mutation testing is shown to
subsume most structural criteria, and it is more effective than structural testing. Hence, the
goal of our study is to combine an improve genetic algorithm with mutation criteria aiming
to generate test sets that are more likely to uncover potential faults in Simulink models.

Genetic algorithm (GA) [18] is one of the most popular meta-heuristic search algorithms.
It mimics the evolutionary processes in nature: a population of initially randomly generated
candidate solutions is evolved using genetic operations such as crossover, mutation, and
selection. The evolutions are guided by a fitness function that heuristically measures how
good a candidate solution is. The fitness of the individuals would be gradually improved
through generations, and the search process stops when an optimal solution has been found,
or when some other predefined stopping conditions (e.g. the maximum number of generations
or fitness evaluations) have been met.

Using the genetic algorithm in conjunction with structural coverage has received much
attention in research. Xanthakis et al. [41] presented the first work applying the genetic
algorithm to generate test data. In their work, GA is used to generate test data for structures
not covered by the random search method. A path is chosen by the user, and the relevant
branch predicates are extracted from the program. The GA is then used to find input data
that satisfy all branch predicates at once, with the fitness function summing branch distance
values. In [32], Peng and Lu used the user session data in their request dependence graph
to generate test cases by applying GA. Girgis [10] proposed a structural oriented automatic
test data generation technique that uses the GA guided by the data flow dependencies in
the program to carry out the all-uses criterion. The program under test is converted into a
Control Flow Graph where each node represents a block in the program, and the edges of the
flow graph depict the control flow of the statements. Roper et al. [33] developed a system to
automatically generate test data to achieve a high level of coverage for C programs using the
GA. The system creates an initial population of random data based on a description of the
input data then performs an iterative search based on the GA, which involves running this
data and measuring its coverage. The GA is not only used to generate data for the code level
structural testing but also applied for high level models. Derderian et al. [8] applied the GA
to generate test data for the Finite State Machine (FSM) with temporal constraints. The
fitness function was based on the number of temporal constraint violations committed by
each candidate input sequence. Lefticaru and Ipate [20] proposed an application of the GA
to generate test input that is executed along a specific path in an extended FSM, drawn from
UML models. Windisch [38] adopted the GA in order to generate the continuous input signal
for real-time Simulink/Stateflow models based on the branch coverage criterion. Ghani et
al. [9] used the GA and the Simulated Annealing (SA) for the Switch block path coverage of
Simulink models. They reported that the GA and SA algorithms achieved similar coverage,
but the GA was more often successful. Oh et al. [29] have also introduced a messy-GA for
the transition coverage of Simulink models.

In addition to structural coverage, mutation coverage is also an effective criterion to sup-
port for test data generation. Bottacy [4] proposed a fitness function for genetic algorithms
based on the constraints defined by DeMillo and Offutt [7] to generate mutation-based test
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data. Louzada et al. [21] proposed the generation and selection of test data evolved by a
GA that uses a mutation score as a fitness function. The mutation score is found by running
the mutants of the program generated from the benchmarks used. Haga and Suehiro [11]
proposed a method that automatically generates test cases based on the genetic algorithm
and the mutation analysis for C programs. Their method combines the random generation
and refinement. Each test datum is randomly generated in the first step, and then a set of
test data is refined by the genetic algorithm. In Hage and Suehiros study, mutation scores
were used to measure the adequacy of the test data set. Last et al. [19] used the fuzzy based
the extension of the GA approach for test case generation. The aim is to find a minimal set
of test data that is likely to expose faults using mutated versions of the original program.

In [17], a GA was proposed to generate test data for Simulink models. An individual
is considered as a set of tests, and a roulette wheel selection technique [3] is used to select
individuals for reproduction. In this approach, individuals are selected with a probability
that is directly proportional to their fitness values. The fitness in our work is computed
based on the total number of mutants killed by all the tests that belong to an individual.
The best individual is retained in each generation before performing crossover and mutation.
After performing the double point crossover, a mutation operator will be done with the
pre-defined mutation probability. For each locus mutated, the test data in this locus are
replaced by other ones. After a number of generations, the algorithm will return the best
individual of population which kills the most mutants. This approach has some limitations
such as requiring much memory, and spending a lot of time generating test data as well as
the quality of test data being not high.

When applying the GA to the generation of test data based on mutation testing, the
authors in [2], and [25] represented each individual as a set of tests. This representation
faces some restrictions as described above. This paper proposes an improved GA with some
modifications in the individual representation to overcome these restrictions. Most studies
of test data generation applying the conventional GA in [9, 41, 11, 2, 25, 24, 36] used single
crossover to create two offspring from two selected parents. With this crossover, offspring are
not quite different from their parents because the genetic materials of the parents are passed
on to the offspring. If the test data are distributed in a wide space, it takes a long time
to find out the right test data killing the mutants. A new three-parent crossover method is
employed in this paper to generate three new offspring to improve the effectiveness of the
GA. A new diversity operator is also proposed to enable the algorithm to escape from the
local optima. It replaces the existing mutation approach which simply chooses a gene and
replaces it randomly as in [9, 17, 41, 11, 2, 25, 24, 36]. The details of the approach will be
presented in the next section.

4. THE IMPROVED GENETIC ALGORITHM FOR TEST DATA
GENERATION

Genetic Algorithms, which were proposed in [17, 2, 25], represented each individual as
a set of test data. In each genetic generation, these test sets have to be executed on the
entire of mutants in order to specify the fitness of each individual. This representation uses
a lot of memory and increases the execution time of the algorithm. From this analysis, this
paper proposes the Improved Genetic Algorithm (IGA), which is the combination of the
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conventional GA and the memory mechanism. In mutation testing, no single test case can
kill all mutants, so a good solution is a set of tests killing the most mutants. Therefore, a
memory set is employed in order to achieve a good individual through genetic generations.
The employment of the memory concept for the conventional GA has led to the change of
the individual representation and genetic operators such as crossover and mutation.

4.1. Mutation-based test data generation problem

The statement of the mutation-based test data generation problem is as follows.
Suppose:

• MUT is the Simulink model under test;

• V is the number of inputs of MUT;

•
−→
X = {x1, x2, ..., xv} is a test datum of MUT.

So that, Lk ≤ xk ≤ Uk, xk ∈ R(k ∈ [1, V ]).
where Lk is a lower limit, and Uk is an upper limit of the input xk, R is a set of real

numbers.
We need to find

S = {−→x1,
−→x2, ...,

−→xv},

so that Killed(S) is maximal, and n is minimal in G genetic generations of the IGA, where S
is the memory set that contains the individuals which are able to kill mutants, and Killed(S)
is the number of killed mutants by S. In other words, mutation-based test data generation is
a process that injects syntactic mutations into the model under test MUT, and then generates
from the MUT a set of mutants M . The purpose of this activity is to seek a set of test cases
S that is able to kill most of the mutants in M . This means that the test cases make each
mutant m ∈ M generate outputs that differ from those of the original model MUT. Each
test datum in S is a vector of input data whose the dimensionality is equal to the number of
inputs of MUT. In order to reduce the execution time of the mutation testing process, the
number of test data in S must be optimized as much as possible.

Our approach represents each individual in the IGA by a test datum
−→
X instead of a set

of tests. This representation uses less memory than the GA in [2, 25]. For each genetic
generation, a good solution will be added to S. A good solution to the problem is a test
datum which can kill at least one mutant which was not killed by any other solutions in S.
After a number of genetic generations, S will be returned as the set of test data which is
able to kill as many mutants as possible.

4.2. Fitness function for mutation-based test data generation

In order to select the good individuals to reproduce, the roulette wheel selection technique
[3] is used based on their fitness. This paper proposes a new fitness function using the number
of “hard-to-kill” mutants that each individual killed in the current generation. As the IGA
uses a memory set to archive the best individuals in each genetic generation, the fitness
function for each individual in the current population is computed based on the number of
alive mutants in the current generation.
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Table 2. Example of computing fitness function
M1 M2 M3 M4 M5 f

X1 1 0 1 0 1 3.699
X2 1 1 1 0 0 3.504
X3 0 0 1 0 1 2.613
X4 1 1 0 1 0 5.102
X5 0 1 0 0 1 2.613
X6 1 1 0 0 0 2.295
X7 1 0 1 0 0 2.295
δm 1.086 1.209 1.209 2.807 1.404

f(
−→
Xi) =

M∑
m=1

(αm · δm), (1)

αm =

{
1, if

−→
X i kills mutant m

0, else,
(2)

δm =

{
0, NoTm = 0

log(NoTm)T, else,
(3)

where T is the number of individuals in the current population, M is the number of alive mutants

in the current genetic generation, NoTm is the number of individuals that can detect mutant m.
−→
Xi

is the ith individual in the population, and f is the fitness function.
An example of computing the fitness function is illustrated in Table 2. Given 5 alive mutant

M1, ...,M5 of the current genetic generation having 7 individuals X1, ..., X7, if mutant Mj is killed
by individual Xi, then the element at row i, and column j is 1. Otherwise, it is 0.

Individuals with higher value of f have more chances to be selected to generate the new generation.
In this example, X4, X1, and X2 are more likely to be selected than the remaining individuals.

4.3. A multi-parent crossover operator for the improved genetic algorithm

In this paper, the multi-parent crossover (MPC) is proposed with the following steps:

1. Using the Roulette Wheel Selection algorithm to select three distinct individuals in the current
population;

2. Ranking these three individuals from the best
−→
X 3 to the worst

−→
X 1 based on their fitness

functions;

3. Generating a random number α from the standard uniform distribution in the interval of

[0, 1];

4. Generating three offspring:
−→
O 1 =

−→
X1 + α · (

−→
X2 −

−→
X3), (4)

−→
O 2 =

−→
X2 + α · (

−→
X3 −

−→
X1), (5)

−→
O 3 =

−→
X3 + α · (

−→
X1 −

−→
X2), (6)

where f(
−→
X1) ≤ f(

−→
X2) ≤ f(

−→
X3).
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In [40], Wright proposed a heuristic crossover, in which one offspring
−→
O is generated from two

parent individuals
−→
X 1 and

−→
X 2, such that

−→
O =

−→
X 1 + rand ·

−→
X 2, where rand is a number between 0

and 1, and f(
−→
X 1) ≤ f(

−→
X 2). This crossover uses two parents. Our approach is inspired by Wrights

heuristic crossover but three parents are used instead of two. Equations 4 and 6 are designed to move
towards better fitness for child individuals while Equation 5 is to diversify the population.

4.4. A mutation operator for the improved genetic algorithm

In addition to the crossover operation, the mutation operator [18] used to maintain genetic diver-
sity from one generation of a population of individuals to the next. The mutation operator helps to
prevent the premature convergence of population in the GA as well. The mutation of an individual
strongly depends on the choice of representation for an individual. In [23], Malhotra et al. described
some techniques that were used to create the mutation for each individual such as binary encoding
mutation, permutation encoding mutation, value encoding mutation, and tree encoding mutation. As
mentioned above, each individual in this work is a real-number vector of test data for the Simulink
model under test. In this section, a new mutation operator in real encoding for the genetic algorithm
is proposed to enhance the diversity of population. This operator is built by combining information
from generated offspring, individuals in the current memory set S and individuals in the parent pop-
ulation P . Suppose that MR is mutation probability, and O = {o1, o2, ..., oj , ..., oV } is the mutated
offspring. The individual O is then mutated as follows:
∀i ∈ {1..V }, V is the number of inputs of Simulink model, and x is a uniform random number in

[0, 1]. If x < MR then

oi =


0, z < 0.1

y · oi + (1− y) · pki , y = rand(0, 1), 0.1 ≤ z < 0.5

ski , 0.5 ≤ z ≤ 1

(7)

where z is a random number in the range of [0, 1], P k = {pk1 , pk2 , ..., pkV } is a randomly selected
individual in the parent population P ; Sk = {sk1 , sk2 , ..., skV } is a randomly selected individual in the
current memory set S.

From the experiments in our previous work, it is recognized that some mutants of Simulink
models are detected when the input value is 0. It is difficult for inputs to get the value of 0 because
input spaces are vast, and test data are randomly generated in the initial population. For the
mutation operator of the IGA, thus, some input values are assigned to 0 with a given probability.
The individuals in the memory set are the best individuals that kill the mutants of the Simulink model
in the current genetic generation. It is expected that the use of information of these individuals for
the mutated individuals will create better individuals. The values of parent individuals are also used
to increase the diversity of child population. The diversity of the mutation operator will help the
IGA avoid getting stuck in a local minimum.

4.5. The improved genetic algorithm for test data generation for Simulink mod-
els

Algorithm 1 presents the IGA for test data generation for Simulink models. In the IGA, first an
initial population is randomly generated with popSize individuals (line 2 ). Then, the fitness of each
individual in the current population is computed using equation 1 (line 4 ). The best individuals in
the current population are added to S (line 5-6 ). These individuals can kill at least one mutant which
was not killed by any other individuals in S. Next, three distinct individuals are selected respectively
(line 11-13 ), and the crossover and mutation operators as described above are applied before creating
three offspring until the size of child population is equal to popSize (line 14-18 ). After that, the
fitness of individuals in the child population is computed (line 20 ), and the best individuals are
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Algorithm 1 The IGA for test data generation for Simulink models
Require: Initial population size (popSize), number of generations (numGen), mutation rate (MR).
Ensure: A set of test data for the Simulink model under test.
1: begin
2: population ← InitPopulation( popSize);
3: S ← Ø //Initialize the empty memory set to store the best individuals
4: ComputeFitness(population);
5: BestInd ← SelectBestIndividual(population);
6: ArchiveBestIndividual(BestInd, S);
7: g ← 0
8: while g < numGen do
9: popChild← ∅ ; // Create an empty child population
10: while size(popChild) < popSize do
11: I1 ← Select(population);
12: I2 ← Select(population);
13: I3 ← Select(population); //I1 6= I2 6= I3
14: MultiParentCrossover(I1, I2, I3;O1, O2, O3);
15: O1 ←Mutate(O1,MR);
16: O2 ←Mutate(O2,MR);
17: O3 ←Mutate(O3,MR);
18: popChild← Combine(O1, O2, O3, popChild);
19: end while
20: ComputeFitness(popChild);
21: BestInd← SelectBestIndividual(popChild);
22: ArchiveBestIndividual(BestInd, S);
23: population← popChild;
24: g = g + 1; // Next genetic generation
25: end while
26: S ← Optimize(S);
27: return S ;
28: end

added to memory set S (line 21-22 ). The child population then becomes a new population for the
subsequent evolution. The IGA continues until the termination criterion such as the maximal number
of generations is met. Finally, a set of the best individuals will be returned after being optimized
(line 26-27 ). The method to optimize the memory set of best individuals is presented in the next
subsection.

4.6. Optimizing memory set

It is found that the final set of all the memorized test data may not be minimal since the algorithm
only saves the best individuals of one generation, and it omits information to guide the process of
minimizing the number of test data in the memory set through the generations. The minimization
can be done in a separate phase once the IGA finishes. A boolean matrix, called A, is built with
rows being test data, and columns being mutants. Aij = 1 means that the ith test data kills the jth

mutant, and Aij = 0 means that it does not. Then, this matrix is optimized by reusing the algorithm
proposed in [16] in order to create the minimal test set.

5. EXPERIMENTATION

The proposed approach is implemented in the MuSimulink tool [13] to generate test data for
Simulink models. Four models from [9] and the Quadratic v2 model from [44] are used to assess our
approach. The experiments are conducted on a PC AMD Operon Dual-Core 2.27 GHz with 4 GB
memory, running the Windows Server 2008 operating system. Mutants for each model are generated
by using the set of mutation operators in [15] presented in Table 1.
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5.1. Research questions

The aim of our experimental work is to assess the effectiveness of the IGA in comparison with
the GA, Artificial Immune System (AIS), and Simulated Annealing (SA) algorithms as shown in [12]
in terms of criteria as follows:

• How the mutation score can be enhanced by using the IGA. The higher mutation score is, the
better algorithm is.

• How the time of generating test data is reduced when employing the IGA compared with the
conventional GA, SA, and AIS algorithms. With the same mutation score, which algorithm
gives higher mutation score in less runtime will be better.

• How the effectiveness of using the memory set mechanism can contribute to reducing the
number of executed mutants.

The number of mutants executed against test data for each algorithm in order to achieve an
expected mutation score reflects the efficiency of algorithms in reducing the execution time. Mutation
testing is a computationally expensive testing technique. The most expensive computation parts of
the mutation process are original execution, mutant execution, and output comparison for each test
input [27]. Therefore, if the number of executed mutants is reduced then the execution time will
decrease significantly. This criterion is used to assess the efficiency of the IGA and the GA to
highlight the advantages of the improved tasks.

5.2. Experiment parameters

Each algorithm has its own parameters that influence its performance in terms of the solution
quality and the processing time. The population size is a pivotal parameter which have a great effect
on the effectiveness of all population-based algorithms such as the genetic algorithm. To obtain the
most suitable parameter values that suit the test problems, different settings were experimented. The
parameter values were changed one by one, and the results were monitored in terms of the solution
quality based on the mutation score and the execution time. As a result, the most appropriate
settings of the population size parameter popSize = 1000, and the number of genetic generations
numGen = 10 for the IGA were considered during the experiments. As mentioned above, each
individual in the original GA is represented as a set of test cases, thus in order to ensure algorithms
to be comparable with each other in terms of the number of executed mutants, the number of tests
in the initial population must be equal. While the size of population of the IGA had been 1000,
and each individual of the IGA had been a test datum, extensive experiments were run in order to
determine the most appropriate settings of the population size, and the number of test cases per
each individual for the GA in order to the multiplication of these two parameters was 1000. After
experimenting with various values, a population size of 25 individuals, and an individual size of 40
test cases were used for the GA. The similar experiments are also carried out with the AIS and the
SA following the parameters of each algorithm presented in [12]. The final parameter values adopted
for each of algorithms are given as follows.

GA Configuration The following is a summary of our experiments parameters.

• The initial population size: 25

• The number of test cases per each individual: 40

• The number of generations: 10

• The crossover rate: 0.9

• The mutation rate: 0.5
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Table 3. The obtained mutation score by algorithms

Model No. of mutants
Mutation Score (%)

IGA GA AIS SA
SmplSw 92 95.65 95.65 96.74 94.57

Quadratic v1 161 88.82 86.33 88.82 87.58
RandMdl 188 97.34 86.17 94.68 88.30

Tiny 144 93.06 84.72 93.06 88.89
Quadratic v2 140 82.14 75.71 80.57 75.71

SA Configuration The SA has some parameters as follows:

• The value of temperature reduction function: 0.95

• The initial temperature:1000

• The number of test data per solution: 1000

• The maximal number of iterations: 10

AIS Configuration The AIS depends on some configuration parameters as below:

• The number of iterations: 10

• The size of population: 1000

• The number of best individuals that are selected to proliferate: 40

• The user-defined parameter about the number of clones created for each selected member: 4

• The number of new randomly generated antibodies to replace the lowest affinity antibodies in
the population: 40

IGA Configuration The IGA depends on the following parameters:

• The initial population size: 1000

• The number of generations: 10

• The mutation rate: 0.1

5.3. Experiment 1

This experiment aims to show the superiority of the IGA compared with other algorithms includ-
ing conventional GA, SA, and AIS.

Each model was executed at least 10 times per each algorithm to obtain statistically significant
results. For each execution, the algorithms were performed with the same input domain description
for the Simulink model under test. The same parameters including the number of iterations, and the
number of tests in the initial population are used for four algorithms. The number of tests in each
genetic generation is balanced. The most appropriate measures of the algorithm effectiveness are the
time taken to generate test data and the mutation score achieved. A more effective algorithm will
achieve a higher mutation score in less time. The results, which are presented in Table 3, are the
averaged mutation scores within 10 execution times for each model.
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Table 4. The execution time and the total number of executed mutants on experiments

Model
Time (s) No. of executed mutants

IGA GA AIS SA IGA GA AIS SA
SmplSw 7790.849 9042.871 6850.845 9160.547 132000 181730 120000 181890

Quadratic v1 14457.963 15258.735 12872.125 15129.236 341000 370229 327000 367580
RandMdl 12743.943 16691.729 13185.634 15925.423 302000 483192 315000 454690

Tiny 11028.495 16904.719 10230.589 14690.482 253000 378297 246580 361630
Quadratic v2 21131.584 23706.108 21290.543 23547.361 428000 560998 430750 542820

It can be observed that the IGA is stable, and it has significantly improved the number of killed
mutants compared to the GA and the SA. Generally, the IGA kills on average approximately 6% and
4% more mutants than the GA and SA do respectively. The average mutation score by using the
IGA is slightly higher than that of using the AIS (about 0.6%). In particular, the IGA kills more
mutants than the GA and the SA do in all models, while the number of killed mutants by using the
IGA is higher than that of using the AIS in two models Quadratic v2 and RandMdl. It also can
be seen that the number of killed mutants is the same when adopting the IGA and the AIS in two
models Tiny and Quadratic v1. By using the manual analysis, we find that both models RandMdl
and Quadratic v2 are complicated with many hard-to-kill mutants. This points out that the IGA is
an effective algorithm compared with the other algorithms.

In the IGA and AIS algorithms, the memory set is employed to archive the best individuals in each
genetic generation, and this memory set is automatically evolved through generations. Therefore, we
do not need to initialize the number of test data for the memory set as we did for each individual
in the GA and the SA. This mechanism contributes to the increase of the mutation score for the
model under test. Other reasons which explain the effectiveness of the IGA are the use of the new
fitness function, the multiple parent crossover and the new mutation operator compared to the fitness
function using mutation score in the GA, AIS, and SA algorithms in previous works.

Table 4 presents the execution time and the total number of executed mutants for each algorithm
on case studies within 10 genetic generations.

As for the number of executed mutants, the individuals of the GA and SA algorithms have to
be executed against the entire number of generated mutants of the model. In contrast, for each
genetic generation of the IGA and AIS algorithms, test cases are executed against only mutants that
are alive in the current generation by maintaining a memory set to save test data being able to kill
mutants as well as eliminating the killed mutants in previous genetic generations. Thus, the total
number of executed mutants, and the execution time of the IGA and AIS algorithms are always less
than those of the conventional GA and SA ones. In addition, the number of executed mutants also
depends on the nature of algorithms and the parameter configurations, so the number of executed
mutants by using the IGA is lower than the figure for the AIS in several models such as RandMdl
and Quadratic v2, while it is higher than that of using the AIS in other models. Fig. 2 presents the
total number of executed mutants of four algorithms.

In terms of the execution time, the IGA is faster than the conventional genetic algorithm and
the SA. However, the execution time of the IGA is less than that of the AIS in only two models
Quadratic v2 and RandMdl. In the test data generation process, all algorithms must execute mutants
to compute the mutation score. The number of executed mutants reflects the time the algorithm takes.
The number of executed mutants shown in Table 4 indicates its relationship with the execution time.
The fewer number of executed mutants is, the less execution time is.

5.4. Experiment 2

This experiment assesses the performance of the IGA compared to the conventional GA to point
out the efficiency of the improved algorithm version in terms of the number of executed mutants for
each algorithm. In experiment 1, both models RandMdl and Quadratic v2 are complicated, and they
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Figure 2. Comparing the total number of executed mutants of algorithms

generate many hard-to-kill mutants, so the number of generated mutants in both these models is
much higher than that of other models when employing the GA. Therefore, we use the RandMdl and
Quadratic v2 models to evaluate the performance of the IGA compared with that of the GA in this
experiment. The results for other models are as similar as the typical results illustrated below. Fig.
3 and Fig. 4 show the number of mutants executed to achieve at least a specific mutation score for
two Simulink models.

During the initial stages, the number of executed mutants is low for both algorithms. When the
mutation score increases, the number of mutants needed to be executed to improve the mutation
score increases dramatically for the GA before increasing for the IGA. In early iterations of both
algorithms, weak mutants are killed by test data easily resulting in a large increase in the mutation
score with few mutants executed. However, in the later genetic generations, only hard-to-kill mutants
are remaining. It is difficult to generate test data to kill these mutants. Thus, more mutants are
executed before a test being found to improve the mutation score. This is the reason why the number
of executed mutants rises rapidly to reach a high mutation score.

In the conventional GA, an individual is represented as follows I = {a1, a2, ..., ai, ..., an} where ai
is the ith test datum, n is the total number of tests in an individual. When this individual executes
against M mutants generated by the model under test, the test datum ai just executes on the mutants
that are not yet killed by the test data from a1 to ai−1. Therefore, the total number of mutants which
are executed by the individual I is fewer than M × n. In the initial generation of the IGA, each test
datum must be executed with M mutants. Thus, if the population has got n individuals then M ×n
mutants need to be executed. That is why the number of executed mutants in initial generations
of the IGA is greater than that of the GA. For the GA, in the subsequent genetic generations, the
number of executed mutants of each individual is the same as the initial generation because each
test datum of the individual has to execute against M mutants in each generation. In contrast, the
number of executed mutants of the IGA decreases through generations because only the alive mutants
are executed, and mutants killed by the test data which are stored in memory set are not executed
on the test datum of the individual in the current generation. In addition, the weak mutants are
considerably killed through initial generations, so the number of alive mutants needs executing on
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Figure 3. The number of mutants executed to achieve at least a specific mutation score for RandMdl
model

the test data will decline significantly in the next generation of the IGA. This is the outstanding
feature in the use of the memory set to store the test data that are able to kill mutants and to remove
the killed mutants from the set of mutants which needs to be executed in each genetic generation.
Therefore, while the total number of executed mutants of the GA increases dramatically, the figure
for the IGA rises much more slowly when increasing the number of genetic generations.

The graphs also show that the IGA is able to generate more hard tests in fewer executions, leading
to higher mutation scores for the same number of executions. In other words, the IGA needs fewer
executions to achieve the same mutation scores. These results show that the IGA is more effective
than the GA.

Although the obtained results are promising, the tests cannot kill all generated mutants because
of several reasons:

• Equivalent mutants are neither identified nor excluded from the experiments. This is because
knowing what mutants are equivalent requires the previous execution of all the mutants, fol-
lowed by the searching for the equivalent ones among the alive ones.

• In this approach, the fitness function orients to whole mutants, so it does not guide the search
process by assessing the distance to the test, which is able to kill specific mutants, from current
test. Thereby, if a model has many hard-to-kill mutants, the mutation score is not very high.
For these reasons, we continue to study a more effective fitness function in further work.

• Four algorithms IGA, AIS, SA, and GA depend on configuration parameters. Thus, many
experiments are necessary to determine the most appropriate combination.

5.5. Threats to validity

The threats to validity should be taken into consideration throughout any empirical study. Wohlin
et al. [39] discussed four main types of validity threats: conclusion, internal, construct, and external.
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Figure 4. The number of mutants executed to achieve at least a specific mutation score for the
Quadratic v2 model

This paper compares the Improved Genetic Algorithm to the conventional Genetic Algorithm,
the SA, and the AIS in terms of the mutation score, the execution time, and the number of executed
mutants. Threats to conclusion validity focus on how sure we can be that the treatment used in
an experiment is really concerned with the actual outcome we observed. Since test data generation
techniques use genetic algorithms, and the initial population of these algorithms is usually randomly
generated, the experiments may deliver different results. To cope with this problem, we carried out
each experiment 10 times, and we followed rigorous statistical procedures to assess the results. Ten
runs were a rule-of-thumb limit proposed by Ali et al. in [1].

Threats to construct validity are on how the performance of a testing technique is defined. We
measured the performance of IGA, AIS, SA, and GA algorithms in terms of the mutation score of the
obtained test sets. However, this performance measure is hard to manually evaluate the generated
test cases (i.e. to check the correctness of the outputs between the original model and the mutant
model on test cases), because of the large number of generated mutants from the model under test.
The difficulty in the manual assessment of the generated test cases might affect to the accuracy of
the obtained results.

Threats to internal validity might come from factors that have an impact on the outcome, in par-
ticular poor parameter settings. To deal with this problem, many extra-experiments were conducted
to choose the appropriate parameters for the algorithms. The complete description of parameter val-
ues is presented in the experimental section to help other researchers can reproduce easily. However,
due to the time limit, the tests which were run in the experiments may not be long enough. This can
result in the incompleteness of the obtained results. In addition, threats might come from how the
empirical study was carried out. To reduce the probability of having faults in our testing framework,
it has been carefully tested. Nevertheless, it can be known that testing alone cannot prove the absence
of defects.

With regard to external validity threats, this is an arduous issue, as generalized results depend
on whether the models under test are representative of the targeted application domain and whether
the faults taken into account are representative of real faults [1]. To cope with this problem, our
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set of mutation operators at the design level for Simulink models is proposed by investigating the
most common faults made by designers. Furthermore, experiments in this paper were run on several
different Simulink models which contain the common blocks in the Simulink library used for many
industrial models. Those models were manually chosen. However, to reduce the threat to validity,
many further experiments should be carried out on large industrial models in the consequent studies.

6. CONCLUSION AND FUTURE WORK

Mutation coverage is an effective criterion that is able to support test data generation. This
paper proposed the Improved Genetic Algorithm with the modifications in individual representation,
the way of computing fitness function, the multi-parent crossover method, and the new mutation
operator to generate test data for Simulink models based on mutation testing. Each individual is
represented in the IGA by a test instead of a set of tests in the GA and SA, and the best individuals
are stored for each genetic generation into the memory set. Three-parent crossover is also used instead
of double points, and the new mutation operator is proposed to enhance the diversity of population.
The fitness of each individual is computed based on the alive mutants in the current generation. The
experimental results indicated that the IGA outperformed the GA, SA, and even AIS in terms of the
number of killed mutants and the execution time.

Future work focuses on improving the fitness function towards a specific mutant in order to
increase the effectiveness for the process of searching for test data. We are also going to carry out
more experiments to determine the influence of the IGA configuration parameters on results as well
as finding a way to automatically adjust these parameters in the search process.
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