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Abstract. The paper deals with a formulation of an analytical control model for optimal power flow

in an islanded microgrid (MG). In an MG with load change, wind power fluctuation, sun irradiation

power disturbance, that can significant influence the power flow, and hence the power flow control

problem in real life system faces some new challenges. In order to maintain the balance of power flow,

a diesel engine generator (DEG) needs to be scheduled. The objective of the control problem is to

find the DEG output power by minimizing the total cost of energy. Using the Bellman principle, the

optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time

and system states, and ultimately, leads to a feedback control or to the so called energy management

to be implemented in a SCADA system.

Keywords. Microgrid, photovoltaic, wind power, diesel power, optimal power flow, Hamilton-

Jacobi-Bellman equation, distributed generation.

1. INTRODUCTION

Due to climate change, renewable electricity such as wind and solar actually plays an

important role in providing electrical energy to islands such as microgrid, distributed gener-

ations (DGs) have been installed using small-scale power generation technologies and rapidly

increased in many countries at lower cost and higher efficiency. However, the uncontrollable

nature of wind, solar power as well as load change raises uncertainty for power system opera-

tion on one hand, the integration of DGs and the information and communication technology

(ICT) into the system is still complex on the other hand. To deal with these issues, the ex-

amination of impact of distributed generation on the power fluctuations from penetration

of wind, photovoltaic power is presented in [14, 15, 18]. In the works [4, 6, 17], the authors

have considered the hybrid power system whose the energy storage/thermal unit has a high

potential for providing regulation power to meet the reverse requirements. Recently, one of

important works presented in [16], which examines the optimal problem as the investigation

of optimal power flow by adopting the interval algebra and optimization in which the wind

power is defined in range of values. Thus the DC power flow problem can be formulated

as a non-convex and nonlinear programming. In consequence, to ensure system reliability,

the forecasting uncertainty must be considered in short time, for instance twenty-four hours.

More importantly, the contribution in [16] is a landmark for class of optimal power flow prob-

lem. Concerning the load flow problem which is typically formulated as a set of non-linear
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equations based on constraints of bus voltages has taken some advantage. Such stochastic

demand has been developed and presented in [9, 19, 21], those authors used stochastic, fuzzy,

and probability programming techniques to model the uncertainties. Although the works in

[9, 19, 21] have been specified to load flow problem with some algorithms, the aforementioned

methods are typically dependent on probability model. Furthermore, probability model is

really not the real world because it is built from data availability and stochastic nature of

the uncertainty in the past and it can not predict accurate probability in the future. The

research in all these directions was based on non-convex, and non-linear programming and

the DG units are always available. Moreover, in the industrial systems the power system

is the most complex for installation, integration, and operation. In fact, the operation of

these DG units have different scenarios, that is not because of the strategies of the electricity

producer but because of the needs of the customers. Therefore, there are some uncertainties

to solve as stochastic modeling of system that becomes of great interest. In order to deal

with uncertainties, their sources must be considered at small-scale time such as a certain

hour of the day that may affect the modeling and evaluation of the system capacity.

In this paper, we investigate the power flow under uncertainties by minimizing the cost

of electricity production. Therefore utilizes the energy balance equation in real time to

formulate the optimal power flow problem as optimal control problem of a linear system by

using dynamic programming. To do this, it will be expedient to derive an algorithm similar

to the Bellman principle where the optimality conditions satisfy Hamilton-Jacobi-Bellman

equations, and the value function is convex. In addition, one of the principle reasons for

introducing feedback into an optimal control for power flow problem is to make the resulting

system relatively insensitive to fluctuations that can deal with uncertainties of power system

considered.

2. STUDY OBJECT

In this study, we consider the hybrid power system on the island AC microgrid including

AC loads, photovoltaic (PV), wind turbine generator (WTG), and diesel engine generator

(DEG). Figure 1 shows the configuration of an island MG.

As in Figure 1, the system consists of three DG units, that is DG1 (as synchronous

generator), DG2 (as asynchronous machine), and DG3 (PV source). The DGs are connected

to AC bus by power electronic devices used synchronization as AC sources as DEG, WTG,

and PV with invert DC voltages into AC called inverter. In addition, PV and WTG are

stochastic sources, for they are either locally dispatchable or non-dipatchable and make use

of non-controllable primary energy source. On the other hand, the DEG is used for the

conversion of mechanical energy into electrical energy as dispatchability [12]. We summarize

the characteristic of considered MG in the Table 1.

In what follows, we describe the modeling of the considered microgrid. First of all, the

total power generation of DGs satisfies the demand

PDEG(t) + PWTG(t) + PPV (t) = D(t), (1)

where D(t) refers to the load demand at time t; PWTG(t) is the non-dispatchable (WTG)



182 DIEP THANH THANG, NGUYEN PHUNG QUANG, NGUYEN DUC HUY

�

�

�

�

�

�

PV

Diesel Engine 
Generator (DEG)

Wind Turbine 
Generator (WTG)

 Load

Inverter

Bus

D
G

1
D

G
2

D
G

3

Figure 1. Simplified schematic of an islanded microgrid

Table 1. Classification of MG

No Description Dispatchability Stochastic
1 Diesel engine generator •
2 Wind turbine generator •
3 Photovoltaic •
4 Load •

output power generation at time t; PPV (t) is the non-dispatchable PV output power genera-

tion at time t; and PDEG(t) is the dispatchable DEG output power generation at time t. As

mentioned in Table 1, the produced power by PV and WTG depends on the environmental

conditions, and the demand depends on the power consumption habits. Hence, the fluctu-

ations in loads, PV, and WTG output power are adjusted by control in the DEG output

power. Therefore, the expression of the power balance in equation (1) for randomness in

such DG associated with demand can be described as follows

PDEG(t) = D(t)−
(
PWTG(t) + PPV (t)

)
. (2)

The power generation of DEG must evolve the fluctuations in loads and DGs in equation

(2). In literature the optimal power flow (OPF) problem has been investigated based on

linear and non-linear programming such as [1, 4, 5, 6, 11, 16]. In contrary, we will formulate

the considered problem as an optimal control one in order to find out the optimal policies

for operation of microgrid in the next section.
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3. MATHEMATICAL FORMULATION

In this section, we consider an optimal control problem for the system described in

Section 2, and assume that the DEG is always available in continuous time. The problem

is considered in finite time (i.e., 0 < T < ∞) in order to find the DEG output power.

Clearly, to formulate a new model, we shall assume that the power generation in the real

time, and let X(t) be the difference between cumulative production and cumulative demand,

called surplus at time t if X(t) is positive and backlog if X(t) is negative. They satisfy the

one-dimentional differential equation

dX(t)

d(t)
= U(t)−

(
D(t)−

(
PWTG(t) + PPV (t)

))
, (3)

dX(t)

d(t)
= f

(
t,X(t), U(t)

)
, (4)

and the constraint

PWTG
min (t) ≤ PWTG(t) ≤ PWTG

max (t), (5)

PPV
min(t) ≤ PPV (t) ≤ PPV

max(t), (6)

PDEG
min (t) ≤ PDEG(t) ≤ PDEG

max (t), (7)

where U(t) = PDEG(t) is the control variable in equation (2) and U(t) ∈ R+ = [0,+∞) in

[kW ], PWTG(t), PPV (t) and PDEG(t) are within their forecasted upper bounds PWTG
max (t),

PPV
max(t), PDEG

max (t) and lower bounds PWTG
min (t), PPV

min(t),PDEG
min (t) (in [kW ]), X(t) is energy in

[kWh] and X(t) ∈ R = (−∞,+∞), f(t,X,U) is the state function and satisfies the Lipschitz

condition ∣∣∣f(t,X1, U)− f(t,X2, U)
∣∣∣ ≤ Kp|X1 −X2| (8)

where Kp is constant.

The behavior of the state variable X(t) will be specified shortly in the subsection 3.2.

Let us define cost function (cost-to-go or cost-to-arrive) by

J(t,X;U) =

∫ T

t
G(s,X(s), U(s))ds, (9)

where G(t,X(t), U(t)) is the running cost function: G(.) = C+X+ +C−X− with C+ repre-

senting a unit surplus cost at time t, C− the unit backlog cost at time t, X+ = max(X, 0),

and X− = min(0,−X).

Thus, the function J(t,X;U) is called an overall cost of the system. To simplify things,

we make the following assumptions in this paper to describe the hybrid power system:

(A.1) The total power generation satisfies the power demand in finite time considered T ,

i.e, at any time t
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PDEG(t) + PWTG(t) + PPV (t) ≥ D(t).

(A.2) The stochastic power values D(t), PWTG(t) and PPV (t) are forecasted values in [kW ].

Definition 3.1.

(1) A control variable Y (t,X) =
{
U(t,X) = U(t) ≥ 0

}
is called an admissible control ;

(2) A control Ω(t,X) is the set of admissible control Y with initial vector X(t) = X.

Our motivation is to obtain admissible control U(t,X) ∈ Ω(t,X) that optimizes the cost

function (9). In what follows, we will build the model that satisfies the contrary (3-8) and

optimization of (9) by using the dynamic programming approach.

We formulate the power flow problem defined above. Under appropriate conditions,

the optimal control policy is to satisfy (3-8) in order to determine the OPF U(t,X) which

minimizes the cost function described in (9). These policies are characterized by a target

production level subject to capacity constraints.

We denote by v(t,X) the value function, i.e.

v(t,X) = inf
U(.)∈Ω(t,.)

J(t,X;U). (10)

This function will be used to establish the optimality conditions. For simplicity in the

presentation of the model, we use only the sign v(t,X). Based on the dynamic programming

principle, the following theorem is used for the generalization of the value function in (10).

Theorem 3.1. Control problem satisfies the system of partial differential equations

v(t,X) = inf
U(.)∈Ω(t,.)

{
G(t,X,U)+vt(t,X)+

(
U(t,X)− (D(t)−PWTG(t)−PPV (t))

)
vx(t,X)

}
(11)

at time t the initial and boundary conditions are satisfied

X(t) = X for (t,X) ∈ Q,
v(T,X(T )) = 0,

(12)

where the terms vt(t,X) and vX(t,X) denote the gradient of value function with respect to

time t and state variable X, respectively, and Q = [t0, T ]× R.

Proof. The proof of this theorem is developed in [13] as well as in [2]. �

The following theorem presents the necessary and sufficient conditions for which an op-

timal solution exists.

Theorem 3.2. Let v(t,X) ∈ Q be a solution to (8). Then for all (t,X) ∈ Q

(i) For every admissible control system U(t,X)

v(t,X) ≤ J(t,X;U) (13)



NOVEL CONTROL APPROACH FOR OPTIMAL POWER FLOW... 185

(ii) If there exists an admissible system U∗(t,X) such that

U∗(t,X) ∈ argmin
U(.)∈Ω(.)

{
G(t,X,U) + f(t,X,U)vX(t,X)

}
(14)

almost everywhere in t, then v(t,X) = J(t,X;U∗), and U∗(t,X) is the optimal solu-

tion.

Proof. The Proof of this theorem is developed from the results in page 8 of [7]. �

Remarks. The system of partial differential equations (11) is known as the Hamilton-Jacobi-

Bellman (HJB) equations associated with optimal control problem under study. The optimal

feedback control (11) is designed to drive the system to the optimal point (hedging point or

balance point), and corresponds to the value function described by equation (11). Then, when

the value function v(t,X) is available, an optimal policy can be obtained as in equation (14).

However, an analytical solution of equation (11) is so hard to find. Thus, the numerical

solution of HJB equation (14) adopted from Kushner’s method [10] is represented in the

section 4.

3.1. The feedback control

Let w(t) be the random parameter such as the stochastic wind power, demand, or solar

radiation (called disturbance or noise dependent on context). Let µ
(
t,X(t)

)
be the mapping

of U(t,X) such that µ
(
t,X(t)

)
∈ ω(t,X) . In the equation (3), the disturbance w(t) may

consist of D(t), PWTG(t), and PPV (t). Hence, the feedback control of (3) is represented in

the Figure 2.

( ) ( ) ( )( ),. , ,X t f t X t U t=ɺ

System( ) ( )( ),U t t X tµ=

( )( ),t X tµ

( )   (if any)w t

Disturbance

( )      X t =

( ) ( )( )
0

0 , . , .
t

t

X f s X U ds+ ∫

X(t0)=X0

Figure 2. The closed-loop policies [2]
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3.2. Behavior of cumulative production

By definition, the energy in equation (3) whose value is described as follows

X(t) = X0 +

∫ t

t0

[
U(t,X)−

(
D(s)−

(
PWTG(s) + PPV (s)

))]
ds. (15)

In the Figure 3, there are three regions: (1) the total power generation is more than

the demand in the interval [t1, t2], (2) it is less than the demand when t < t∗, and (3) it is

probably in equality in the interval (t∗, t1). The balance point (hedging point) is at time t∗

where the production meets the demand.

Cumulative 
Electricity Production 

and Demand

t

( ) ( )
0

( , )
t

WTG PV

t

U s X P s P s ds 

+ +

 

 

∫

( )
0

t

t

D s ds∫

t1 t2

-

+

Figure 3. Energy production strategy*

(*this behavior is modified from Gershwin’s framework in [8] for the case of production

control with stochastic events.)

4. NUMERICAL APPROACH

In this section, we develop the numerical method for solving the optimality conditions

represented in the previous section. This method is based on Kushner’s approach [10]. By

adopting the algorithm in [3], the HJB equation (11) which includes the gradient of value

function of v(t,X) can be solved. Let ∆X > 0 and ∆t > 0 denote the length of the finite

difference interval of the variable X and t respectively. The first-order partial derivatives of

the value functions vt(.) and vx(.) in equation (11) are replaced by the following expressions

vt(t,X) =
v(t+ ∆t,X)− v(t,X)

∆t
, (16)

vt(t,X) =


v(t,X+∆X)−v(t,X)

∆X if f(t,X,U) ≥ 0,

v(t,X)−v(t,X−∆X)
∆X otherwise.

(17)
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Using ∆X and ∆t, and after manipulations, the HJB equations can be rewritten as follows

v∆(t,X) = min
U∆(.)

[
G(.) +

v∆(t+ ∆t,X)− v∆(t,X)

∆t

+
(
U∆ − (D − (PWTG + PPV ))

)(±)v∆(., X ±∆X)∓ v∆(.)

∆X

]
.

(18)

The next theorem shows that v∆(t,X) is an approximation to v(t,X) for small step size

∆X.

Theorem 4.1. Let v∆(t,X) denote a solution to HJB equation (18). Assume that there are

constants Cg and Kg such that

0 ≤ v∆(t,X) ≤ Cg

(
1 + |X|Kg

)
(19)

then

lim
∆→0

v∆(t,X) = v(t,X). (20)

Proof. The proof of this theorem is adopted from the one in [20] for the case of deterministic

control problem. �

In this study, we make use of the policy improvement technique to obtain a solution of

the approximating optimization problem. Let G∆
X and G∆

U be the grids of the states and

control vectors belonging to the control space, the algorithm is represented as follows:

Step 1 (Initialization): Choose ε ∈ R+. Let k = 1 and vk∆(t,X) = 0, (t,X) ∈ [t0, T ] ×G∆
X

and Uk ∈ G∆
U (initial policy).

Step 2 : For a given Uk ∈ G∆
U , compute

vk−1
∆ (t,X) = vk∆(t,X),∨(t,X) ∈ [t0, T ]×G∆

X .

Step 3 : Compute the corresponding value function to obtain the control policy U
(
t,X(t)

)
.

Step 4 : Convergence test

δmin = min
∣∣∣vk∆(t,X(t)

)
− vk−1

∆

(
t,X(t)

)∣∣∣,
δmax = max

∣∣∣vk∆(t,X(t)
)
− vk−1

∆

(
t,X(t)

)∣∣∣.
If |δmax − δmin ≤ ε|, then stop, else k = k + 1 and go to the Step 2.

5. NUMERICAL EXAMPLE

The proposed model in Section 3 is for application of hybrid wind / photovoltaic / diesel

engine generator generation system such as follows:



188 DIEP THANH THANG, NGUYEN PHUNG QUANG, NGUYEN DUC HUY

DG3

DG1

DG2

Bus

D(t)

PPV(t)

PWTG(t)

PDEG(t)

Figure 4. Energy production strategy*

Table 2. Parameters of optimal power flow model

No Description Lower Upper

1 Time interval [h] 0 24

2 WTG power [kW] 0 500

3 PV power [kW] 0 600

4 DEG power [kW] 1000 3500

5 Load demand [kW] 0 3500

6 C− Backlog cost [$/kWh] 10 -

7 C+ Surplus cost [$/kWh] 1 -

Figure 5. The power flow of MG

Figure 4 presents the power flow of microgrid including DG1 as DEG, DG2 as WTG,

and DG3 as PV.

In this example, the forecast of load demand, PV power, and wind power generations are
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Figure 6. Wind power forecast [kW]

Figure 7. Demand forecast [kW]

represented in Figures 5-7. The constraints of system parameters in equations (4-7) for MG

are presented in the Table 2, these parameters also obey the Assumptions A.1 and A.2.

The results are illustrated in Figures 8-9. Figure 8 represents the optimal production of

DEG output power versus time t in the interval [0, 24h]. Figure 9 represents the cumulative

electricity production of MG and the load demand versus time t. This figure shows that, the

effectiveness of optimal control gives the birth to optimal power flow of MG that satisfies

the load demand, thus the characteristic is linear instead of being non-linear as in Figure 3.

6. CONCLUSIONS

The problem which has been considered in this paper has main objective: optimal power

flow control with uncertain power injection. We have formulated a new model as a stochastic

control problem by adopting Bellman framework in order to solve production problem with
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Figure 8. Optimal output power of DEG [kW]

Figure 9. Cumulative production [kWh]

minimizing the surplus cost. The optimality conditions have been established by using

dynamic programming as Hamilton-Jacobi-Bellman equation. According to the results, the

proposed model makes considered system joint between the optimal power flow and optimal

control problem. The new proposed model enables us to solve the supply-demand balancing

problem in islanded microgrid that allows interoperability and autonomy on the energy

management so called SCADA system. We applied our proposed model to a real life system

of an island MG at small-scale with demand, PV power, and WTG power forecast, and the

DEG output power is control variable. The results of test system have demonstrated the

effectiveness of the proposed method. In the future work, we make use of probability models

for unpredictable data such as the stochastic sources (PV and wind power).
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