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Abstract. Vehicle routing is a class of combinatorial optimization problems in transportation

and logistics. Min-max capacitated vehicle routing is a problem of this class in which the length

of the longest route must be minimized. This paper investigates local search approach for solving

the min-max capacitated vehicle routing problem with different neighborhood structures. We also

propose a combined function instead of the objective function itself for controlling the local search.

Experimental results on different datasets show the efficiency of our proposed algorithms compared

to previous techniques.
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1. INTRODUCTION

A large number of applications involve sets of clients that must be served by vehicles
located at a common depot. Problems which optimize the selection of routes for the vehicles,
are referred to as vehicle routing problem [27, 19]. Solving these problems is very hard and
is still an active research topic which attracts the attention of many computer scientists
due to their impact to the society and the economy. Many variants of vehicle routing
applications have been studied in the literature, for example, Capacitated Vehicle Routing
problem (CVRP) [32], Min-Max Vehicle Routing Problem (MMVRP) [1], Vehicle Routing
Problem with Time Windows (VRPTW) [9], etc.

We consider in this paper the Min-Max Capacitated Vehicle Routing Problem (MM-
CVRP). The goal of this problem is to ensure that all clients are served as soon as possible
such that the total load of each vehicle does not exceed a predefined value. Due to the
hardness of MMVRP, a simpler variant of this problem, MMCVRP is a NP-hard problem
[2].

Figure 1 illustrates an example of MMCVRP with 3 clients 1, 2, 3 and the depot 0. The
demand of each client is 2. There are two vehicles in which the capacity of each vehicle is
5. In this example, there are 6 solutions (see Figure 1). Among these 6 solutions, the best
solution is the solution 2 (Figure 1b) with the objective 5.
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Figure 1. Illustrating example of MMCVRP

1.1. Problem formulation

This section describes the formulation of the min-max capacitated vehicle routing prob-
lem.

Input The input consists of following elements:

• N : number of client points

• C = {p1, . . . , pN}: client points

• K: number of vehicles

• si, ti: starting and terminating points of vehicle i (∀i = 1, . . . ,K). In case all vehicles
depart and return to the same depot, si, ti refer to this physical depot

• ci: the capacity of vehicle i,∀i = 1, . . . ,K

• T = {t1, . . . , tK}: set of terminating points of vehicles

• B = {s1, . . . , sK}: set of starting points of vehicles

• D = B ∪ T : set of starting and terminating points of vehicles

• V = C ∪D: set of all points

• cp,q: the distance from point p to point q, ∀p, q ∈ V
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• dp: the demand of client point p (∀p ∈ V ). dp = 0,∀p ∈ D by convention.

Variables

• Decision variables xp: the successor of point p in the solution. Domain of xp is V \ B
(∀p ∈ V \ T )

• Auxiliary variables lp: represents accumulated demand on the route visiting point p
from the starting point of this route until p (∀p ∈ V ).

• Auxiliary variables tdp: represents total distance on the route containing p from the
starting point of this route to p (∀p ∈ V )

• Auxiliary variables Ip: represents the index of route containing point p (∀p ∈ V )

• Auxiliary variables f : represents the length of the longest path of the solution

Constraints
Isi = i,∀i = 1, . . . ,K (1)

Iti = i,∀i = 1, . . . ,K (2)

Ixp = Ip, ∀p ∈ V \ T (3)

lxp = lp + dp,∀p ∈ V \ T (4)

tdxp = tdp + cp,xp , ∀p ∈ V \ T (5)

lti ≤ ci,∀i = 1, . . . ,K (6)

f ≥ tdti , ∀i = 1, . . . ,K. (7)

Constraints 1, 2 define the index of route containing starting and terminating points of
this route. Constraint 3 specifies that a point and its successor must be in the same route.
Constraints 1, 2, and 3 ensure that each client is serviced exactly once. Constraints 4 and 5
specify the relation between accumulated demand and distance of two consecutive points on
the same route. Constraint 6 is the capacity constraint. Constraint 7 describes the objective
function of the problem.

Objective function. The objective function to be minimized is f .

1.2. Related works

Dantzig and Ramser were the first scientists who introduce the “Truck Dispatching Prob-
lem” in [7], modelling how a fleet of homogeneous trucks could serve the demand for oil of a
number of gas stations from a central hub and with a minimum travel distance. This became
known as the ’Vehicle Routing Problem’ (VRP), one of the most widely studied topics in the
field of Operations Research. The study conducted by Eksioglu et al. in [12] revealed 1021
journal articles with VRP as the main topic, published between 1959 and 2008. The number
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of solution methods introduced in the academic literature (for old as well as new variants
of the VRP) has grown rapidly over the past decades. Moreover, the processing speed and
memory capacity of current computers has increased significantly, enabling to solve larger
instances of the VRP which spurs the progression in the research field and the development
of commercial software for the VRP. According to a recent survey [22], thousands of com-
panies, among others Coca-Cola Enterprises and Anheus-Bush Inbev, nowadays use VRP
softwares.

CVRP differs from MMCVRP when its objective is to minimize the total length of routes.
The practical importance of this problem leads to much motivation for the effort involved in
the development of heuristic algorithms [16, 30] and exact algorithms [3, 14]. In [3], Baldacci
et al. have described a branch-and-cut algorithm that is based on a two commodity network
flow formulation of the CVRP. The algorithm proposed in [14] is very consistent on solving
instances from the literature with up to 135 customers. For the latest research on CVRP,
we refer to the researches [30, 4, 24, 34, 29].

VRPTW is an extension of CVRP when it considers additionally time window con-
straints that the clients must be served within predefined time windows. The most interest
meta-heuristics used to solve the VRPTW are Tabu search (TS), genetic algorithm (GA),
evolutionary algorithms (EA) and ant colony optimisation algorithm (ACO) [26]. Meta-
heuristic controls local search processes, such as tabu search [5, 11], simulated annealing [6],
genetic algorithms [31], . . . . Meta-heuristics controlling a subordinate construction heuris-
tic, such as the greedy randomized search procedure (GRASP) proposed by [25], the RNET
meta-heuristic [28] and multiple ant colony systems as proposed by [15]. [21] proposed an
exact algorithm for the multiple vehicle routing problem with time windows.

Vehicle Routing Problem with Pick-up and Delivery (VRPPD), which models a real-life
problem, is much more complicated than the classical VRP. The problem arises in practice
when items need to be transported from the depot to customers and also need to be picked
up at customers and brought back to the depot. There are many works that focus on solving
this problem, for example in [17] the authors proposed a neighborhood search heuristics to
optimize the planned routes of vehicles.

The min-max vehicle routing problem without capacity constraint (MMVRP) have been
considered in the literature. Applegate et al. [1] proposed a branch and cut algorithm for
solving this problem. Incomplete algorithms have also been proposed, for instance, approx-
imation algorithm [2], neighborhood search algorithms [8, 13, 23], a genetic algorithm [33].
For the min-max capacitate vehicle routing problem (MMCVRP), Golden et al. proposed an
algorithm [18] which consists of four distinct steps: initial CVRP solutions, generation of new
CVRP solutions, recombination of CVRP solutions, and generation of MMCVRP solutions.
Most recently, authors of [10] proposed a local search algorithm for solving MMCVRP using
2 kinds of neighborhoods: one-point move and cross-exchange move which will be detailed
later.

In this paper, we propose a local search algorithm for solving MMCVRP. Our algorithm
exploits various neighborhood structures proposed in the literature. Moreover, we propose
to use a combined function for controlling the search instead of the objective function itself.
This combined function will be shown to be efficient in the experiments. The paper is
organized as follows. Section 2 describes the proposed local search algorithm. Section 3
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presents the experiments. Section 4 concludes that paper and draws some future works.

2. PROPOSED LOCAL SEARCH ALGORITHMS

We describe in this section the proposed local search algorithm for solving MMCVRP.
We start by presenting different neighborhoods proposed in the literature.

2.1. Neighborhoods

The neighborhoods we consider in our algorithm are described in [20] including one-point-
move, two-point-move, two-opt-move, or-opt-move neighborhood, three-opt-move, three-
point-move, cross-exchange neighborhoods. Due to lack of space, we do not present in
detail these neighborhoods. Interested readers can refer to [20] for more detail about these
neighborhood structures.

2.2. Local search algorithms

Before describing the local search algorithm, we propose a combined function that will
be used as the quality function for controlling the search and which is described below.

2.2.1. Quality function

One of the core of a local search algorithm is a function F that models the quality of
solutions. This function is also used to control the local search. Basically, F is the objective
function itself, i.e., the length of the longest route among K routes of the solution. In this
paper, we propose to combine in a lexicographic order the objective function and the total
length of K routes into the control function F . The motivation for this combined function
is explained as follows. The solution consists of K routes in which there might be several
routes having the same longest length. A local move on a solution may change only one
or two routes, thus cannot reduce the lengths of all longest routes of the solution. In this
situation, the objective function cannot differentiate neighbors and the current solution (the
presence of a plateau). By combining the objective function and the sum of lengths of K
routes to establish the control function F , a best local move with respect to F may keep the
objective function unchanged but reduce the total length of K routes (the number of longest
routes may reduce). This bring opportunity to reduce the objective function in subsequent
best local moves. As the min-max vehicle routing problem has a constraint on the capacity
of vehicles, the satisfaction of this constraint must be prioritized most. To this end, the
control function F consists of three components in a lexicographic order: the violations of
the capacity constraint, the original objective function and the sum of lengths of K routes.

Formally, given a solution s = {r1, . . . , rK} to the min-max vehicle routing problem which
consists K routes r1, . . . , rK , we denote

• td(ri) the length of route ri

• l(ri) the total demand of clients on route ri
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• f(s) = maxi=1,...,K{td(ri)} the objective function of the problem

• v(ri) = max{0, l(ri)− ci} the violations of the capacity constraint related to route ri

• v(s) =
∑K

i=1 v(ri) the violations of the capacity constraint

• t(s) =
∑K

i=1 td(ri) the total length of the solution

• F (s) = 〈v(s), f(s), t(s)〉 the quality function.

The function F is treated in a lexicographic order: given two solutions s1 and s2, we denote
F (s1) < F (s2) if:

• v(s1) < v(s2) or

• v(s1) = v(s2) and f(s1) < f(s2) or

• v(s1) = v(s2) and f(s1) = f(s2) and t(s1) < t(s2).

2.2.2. Local search

The proposed local search is depicted in Algorithm 1. It receives C as a set of client points,
si and ti are the starting and terminating points of the route of vehicle i (∀i = 1, . . . ,K),
L is a list of considered neighborhoods, and a control function F that measures the quality
of solutions. The initial solution is generated in line 1 which will be detailed in Algorithm
2. Line 2 updates the best solution found so far s∗. At each iteration of the local search,
line 5 shuffles that order of the neighborhoods of L. Lines 8–13 iteratively explore these
neighborhoods. Each neighborhood exploration (see Algorithm 3 for more detail) will return
a set of selected neighbors S which have the same quality evaluation e. The neighborhood
exploration will terminate whenever it discovers a first neighbor which is better than the
current solution s (lines 10–12). Line 14 replaces the current solution by a randomly selected
neighbor of S. If the selected neighbor is better than the best solution found so far s∗, then s∗

is updated (lines 15–16). Otherwise, the search augment the number of consecutive iterations
nic in which no improvement is found by 1. The search will be restarted if nic exceeds a
given parameters maxStable (see lines 20–23).

Algorithm 2 depicts the method for generating an initial solution. The initial solution
is generated in a greedy constructive manner. The algorithm receives a set of starting and
terminating points (si, ti) of K routes (∀i = 1, . . . ,K), a set C of client points, a control
function F that measures the quality of solutions, and returns a set of K routes visiting
all clients C. The algorithm initializes K routes without any client points (lines 2–4) and
iteratively inserts greedily a selected client point to one of the K routes. Cand records the
most potential candidates, each candidate is represented by a pair of two points 〈p, q〉 (p
will be inserted right after point q in the current solution). Lines 10–11 scan all candidates
〈p, q〉 in which S is the set of client points having not been in the solution and R is the set
of points in the solution after which we can insert other client points. Line 12 computes a
new solution s′ by inserting p right after q in the current solution s. If the quality of s′ is
better than the best evaluation e∗, then all candidates in Cand will be replaced by the new
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candidate 〈p, q〉 (lines 13–15). Otherwise, if the quality of s′ is equal to the best evaluation
e∗, then this candidate will be added into Cand (lines 17–19). Lines 23–26 select randomly
a candidate from Cand for the insertion and update S, R.

Algorithm 3 depicts a procedure that explores a given neighborhood. The procedure
receives a neighborhood N and a set S of potential solutions which have been already found
so far (i.e., by exploring previous neighborhoods), and returns a new set of best solutions and
their evaluation. It scans all solutions of the considered neighborhood N and keeps track of
the set of best solution with respect to the function F .

Algorithm 1. LSMMCVRP((s1, t1), . . . , (sK , tK), C,L, F )

Input:

• (s1, t1), . . . , (sK , tK) in which si and ti are the starting and terminating points of the
route of vehicle i

• C: set of client points

• L: list of neighborhoods

• Control Function F that measures the quality of solutions

Output: Set of K routes
1 s←GenerateInitialSolution((s1, t1), . . . , (sK , tK), C, F );
2 s∗ ← s;
3 nic← 1;
4 while time limit is not expired do
5 Shuffle(L);
6 S ← {};
7 e←∞;
8 foreach neighborhood Ni in L do
9 〈S, e〉 ← Explore(Ni, S, e);

10 if e < F (s) then
11 BREAK;
12 end

13 end
14 s← select(S);
15 if F (s) < F (s∗) then
16 s∗ ← s;
17 nic← 1;

18 else
19 nic← nic+ 1;
20 if nic > maxStable then
21 s←GenerateInitialSolution((s1, t1), . . . , (sK , tK), C, F );
22 nic← 1;

23 end

24 end

25 end
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Algorithm 2. GenerateInitialSolution((s1, t1), . . . , (sK , tK), C, F )

Input: (s1, t1), . . . , (sK , tK) in which si and ti are the starting and terminating
points (logical points) of the route of vehicle i. They refer to the same
physical depot of the given problem

Output: set of K routes
1 S ← C;
2 R← {s1, . . . , sK} ;
3 foreach do
4 ri ← 〈si, ti〉;
5 end
6 s← {r1, . . . , rK};
7 while S 6= � do
8 Cand← {};
9 e∗ ←∞;

10 foreach p ∈ S do
11 foreach q ∈ R do
12 s′ ← AddOnePoint(s, p, q);
13 if F (s′) < e∗ then
14 Cand← {〈p, q〉};
15 e∗ ← F (s′);

16 else
17 if F (s′) = e∗ then
18 Cand← Cand ∪ {〈p, q〉};
19 end

20 end

21 end

22 end
23 〈p∗, q∗〉 ← select(Cand);
24 s← AddOnePoint(s, p∗, q∗);
25 S ← S \ {p∗};
26 R← R ∪ {p∗};
27 end
28 return s;
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Algorithm 3. Explore(N,S, e)

Input:

• N : a neighborhood

• S: set of solutions collected by exploring other neighborhoods so far

• e: evaluation of solutions in S

Output: S: set of new solutions and an evaluation e
1 for si ∈ N do
2 if F (si) < e then
3 S ← {si};
4 e← F (si);

5 else
6 if F (si) = e then
7 S ← S ∪ {si}
8 end

9 end

10 end
11 return 〈S, e〉;

3. EXPERIMENTS

Table 1. Comparison between N2 and NMCF on Christophides instances

Instances N2 NMCF ρ
min max avg avg t (s.) min max avg avg t (s.)

E-n7-k2.vrp 54.00 54.00 54.00 0.00 54.00 54.00 54.00 0.00 0.00
E-n13-k4.vrp 74.00 74.00 74.00 0.32 74.00 74.00 74.00 1.44 0.00
E-n22-k4.vrp 110.00 110.00 110.00 2.03 110.00 110.00 110.00 3.62 0.00
E-n23-k3.vrp 242.00 244.00 243.90 7.11 243.00 244.00 243.45 27.35 0.18
E-n30-k4.vrp 164.00 164.00 164.00 2.97 164.00 164.00 164.00 2.17 0.00
E-n30-k3.vrp 192.00 206.00 201.30 10.42 191.00 195.00 192.45 10.85 4.40
E-n31-k7.vrp 75.00 83.00 80.10 20.66 71.00 80.00 74.00 47.03 7.62
E-n33-k4.vrp 244.00 245.00 244.50 19.99 244.00 244.00 244.00 11.07 0.20
E-n51-k5.vrp 113.00 121.00 117.35 78.74 112.00 115.00 113.50 67.07 3.28
E-n76-k14.vrp 97.00 112.00 106.00 100.05 90.00 99.00 93.60 27.22 11.70
E-n76-k8.vrp 108.00 129.00 117.70 86.16 99.00 102.00 100.05 94.57 15.00
E-n76-k15.vrp 90.00 96.00 93.65 129.15 88.00 90.00 88.95 61.48 5.02
E-n76-k10.vrp 103.00 122.00 114.75 92.96 95.00 106.00 99.55 31.69 13.25
E-n76-k7.vrp 107.00 129.00 118.20 118.01 105.00 110.00 107.35 120.49 9.18
E-n101-k8.vrp 127.00 151.00 135.15 157.97 112.00 121.00 117.05 69.01 13.39
E-n101-k14.vrp 105.00 116.00 111.40 140.71 100.00 104.00 101.50 68.04 8.89

In this section, we conduct two experiments. The first experiment is to compare our
proposed algorithm and the local search algorithm of [10], the most recently algorithm for
the min-max capacitated vehicle routing problem. The algorithm in [10] employed only
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Table 2. Comparison between N2 and NMCF on Kelly instances

Instances N2 NMCF ρ
min max avg avg t (s.) min max avg avg t (s.)

kelly01.txt 640.89 689.71 653.59 290.74 600.40 619.66 610.41 235.60 6.61
kelly02.txt 940.04 1226.85 1006.36 314.57 906.66 952.29 932.30 266.47 7.36
kelly03.txt 1239.52 1468.87 1301.62 319.30 1180.32 1318.84 1236.44 286.28 5.01
kelly04.txt 1348.06 1668.09 1429.13 358.81 1301.00 1471.14 1363.11 289.77 4.62
kelly05.txt 1442.22 1706.96 1545.20 274.69 1297.90 1431.05 1380.09 151.72 10.69
kelly06.txt 1176.22 1308.42 1234.17 302.15 1130.31 1179.30 1147.70 277.44 7.01
kelly07.txt 1288.99 1455.00 1334.43 319.11 1206.89 1291.04 1259.42 275.13 5.62
kelly08.txt 1232.39 1463.07 1287.31 329.25 1183.47 1292.61 1227.33 272.61 4.66
kelly09.txt 60.66 76.85 63.68 269.75 60.00 60.62 60.07 186.05 5.67
kelly10.txt 69.63 82.63 74.58 305.01 68.00 69.16 68.38 244.31 8.31
kelly11.txt 81.00 102.87 87.24 303.64 76.00 77.60 76.23 260.75 12.63
kelly12.txt 97.13 112.36 104.37 318.97 88.67 99.34 94.70 274.65 9.27
kelly13.txt 43.40 53.30 46.20 187.26 43.07 44.61 43.39 155.64 6.08
kelly14.txt 51.06 74.80 55.60 273.18 49.82 51.98 50.93 281.93 8.41
kelly15.txt 57.98 65.67 62.20 276.39 56.65 60.84 58.02 290.87 6.71
kelly16.txt 67.87 78.92 70.14 300.09 63.30 72.00 66.68 290.42 4.93
kelly17.txt 41.41 65.67 46.93 248.71 39.96 42.26 40.59 250.15 13.51
kelly18.txt 51.24 92.15 64.98 212.32 49.37 51.39 50.08 259.05 22.93
kelly19.txt 65.76 113.89 71.42 282.77 61.89 65.70 63.63 288.53 10.91
kelly20.txt 77.15 96.36 81.78 187.64 76.40 79.66 77.50 288.20 5.24

Table 3. Comparison between NM and NMCF on Christophides instances

Instances NM NMCF ρ
min max avg avg t (s.) min max avg avg t (s.)

E-n7-k2.vrp 54.00 54.00 54.00 0.00 54.00 54.00 54.00 0.00 0.00
E-n13-k4.vrp 74.00 74.00 74.00 0.31 74.00 74.00 74.00 1.44 0.00
E-n22-k4.vrp 110.00 110.00 110.00 4.98 110.00 110.00 110.00 3.62 0.00
E-n23-k3.vrp 242.00 243.00 242.10 20.50 243.00 244.00 243.45 27.35 -0.56
E-n30-k4.vrp 164.00 164.00 164.00 5.55 164.00 164.00 164.00 2.17 0.00
E-n30-k3.vrp 191.00 197.00 192.95 53.72 191.00 195.00 192.45 10.85 0.26
E-n31-k7.vrp 70.00 82.00 77.55 81.80 71.00 80.00 74.00 47.03 4.58
E-n33-k4.vrp 244.00 245.00 244.15 85.87 244.00 244.00 244.00 11.07 0.06
E-n51-k5.vrp 114.00 121.00 118.70 119.50 112.00 115.00 113.50 67.07 4.38
E-n76-k14.vrp 103.00 118.00 111.10 146.64 90.00 99.00 93.60 27.22 15.75
E-n76-k8.vrp 110.00 126.00 118.85 140.44 99.00 102.00 100.05 94.57 15.82
E-n76-k15.vrp 91.00 98.00 94.45 155.69 88.00 90.00 88.95 61.48 5.82
E-n76-k10.vrp 106.00 125.00 117.40 149.21 95.00 106.00 99.55 31.69 15.20
E-n76-k7.vrp 113.00 127.00 119.35 115.85 105.00 110.00 107.35 120.49 10.05
E-n101-k8.vrp 130.00 156.00 141.65 140.07 112.00 121.00 117.05 69.01 17.37
E-n101-k14.vrp 104.00 119.00 113.25 161.05 100.00 104.00 101.50 68.04 10.38

two neighborhood structures: one-point move and cross-exchange move and did not use
the combined control function. We denote N2 this algorithm. Our proposed algorithm
exploits multiple neighborhoods and uses a combined control function. We denote NMCF
our proposed algorithm. All the algorithms have been implemented using the CBLSVR
library of [10], a constraint-based local search library for general vehicle routing problems.
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Table 4. Comparison between NM and NMCF on Kelly instances

Instances NM NMCF ρ
min max avg avg t (s.) min max avg avg t (s.)

kelly01.txt 612.93 656.07 630.63 177.01 600.40 619.66 610.41 235.60 3.21
kelly02.txt 899.67 1041.15 949.12 265.01 906.66 952.29 932.30 266.47 1.77
kelly03.txt 1192.79 1317.13 1250.64 310.34 1180.32 1318.84 1236.44 286.28 1.14
kelly04.txt 1304.34 1531.80 1388.07 354.59 1301.00 1471.14 1363.11 289.77 1.80
kelly05.txt 1394.89 1592.97 1464.86 173.50 1297.90 1431.05 1380.09 151.72 5.79
kelly06.txt 1156.07 1273.24 1217.88 163.16 1130.31 1179.30 1147.70 277.44 5.76
kelly07.txt 1241.57 1304.21 1277.28 281.88 1206.89 1291.04 1259.42 275.13 1.40
kelly08.txt 1193.26 1331.25 1227.02 337.62 1183.47 1292.61 1227.33 272.61 -0.03
kelly09.txt 60.65 65.22 62.04 168.89 60.00 60.62 60.07 186.05 3.18
kelly10.txt 69.09 72.65 70.49 247.25 68.00 69.16 68.38 244.31 3.00
kelly11.txt 77.11 80.02 78.70 310.37 76.00 77.60 76.23 260.75 3.14
kelly12.txt 88.99 101.09 94.43 320.92 88.67 99.34 94.70 274.65 -0.28
kelly13.txt 43.08 51.75 47.48 102.21 43.07 44.61 43.39 155.64 8.61
kelly14.txt 50.04 57.68 53.02 211.42 49.82 51.98 50.93 281.93 3.94
kelly15.txt 56.17 65.18 59.33 238.13 56.65 60.84 58.02 290.87 2.20
kelly16.txt 63.76 71.94 66.76 255.37 63.30 72.00 66.68 290.42 0.12
kelly17.txt 41.48 65.67 45.64 126.34 39.96 42.26 40.59 250.15 11.06
kelly18.txt 50.71 92.15 69.20 123.83 49.37 51.39 50.08 259.05 27.63
kelly19.txt 62.69 84.50 64.63 238.43 61.89 65.70 63.63 288.53 1.54
kelly20.txt 76.29 96.36 79.70 121.05 76.40 79.66 77.50 288.20 2.76

Table 5. Comparison between Golden [18] and NMCF on Christophides, Mingozzi and Toth
instances

Instances Golden[18] NMCF ρ
min max avg avg t (s.) min max avg avg t (s.)

CMT-1-m5.txt 194 225 212.15 150.1815 113 116 115.05 67.69775 45.77
CMT-1-m6.txt 155 186 170.69 151.461 103 103 103 2.65145 39.66
CMT-1-m7.txt 149 161 151.6 146.5 95 95 95 1.1177 37.34
CMT-2-m10.txt 125 128 125.34 135.371 95 109 100.95 12.32805 19.46
CMT-2-m11.txt 115 115 115 129.19 89 94 90.95 31.00855 20.91
CMT-2-m12.txt 113 113 113 125.191 88 93 89.95 17.3704 20.40
CMT-3-m8.txt 204 204 204 186.6735 116 124 119.75 19.8403 41.30
CMT-3-m9.txt 171 171 171 187.0545 107 115 111.1 34.3317 35.03
CMT-3-m10.txt 145 145 145 187.587 104 114 107.25 12.8914 26.03
CMT-4-m12.txt 168 168 168 396.2255 103 114 110.05 62.4103 34.49
CMT-4-m13.txt 139 139 139 390.7615 100 116 106.2 46.9419 23.60
CMT-5-m16.txt 130 130 130 732.64 108 145 121 189.4161 6.92
CMT-5-m17.txt 119 119 119 727.049 101 111 104.2 114.2479 12.44
CMT-11-m7.txt 229 229 229 242.2955 204 227 209.25 72.92035 8.62
CMT-11-m8.txt 219 219 219 242.2375 198 205 199.85 60.28815 8.74
CMT-12-m10.txt 127 127 127 187.2265 121 126 121.75 29.66425 4.13
CMT-12-m11.txt 124 124 124 186.9405 117 121 118.3 35.5866 4.60
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Table 6. Comparison between Golden [18] and NMCF on Fisher instances

Instances Golden[18] NMCF ρ
min max avg avg t (s.) min max avg avg t (s.)

F-n72-m4.vrp 98 104 99 118.756 66 68 67.75 59.95555 31.57
F-n72-m5.vrp 85 91 85.46 117.698 62 64 63.2 12.61015 26.05
F-n72-m6.vrp 67 67 67 118.4605 56 58 56.15 27.10635 16.19
F-n135-m7.vrp 293 293 293 302.084 299 309 300.8 74.22805 -2.66
F-n135-m8.vrp 292 292 292 301.8725 295 299 296.65 49.4305 -1.59

In the second experiment, we compare the performance of the NMCF algorithm and the
algorithm proposed by Gold et al. in [18] on the instances described in that paper. In
this comparison, we did not obtain exactly the same setting of instances that produced the
results presented in [18]. Hence, we re-implemented the algorithm of Golden et al. [18] in
Java programming language.

3.1. Instances and settings

The instances were taken from http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-
instances/ with two data sets. The first data set is from Christofides and Eilon which consists
15 instances. The number of clients in this data set varies from 13 to 101. The second data
set is from Golden, Wasil, Kelly and Chao which consists of 20 large-scale instances. The
number of clients in this data set varies from 200 to 480.

The experiments were conducted on the machine Intel(R) Core(TM)i7-4790 CPU 3.60GHz
with 16GB RAM. Each algorithm was executed 20 times for each instance with the time
limit of 5 minutes.

3.2. Experimental results

The first experimental results are shown in Tables 1, 2, 3, 4. The structure of these
tables are identical. Each table presents the results of two algorithms (the first algorithm is
on the left and the second algorithm is on the right). For example, in Tables 1, 2, columns
2–5 present the minimum, maximum, average of the objective, and the average time to find
best solution value among 20 executions of algorithm N2. Columns 6–9 presents the same
information of algorithm NMCF. The last column of each table presents ρ, the percentage
of improvement of the second algorithm compared to the first algorithm. More precisely,
ρ = f1−f2

f1
× 100 in which f1 and f2 are respectively the average objective values of the first

and the second algorithms in the table.

Experimental results show that in most of the cases, our proposed algorithm gives better
results than N2 in term of minimum, maximum, and average objective value among 20
executions for each instance. In the first data set (Christophides), among 320 executions, our
proposed algorithm NMCF finds better solutions than the algorithm N2 in 200 executions,
while the algorithm N2 finds better solutions in only 3 executions. In the second data set
(Kelly), among 400 executions, our proposed algorithm NMCF finds better solution than N2
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a. Algorithm N2

b. Algorithm NMCF

Figure 2. Evolution of the objective function found by N2 and NMCF over itreration on the
instance E-n101-k14.vrp

in 360 executions, while the algorithm N2 finds better solutions in only 20 executions.

To evaluate the efficiency of using combined control function, we compare our proposed
algorithm NMCF that uses a combined control function and the version that does not use
combined control function (denoted by NM). The comparison is presented in Tables 3 and
4. The tables show that in most of the cases, the NMCF algorithm finds better than NM.

Tables 5 and 6 compares the performance of our proposed algorithm NMCF and the
algorithm proposed by Golden et al. in [18] (denoted by Golden[18]). We observe that in
term of average objective values, the NMCF algorithm finds better result than those found
by Golden[18] in most of the instances except that last two Fisher instances. However, the
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improvement of Golden[18] compared to the NMCF algorithm is not significant.

Figures 2a and 2b present the behaviour of the two algorithms in an execution example.
They plot the value of the objective function and the best objective function found by
algorithms N2 and NMCF over iterations on the instance E-n101-k14.vrp. We can see that
the algorithm NMCF converges faster than the algorithm N2.

4. CONCLUSION

We considered in this paper the min-max capacitated vehicle routing problem and pro-
posed a local search algorithm for solving it. The proposed local search algorithm exploits
most of the neighborhood structures in the literature for vehicle routing problems. Experi-
mental results on different data sets show that our proposed algorithm gives better results
than the most recently algorithm. We also show the advantage of exploiting a combined
control function during the search instead of using the objective function itself. Our future
works focus on other metaheuristics search for solving the min-max capacitated vehicle rout-
ing problem, especially, we analyze and explore different neighborhoods in a dynamic way
including removing ineffective neighborhoods.
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[5] O. Bräysy and M. Gendreau, “Vehicle routing problem with time windows, part i: Route
construction and local search algorithms,” Transportation Science, vol. 39, no. 1, pp. 104–118,
Feb. 2005. [Online]. Available: http://dx.doi.org/10.1287/trsc.1030.0056

[6] W.-C. Chiang and R. A. Russell, “Simulated annealing metaheuristics for the vehicle routing
problem with time windows,” Annals of Operations Research, vol. 63, no. 1, pp. 3–27, 1996.
[Online]. Available: http://dx.doi.org/10.1007/BF02601637

http://dx.doi.org/10.1287/ijoc.14.2.132.118.
http://www.sciencedirect.com/science/article/pii/S0196677405000258.
http://dx.doi.org/10.1287/opre.1040.0111
http://dx.doi.org/10.1287/opre.1040.0111
http://www.sciencedirect.com/science/article/pii/S0377221711006692
http://dx.doi.org/10.1287/trsc.1030.0056
http://dx.doi.org/10.1007/BF02601637


SOLVING MIN-MAX CAPACITATED VEHICLE ROUTING PROBLEM 17

[7] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management Science,
vol. 6, no. 1, pp. 80–91, 1959. [Online]. Available: http://dx.doi.org/10.1287/mnsc.6.1.80.

[8] C. R. Delgado Serna and J. Pacheco Bonrostro, Minmax Vehicle Routing Problems: Application
to School Transport in the Province of Burgos. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 297–317. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-56423-9 17

[9] M. Desrochers, J. Desrosiers, and M. Solomon, “A new optimization algorithm for the vehicle
routing problem with time windows,” Operations Research, vol. 40, no. 2, pp. 342–354, 1992.
[Online]. Available: http://dx.doi.org/10.1287/opre.40.2.342

[10] P. Q. Dung, L. K. Thu, N. T. Hoang, P. V. Dinh, and B. Q. Trung, “A constraint-based
local search for offline and online general vehicle routing,” International Journal on Artificial
Intelligence Tools, vol. 26, no. 1750004, 2016.

[11] M. G. F. G. E. Taillard, P. Badeau and J.-Y. Potvin, “A tabu search heuristic for the vehicle
routing problem with soft time windows,” Transportation Science, vol. 31, no. 2, pp. 170–186,
Feb. 1997.

[12] B. Eksioglu, A. V. Vural, and A. Reisman, “The vehicle routing problem: A taxonomic review,”
Computers & Industrial Engineering, vol. 57, no. 4, pp. 1472 – 1483, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835209001405.

[13] P. M. Frana, M. Gendreau, G. Laporte, and F. M. Mller, “The m-traveling salesman problem
with minmax objective,” Transportation Science, vol. 29, no. 3, pp. 267–275, 1995. [Online].
Available: http://dx.doi.org/10.1287/trsc.29.3.267

[14] R. Fukasawa, H. Longo, J. Lysgaard, M. P. d. Aragão, M. Reis, E. Uchoa, and R. F.
Werneck, “Robust branch-and-cut-and-price for the capacitated vehicle routing problem,”
Mathematical Programming, vol. 106, no. 3, pp. 491–511, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10107-005-0644-x

[15] L. M. Gambardella, ric Taillard, and G. Agazzi, “Macs-vrptw: A multiple colony system for
vehicle routing problems with time windows,” in New Ideas in Optimization. McGraw-Hill,
1999, pp. 63–76.

[16] L. G. P. J.-Y. Gendreau, M., “Metaheuristics for the capacitated vrp,” in The Vehicle Routing
Problem, V. D. Toth, P., Ed. SIAM Monographs on Discrete Mathematics and Applications,
2002, vol. 9.

[17] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Sguin, “Neighborhood search heuristics for a
dynamic vehicle dispatching problem with pick-ups and deliveries,” Transportation Research
Part C: Emerging Technologies, vol. 14, no. 3, pp. 157 – 174, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X06000349

[18] B. L. Golden, G. Laporte, and E. D. Taillard, “An adaptive memory heuristic for a class of
vehicle routing problems with minmax objective,” Comput. Oper. Res., vol. 24, no. 5, pp.
445–452, May 1997. [Online]. Available: http://dx.doi.org/10.1016/S0305-0548(96)00065-2

[19] R. S. W.-E. A. Golden, Bruce L., The Vehicle Routing Problem: Latest Advances and New
Challenges, ser. 43. The address: Springer, 2008.

[20] C. Groer, B. Golden, and E. Wasil, “A library of local search heuristics for the vehicle routing
problem,” Math. Prog. Comp., vol. 2, no. 2, pp. 79 – 101, 2010.

http://dx.doi.org/10.1287/mnsc.6.1.80.
http://dx.doi.org/10.1007/978-3-642-56423-9_17
http://dx.doi.org/10.1287/opre.40.2.342
http://www.sciencedirect.com/science/article/pii/S0360835209001405.
http://dx.doi.org/10.1287/trsc.29.3.267
http://dx.doi.org/10.1007/s10107-005-0644-x
http://www.sciencedirect.com/science/article/pii/S0968090X06000349
http://dx.doi.org/10.1016/S0305-0548(96)00065-2


18 NGUYEN VAN SON

[21] G. Gutirrez-Jarpa, G. Desaulniers, G. Laporte, and V. Marianov, “A branch-and-price
algorithm for the vehicle routing problem with deliveries, selective pickups and time windows,”
European Journal of Operational Research, vol. 206, no. 2, pp. 341 – 349, 2010. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0377221710001700

[22] R. W. Hall. Vehicle routing software survey. [Online]. Available: RetrievedAugust16,2013,
fromhttp://www.orms-today.org/surveys/Vehicle Routing/vrss.html

[23] S. v. E. P. J. Hemel, T. The manhattan project. [Online]. Available: http://www.win.tue.nl/
whizzkids/1996/tsp.html

[24] J. Jin, T. G. Crainic, and A. Lkketangen, “A parallel multi-neighborhood cooperative tabu
search for capacitated vehicle routing problems,” European Journal of Operational Research,
vol. 222, no. 3, pp. 441 – 451, 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S037722171200375X

[25] G. Kontoravdis and J. F. Bard, “A grasp for the vehicle routing problem with time
windows,” ORSA Journal on Computing, vol. 7, no. 1, pp. 10–23, 1995. [Online]. Available:
http://dx.doi.org/10.1287/ijoc.7.1.10

[26] S. Kumar and R. Panneerselvam, “A survey on the vehicle routing problem and its variants,”
Intelligent Information Management, vol. 4, no. 3, pp. 66–74, 2012.

[27] G. Laporte, “The vehicle routing problem: An overview of exact and approximate algorithms,”
European Journal of Operational Research, vol. 59, no. 3, pp. 345 – 358, 1992. [Online].
Available: http://www.sciencedirect.com/science/article/pii/037722179290192C.

[28] F.-H. Liu and S.-Y. Shen, “The fleet size and mix vehicle routing problem with time windows,”
Journal of the Operational Research Society, vol. 50, pp. 721–732, 1999.

[29] R. Liu, Z. Jiang, R. Y. Fung, F. Chen, and X. Liu, “Two-phase heuristic algorithms for full
truckloads multi-depot capacitated vehicle routing problem in carrier collaboration,” Computers
& Operations Research, vol. 37, no. 5, pp. 950 – 959, 2010, disruption Management. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0305054809001968

[30] Y. Marinakis, “Multiple phase neighborhood search-grasp for the capacitated vehicle routing
problem,” Expert Systems with Applications, vol. 39, no. 8, pp. 6807 – 6815, 2012. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0957417412000176

[31] J.-Y. Potvin and S. Bengio, “The vehicle routing problem with time windows part ii: Genetic
search,” INFORMS Journal on Computing, vol. 8, no. 2, pp. 165–172, 1996. [Online]. Available:
http://dx.doi.org/10.1287/ijoc.8.2.165

[32] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter, “On the capacitated vehicle routing
problem,” Mathematical Programming, vol. 94, no. 2, pp. 343–359, 2003. [Online]. Available:
http://dx.doi.org/10.1007/s10107-002-0323-0.

[33] C. Ren, “Solving min-max vehicle routing problem,” Journal of Software, vol. 6, no. 9, 2011.

[34] W. Szeto, Y. Wu, and S. C. Ho, “An artificial bee colony algorithm for the capacitated vehicle
routing problem,” European Journal of Operational Research, vol. 215, no. 1, pp. 126 – 135, 2011.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0377221711005121

Received on November 09 - 2016
Revised on July 25 - 2017

http://www.sciencedirect.com/science/article/pii/S0377221710001700
Retrieved August 16, 2013, from http://www.orms-today.org/surveys/Vehicle_Routing/vrss.html
Retrieved August 16, 2013, from http://www.orms-today.org/surveys/Vehicle_Routing/vrss.html
http://www.win.tue.nl/whizzkids/1996/tsp.html
http://www.win.tue.nl/whizzkids/1996/tsp.html
http://www.sciencedirect.com/science/article/pii/S037722171200375X
http://www.sciencedirect.com/science/article/pii/S037722171200375X
http://dx.doi.org/10.1287/ijoc.7.1.10
http://www.sciencedirect.com/science/article/pii/037722179290192C.
http://www.sciencedirect.com/science/article/pii/S0305054809001968
http://www.sciencedirect.com/science/article/pii/S0957417412000176
http://dx.doi.org/10.1287/ijoc.8.2.165
http://dx.doi.org/10.1007/s10107-002-0323-0.
http://www.sciencedirect.com/science/article/pii/S0377221711005121

	INTRODUCTION
	Problem formulation
	Related works

	PROPOSED LOCAL SEARCH ALGORITHMS
	Neighborhoods
	Local search algorithms
	Quality function
	Local search


	EXPERIMENTS
	Instances and settings
	Experimental results

	CONCLUSION

