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Abstract. Nowadays, with the demand to reflect the real world, we have a number of imprecise

stored business data warehouses. The precise data classification cannot solve all the requirements.

Thus, the fuzzy decision tree classification problem is important for the fuzzy data mining problem.

The fuzzy decision classification based on the fuzzy set theory has some limitations derived from

its innerself. The hedge algebra with many advantages has become a really useful tool for solving

the fuzzy decision tree classification. However, the sample data homogenising process based on the

quantitative methods of the hedge algebra still has some restrictions because of errors evolved and the

resulting tree is not truly flexible. So, the fuzzy decision tree obtained is not always highly predictable.

In this paper, using fuzziness intervals matching with hedge algebra, the authors proposed an inductive

learning method “HAC4.5 fuzzy decision tree” to obtain a fuzzy decision tree with high predictability.
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1. INTRODUCTION

The real world is infinite while our language is limited, and there inevitably appear
phrases that are inexact or ambiguous. Therefore, in practice, the business data warehouses
fuzzily stored are inevitable, so the precise data classification can not solve all the require-
ments. The fuzzy classification problem has been studied by many scientists with different
approaches [1–3, 6, 17, 18, 20–23, 25–27], including fuzzy decision tree classification which is
of great interest due to the intuitiveness and effectiveness of the training model.

1. Zadeh, Chang, Fuller, Hesham, Ishibuchi, Lee George, Wang, Lee, Wei-Yuan Cheng,
Chia-Feng Juang, etc. [4, 5, 7–9, 11, 17, 24, 29–32] has built the fuzzy decision tree based on
the fuzzy set theory. They have provided many solution approaches based on the fuzzy
set theory combined with neural networks, genetics, support vector machines to solve the
limitations of the precise classification problems. However, the shortcomings derived from
the inner nature of the fuzzy set theory still remain.

- It is difficult to simulate the complete language structure that human use for reason-
ing. The ordered structure induced from the fuzzy concepts with the linguistic value is not
indicated on the fuzzy set.

c© 2016 Vietnam Academy of Science & Technology

mailto:lvtlan@yahoo.com


368 LE VAN TUONG LAN

- In the reasoning process, sometimes it is necessary to approximate a linguistic value
with a given fuzzy set.This causes the complexity and errors in the approximation process
that depend on the subjectivity.

2. Zengchang, Jonathan Lawry, Yongchuan Tang, etc. have set the linguistic values
for the fuzzy data set and built a linguistic decision tree (LDT) using the approach of the
ID3 algorithm of the precise decision tree with the nodes corresponding to the linguistic
attributes (LID3) [9, 13,15,24]. However,

- This approach will give rise to a multilevel tree with a large horizontal division at the
linguistic nodes when the linguistic values set of the fuzzy attribute is large (Figure 1), hence
leading to overfitting. In addition, at this node, it is imposible to use the binary division of
the C4.5 algorithm because there is no order between the linguistic values.

Figure 1. Multilevel position according to linguistic values at fuzzy attribute

Table 1. Mushroom data

- Furthermore, with the precise values in the fuzzy attribute domain of the training data
set, a sub-interval of the precise values will be mapped to become a linguistic value, resulting
in more errors.

For example, with Mushroom training data (in Table 1), the classification of Mushroom
for the Habitat and Population attributes has many errors due to the fact that the training
data contain both precise and imprecise data.

3. An approach based on hedge algebra proposed since 1990 by Ho and Wechler has
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several advantages because, in this approach, each linguistic value of a linguistic variable is
an element of the hedge algebraic structure, so it can be matched.

In the hedge algebraic approach, there are homogeneous fields whose data include both
precise data and imprecise data. Ho, Hao, Viet, Son, Long, Nam, ect. [10], [12–16, 19, 28]
have indicated a semantic point-based quantitative method to homogenise the data in terms
of number value or linguistic value and how to query the data on this attribute. Therefore,
the classification on the homogeneous sample set can be learned.

The problem of constructing a fuzzy decision tree can use the algorithms for constructing
the precise decision tree such as C4.5, SLIQ, ect. to learn [21, 22, 25, 26] with the binary
division nodes calculated according to the division points with the linguistic values that are
ordered and completely determined with a corresponding number value in the constructed
hedge algebra.

However, the homogenization process based on the point-based semantic quantitative
method has some errors because a sub-interval of existing precise values will be attributed
to a point, i.e. a corresponding linguistic values; this also causes approximate values to
appear that can be partitioned in two different sub-intervals, resulting in the difference of
data classification. In addition, it is also difficult to predict from the resulting tree in cases
in which the prediction is neccessary, and there is an overlap at the fuzzy division point. For
example, it is neccessary to predict for the sub-interval [x1, x2], in which x1 < x and x2 > x
at the fuzzy division node in Figure 2.

Figure 2. Binary division point in terms of the linguistic value or number value at the fuzzy
attribute with the point-based semantic quantitative method of hedge algebra

In this paper, a fuzzy decision tree learning method with a heterogeneous training sample
set is proposed. This method based on the fuzziness interval matching method in order to
retain the precise value domain while still matching the fuzzy values in the sample training
set with the purpose to minimize errors in the prediction process.

The paper is organized as follows: In the second section, the fuzzy interval matching
method will be recalled. In section 3, the improvement from the HAC4.5 algorithm for fuzzy
data classification will be proposed. Section 4 will be devoted to experiment and discussion.
Some conclusions will be given in Section 5.

2. CONSTRUCTING FUZZINESS INTERVALS MATCHING METHOD
BASED ON HEDGE ALGEBRA

Hedge algebra is an approach to detect the algebraic structure of the value domain of the
linguistic variable. In view of algebra, each value domain of the linguistic variable X can be
interpreted as an algebra X = (X,G,H,≤), in which Dom(X) = X is the term domain of
linguistic variable X generated from a set of primary generators G = {c−, c+} by the impact
of the hedges H = H− ∪H+; W is a neutral element; ≤ is a semantically ordering relation
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on X, it is induced from the natural qualitative meaning of terms. Order structure induced
directly so there is the difference compared to other approaches. When adding some special
elements, then hedge algebra becomes an abstract algebraX = (X,G,H,Σ,Φ,≤), which Σ,Φ
are two operators taking the limit of the set term generated when affected by the hedges in
H. Alternatively, if the symbol H(x) = {h1...px|h1, ..., hp ∈ H}, then Φx = infimum H(x)
and Σx = supremumH(x). Thus, hedge algebra X is built on foundation of hedge algebra
X = (X,G,H,≤), where X = H(G), Σ and Φ are two additional operators. Then X = X ∪
lim(G) with lim(G) is the set of elements limited: ∀x ∈ lim(G), ∃u ∈ X : x = Φu or x = Σu.
The limitation elements are added to hedge algebra X to make the new calculation meant
and so X = (X,G,H,Σ,Φ,≤) called complete hedge algebra. The quantitative semantics
function (ν), fuzziness measure function (fm), sign function (SGN) and the properties of
hedge algebra can be refered to the relevant documents [10,16].

2.1. Definition of fuzziness intervals

Definition 1 [10]. A fuzziness interval of x ∈ X denoted by I(x) is a sub-interval of [0, 1]
and has a length determined by the fuzziness measure of x, i.e. fm(x) = |I(x)|.

For every term x, the fuzziness interval of x ∈ X is a sub-interval of [0, 1] of length fm(x),
denoted by Ifm(x), which will be constructed by induction on the length of x as follows:

i) For x of length 1, i.e. x ∈ {c+, c−}, Ifm(c+) and Ifm(c+) are intervals which constitute
a partition of [0, 1] and satisfy the conditions that c− ≤ c+. This implies Ifm(c−) ≤ Ifm(c+),
|Ifm(c+)| = fm(c+) and |Ifm(c+)| = fm(c+), where |I(x)| denotes the length of I(x), and
the notation U ≤ V means that for ∀x ∈ U,∀y ∈ V , it yields x ≤ y.

ii) Suppose that Ifm(x) has been defined and |Ifm(x)| = fm(x), for all x of length
k (l(x) = k). Then, the fuzziness intervals y = hix, ∀i ∈ [−p,−p + 1, ...,−1, 1, 2, ..., q] (then
l(y) = k + 1) are the set {Ifm(hix)} constructed so that they constitute a partition of Ifm(x)
and satisfy the conditions that |Ifm(hix)| = fm(hix) and set {Ifm(hix)} is a linearly ordered
set, whose order is induced by that of the set {h−qx, h−q+1x, ..., hpx}.

When l(x) = k, I(x) denoted as Ifm(x), Xk = {∀x ∈ X : l(x) = k} is the set of elements
in X that has length equal to k, Ik = {Ik(x) : x ∈ Xk} is the set of fuzziness interval level k.

Definition 2. Two fuzziness intervals are equal, denoted I(x) = I(y), if they are determined
by the same value (x = y), i.e. IL(x) = IL(y) and IR(x) = IR(y), where IL(x) and IR(x)
are the most left and right point of the fuzziness interval I(x). Otherwise, I(x) 6= I(y) is
denoted.

Theorem 1 [10]. Let X = (X,G,H,≤) be a hedge algebra, we have:
i) If sign(hpx) = +1, then

I(h−qx) ≤ I(h−q+1x) ≤ ... ≤ I(h−1x) ≤ I(h1x) ≤ I(h2x) ≤ ... ≤ I(hpx)

and if sign(hpx) = −1, then

I(h−qx) ≥ I(h−q+1x) ≥ ... ≥ I(h−1x) ≥ I(h1x) ≥ I(h2x) ≥ ... ≥ I(hpx)

.
ii) The set Ik = {Ik(x) : x ∈ Xk} is a partition of [0, 1].
iii) For each m is a positive integer, the set {I(y) : y = hmhm−1...h1x ∀hmhm−1...h1 ∈ H}

is a partition of then fuzziness interval I(x).
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iv) The set Ik = {Ik(x) : x ∈ Xk} is smoother than the set Ik−1 = {Ik(x) : x ∈ Xk−1},
i.e. for each interval of Ik is a part of interval Ik−1.

v) If x < y and l(x) = l(y) = k, then Ik(x) ≤ Ik(y) and Ik(x) 6= Ik(y).

Proposition 1. ∀x, y ∈ X, we determine two fuzziness intervals Ik(x) and Il(y). And then
they are either without an inheriting relation, or related to each other if ∃Iv(z) ∈ Iv, v ≤
min(l, k), IL(z) ≤ IL(y), IR(z) ≥ IR(y) and IL(z) ≤ IL(x), IR(z) ≥ IR(x), i.e. Iv(z) ⊇ Ik(x)
and Iv(z) ⊇ Il(y), i.e. x, y are generated from z, x = hin...hi1z, y = kjm...kj1z, ∀hi, kj ∈ H.

2.2. The fuzziness intervals matching

Let X = (X,G,H,≤) be a hedge algebra and an interval value [a, b]. To compare a value
x ∈ X with [a, b]:

- Change [a, b] into a sub-interval of [0, 1] because the fuzziness of x is the sub-interval of
[0, 1].

- To compare a value x ∈ X with a sub-interval of [0, 1], we only consider the intersection
of two corresponding sub-intervals of [0, 1].

From [10], for each x ∈ X, I(x) ⊆ [0, 1] and |I(x)| = fm(x), [Ia, Ib] = [f(a), f(b)] ⊆ [0, 1]
the same to change [a, b] into sub interval of [0, 1].

i) For each [Ia, Ib] if there is x ∈ X so that [Ia, Ib] ⊆ I(x), then [a, b] = |x|x, (see Figure
3).

Figure 3. Relationship in case [Ia, Ib] ⊆ I(x)

ii) For each [Ia, Ib] so that [Ia, Ib] 6⊂ I(x)∀x ∈ X, and with x1 ∈ X and supposed that
x < x1, if |[Ia, Ib] ∩ I(x)| ≥ |[Ia, Ib]|/£ then [a, b] = |x|x, where £ is the number of intervals
I(xi) ⊆ [0, 1] so that [Ia, Ib] ∩ I(xi) 6= ∅, (see Figure 4).

Figure 4. Relationship in case [Ia, Ib] ⊆ I(x).

Otherwise, if |[Ia, Ib] ∩ I(x1)| ≥ |[Ia, Ib]|/£ then [a, b] = |x1|x1, (see Figure 5).
iii) For each [Ia, Ib] and x ∈ X so that [Ia, Ib] ∩ I(x) = ∅ then there is z ∈ X so that

[Ia, Ib] ⊆ I(z) and I(x) ⊆ I(z) then [a, b] = |z|x, (see Figure 6).

Definition 3. Let [a1, b1] and [a2, b2] be two different precise intervals corresponding to two
fuzziness intervals [Ia1 , Ib1 ], [Ia2 , Ib2 ] ⊆ [0, 1]. We say that interval [a1, b1] preceeds [a2, b2] or
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Figure 5. Relationship in case [Ia, Ib] 6⊂ I(x)

Figure 6. Relationship in case [Ia, Ib] ∩ I(x) = ∅

[a2, b2] follows [a1, b1], written as [a1, b1] < [a2, b2] or [Ia1 , Ib1 ] < [Ia2 , Ib2 ] if:

i) b2 > b1 (i.e. Ib2 > Ib1);

ii) if Ib2 = Ib1 (i.e. b2 = b1) then Ia2 > Ia1 (i.e. a2 > a1).
Now, we say that the sequence of intervals [a1, b1], [a2, b2] is the sequence having pre-order

and post-order relations.

Theorem 2. Let [a1, b1], [a2, b2], ..., [ak, bk] be k different paired intervals. Then, it always
yields a sequence of k intervals with post-preorder relations.

Proof

Clearly, for k different paired intervals, such as [a1, b1], [a2, b2], ..., [ak, bk], we always find
a first interval [ai, bi] of the sequence, where ai = min(a1, a2, ..., an).

If there are many intervals [aj , bj ], i = 1..k and aj = ai then we select [ai, bi] as an
interval so that bi is the smallest value of bj . The selection bi is always unique because the
given intervals are different from each other. Thus, if ai = aj , then bi 6= bj (Definition 2).

After having the very first interval [ai, bi] of the sequence, we continue to find the second
interval, etc. After k steps of finding and sorting, it yields the sequence with k intervals, and
the elements of the sequence are sorted according to the post-preorder relation. �

3. HAC4.5 ALGORITHM FOR FUZZY DECISION TREE DATA
CLASSIFICATION PROBLEM

3.1. Introduction

The C4.5, an algorithm improved by Quinlan [9], calculates infomation gain to look for
the division points. The attribute, after being chosen for data classification, is classfied
according to its different values if it is discrete; otherwise, it is neccesary to find a threshold
to split two sub-sets according this threshold if the attribute is continuous.

Because the fuzzy attribute of the training sample set partitioned according to the fuzzy
interval is a sub-interval of [0, 1], and the domain of its values is sorted linearly according to
the post-preorder relation, we can compare to find the threshold of this set of values at any
interval I(x) = [Ia, Ib] ⊆ [0, 1] as the continuous number values in the C4.5 algorithm.
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Finding the threshold to split is also based on the information gain ratio of thresholds
in set D at that node. The information gain ratio of thresholds for attribute A is number
attribute in D at that node.

Suppose that attribute A is a fuzzy attribute partitioned according to the fuzzy interval
and there are k different intervals already sorted according to the post-preorder relation:
[Ia1 , Ib1 ] < [Ia2 , Ib2 ] < ... < [Iak , Ibk ].

It yields that k thresholds are computed: ThHA
i = [Iai , Ibi ], (1 ≤ i < k). At each threshold

ThHA
i , the data set D of this node is divided into two sub-sets: D1 = {∀[Iaj , Ibj ] |[Iaj , Ibj ] ≤

ThHA
i )} andD2 = {∀[Iaj , Ibj ] |[Iaj , Ibj ] > ThHA

i )}.
Then, we have:

GainHA(D,ThHA
i ) = Entropy(D)− |D1|

|D|
× Entropy(D1)−

|D2|
|D|
× Entropy(D2),

SplitInfoHA(D,ThHA
i ) = −|D1|

|D|
× log2

|D1|
|D|
− |D2|
|D|
× log2

|D2|
|D|

,

GainRatioHA(D,ThHA
i ) =

GainHA(D,ThHA
i )

SplitInfoHA(D,ThHA
i )

.

Based on the computed information gain ratio of thresholds, we select the threshold
whose information gain ratio is the biggest to split D into two sub-sets.

3.2. The HAC4.5 algorithm

Input: Training data set D.
Output: Fuzzy decision tree S.
Method:
For each (fuzzy attribute X in D)

Begin
Built a hedge algebra Xk corresponding with fuzzy attribute X;
Transform number values and linguistic values of X into intervals ⊆ [0, 1];

End;
Set of leaf node S; S = D;

For each (leaf node L in S)
If (L homogenise) or (L set of attribute is empty) then

L.Label = Class name;
Else

Begin
X is attibute having GainRatio or GainRatioHA as the biggest;
L.Label = Attribute name X;
If (L is fuzzy attribute) Then

Begin
T = Threshold have GainRatioHA as the biggest;
S1 = {Ixi |Ixi ⊆ L, Ixi ≤ T};
S1.Father node = L;
S1.Attribute = L.Attribute −X;
S2 = {Ixi|Ixi ⊆ L, Ixi > T};
S2.Father node = L;
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S2.Attribute = L.Attribute - X;
S = S + S1 + S2 − L;// Mark the reviewed L button and add two child nodes of L corresponding to set S1 and S2

End
Else

If (L is continuous attribute) then
Begin

T = Threshold have GainRatio as the biggest;
S1 = {xi|xi ∈ L, xi ≤ T};
S1.Father node = L;
S1.Attribute = L.Attribute - X;
S2 = {xi|xi ∈ L, xi > T};
S2.Father node = L;
S2.Attribute = L.Attribute - X;
S = S+S1+S2−L; // Mark the reviewed L button and add two child nodes of L corresponding to set S1 and S2

End
Else { L is discrete attribute }

Begin
P = {xi|xi ∈ K,xisingle};
For (each xi ∈ P ) do

Begin
Si = {xj |xj ∈ L, xj = xi};
Si.Father node = L;
Si.Attribute = L.Attribute −X ;
S = S + Si;

End;
S = S−L; // Mark the reviewed L button and add all child nodes of L corresponding to set Si

End;
End;

3.3. Evaluating algorithm

Let m be the number of attributes, n be the number of instances of the training sample.
Then the complexity of the C4.5 algorithm is O(m× n× log n). In the HAC4.5 algorithm,
first, the complexity of the algorithm calculating the fuzzy interval partitions is O(n2),
after that at a loop step with attribute mi, if mi is a crisp attribute, the complexity of
the algorithm is O(n × log n) otherwise if mi is a fuzzy attribute the complexity of the
algorithm is O(n× n× log n). Therefore, in total, the complexity of the HAC4.5 algorithm
is O(m× n2 × log n).

The accuracy of the algorithm is inferred from the accuracy of the C4.5 algorithm and
the matching method in Section 2.

Because of using idea of the C4.5 algorithm at this division node, there are no partitions
with partial k and the horizontal spread is avoided leading to “overfitting” on the result tree.
The additional cost O(n) in the training process is acceptable. Moreover, the training process
is performed only once and used to predict several times. Due to the fact that partitioning
in the training process is based on the concept of interval partition correlation, so the fuzzy
decision tree to be obtained can be used to predict in the case of points or intervals making
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the prediction convenient.

4. EXPERIMENTAL EVALUATION

The experimental program is implemented in the Java language (Eclipse Mars Release
(4.5.0) anh run on a computer with the following configuration: Processor Intel CoreTM i5-
2450 CPU @2.50GHz (4CPUs), 2.50 GHz, RAM 4GB, System type 64 bit for all the three
algorithms: the C4.5, point-based homogenization matching, and interval matching with
HAC4.5 on two training sample sets, namely Mushroom and Adult.

- In the Mushroom training sample set there are more than 8000 records containing
22 attributes, in which attributes Habitat and Population contain both precise data and
imprecise data. We use 5000 records for training and randomly select 2000 records from the
3000 remaining records for testing.

- The training sample set Adult has 40000 records with 14 attributes consisting of discrete
data, continuous data, logic and imprecise data, in which there are two attributes Age and
HoursPerWeek containing precise data and imprecise data. We use 20000 records for the
training sample set and in the 20000 remaining records, 5000 records are randomly selected
for testing.

4.1. Results of Mushroom data classification

Figure 7. Matching training time in Mushroom sample

Table 2. Training with 5000 Mushroom sample for matching training in Mushroom data

Algorithm Time (s)

HAC4.5 717.3

C4.5 18.9

Point-based homogenization 58.2
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Table 3. Testing ratio from 100 to 2000 Mushroom data sample for matching testing ratio
in Mushroom data

Algorithm 100 500 1000 1500 2000

HAC4.5 82.0% 81.0% 86.1% 88.9% 91.5%

C4.5 57.0% 54.8% 51.2% 66.2% 70.0%

Point-based homogenization 71.0% 72.2% 72.6% 77.9% 77.2%

Figure 8. Matching testing ratio from 100 to 2000 in Mushroom data sample

4.2. Results of Adult prediction data

Table 4. Training time in 20000 sample for matching training in Adult data

Algorithm Time (s)
HAC4.5 1863.7
C4.5 479.8
Point-based homogenization 589.1

Table 5. Matching testing ratio in Adult data

Algorithm 1000 2000 3000 4000 5000

HAC4.5 92.3% 91.5% 93.0% 95.0% 96.1%

C4.5 84.5% 85.7% 85.9% 86.2% 85.7%

Point-based homogenization 87.0% 86.2% 87.4% 87.5% 86.6%

Table 6. Testing time from 1000 to 5000 sample in Adult data for matching testing time in
Adult data

Algorithm 1000 2000 3000 4000 5000

HAC4.5 2.4 4.7 7.2 9.7 12.1

C4.5 1.4 2.8 4.1 5.5 6.0

Point-based homogenization 2.2 4.6 7.1 9.2 11.8
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Figure 9. Matching traning time in Adult

Figure 10. Matching testing ratio from 1000 to 5000 in Adult data sample

4.3. Result evaluation

The results on the data sets Mushroom and Adult derived from using three implemented
algorithms C4.5, HAC4.5 and homogenization point matching are as follows:

- Time: the C4.5 algorithm is always the fastest for the two samples in terms of training
and testing because it ignores the fuzziness values in the sample sets, and process time for
these data is not neccessary.

The homogenization of the data set based on the point matching and using this set for
the tree training require the construction of the hedge algebras for the imprecise data and
the homogenization cost. This algorithm needs more time than the algorithm C4.5.

Because there is a need for the construction of the hedge algebras for the fuzziness fields
and the cost for the conversion of the values to the initial sub-interval [0, 1], and at each loop
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Figure 11. Matching testing time from 1000 to 5000 in Adult data sample

additional time is neccessary for the selection of intervals, the algorithm HAC4.5 is relatively
slow compared with other algorithms.

- The prediction result: Because the C4.5 algorithm ignores the imprecise values in
the sample set, it losses data in the fuzzy attribute, resulting in poor prediction results.

The construction of a hedge algebra for fuzzy attributes and using it to homogenise the
training sample set by point matching gives a homogenization training sample set containing
precise data and imprecise data. Therefore, the result of the training tree is better, and this
algorithm has higher prediction results than C4.5. However, the prediction results in this
case are not desirable because the partition of the fuzzy points causes errors in the precise
values at the split points.

The prediction results of HAC4.5 is the best because in the tree training, the imprecise
values are processed while the precise values remain unchanged, leading to the absence of
errors in the partition process.

Although HAC4.5 needs more time for the training, it is an effective method as the
result tree has high predictability. Furthermore, the training process is performed only once
while the prediction on the result tree is done several times, and thus the processing time of
HAC4.5 is acceptable.

5. CONCLUSIONS

The fuzzy decision tree classification problem plays an important role in the process of
data mining. However, the fuzzy decision tree classification based on the fuzzy set theory has
many disadvantages. The hedge algebra with its numerous advantages has become a really
useful tool for solving the decision tree classification problems. Recognizing the limitations
of the quantitative semantics methods in the training process, the authors use hedge algebra
to propose a fuzzy interval matching method, and on this basis they propose an inductive
learning fuzzy decision tree using the algorithm HAC4.5. This algorithm is effective for the
decision tree classification problems. The time optimization of the HAC4.5 algorithm will
be considered in the future paper.
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