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1. Introduction.

Large concurrent systems are difficult to design and analyse, because they can exhibit very
complicated beliaviours, So madular approachs have been used in investigating either the structure
of models for cocurrent [1, 5, 10] or their aspects [7), especially their semantics [6, 9).

To our knowledge V.E. Kotov was the first, who made the set of all Place/Transition nets become
an algebra (5] by defining five operation on it. When using the decomposition method to find the
behavioural function of finite (0,1) - marked nets [6]. Mazurkiewicz pointed out the behavioural
synchronization in the term of traces for pairs of those nets, whose sets of places are disjoint.

Concurrent systems considered here are Net systems [8, 12). Our purpose is to construct large
systems out of smalller ones. The main requirement is to determine an explicit struture for their
dynamic aspects. Based on the definition of synchronization of languages [2]. we define a compo-
sition operation which makes not only the set of all net systems a commutative monoid but also
the families of firing sequence languages generated by the net systems, closed under the respective
synchronizations.

Hence, after having composed, the net system’s behaviours, as well as independency relation and
conflict ralation can be built up from that of its immediate sub-components, without computing
from beginning. :

A special attention is paid to the family of contact - free net systems because this family is a
kernel of all net systems in the sense that the family of firing sequence languages and trace languges
generated by arbitrary net systems is not larger than that by contact - free net systems.

The paper is organized as follows. First, some basic notions and facts concerning net systems
are given. Setion 3 presents two basic behavioural representations for net systems: firing sequence
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languages and trace languages and their ralationship, The former is interpreted as an interleaving
semantics and the latter as a non-interleaving one. The main theorems of this paper are contained
in Setion 4, They assert the synchronization for behaviours of contact - {ree net systems, Section §
points out that these results still hold for the family of all net systems by extending the composition
operation and using an equivalent transformation in [8]. Some concluding remarks are presented
in the last section.

2. Net Systems,

Distributed systems usually have static and dynamic aspects. Net systems are one of sound
models for representing these systems, In this section we introduce basic notions and notations
used throunghout the paper and formulate some uscful facts,

A triple N = (B, K, F') is called a net iff:

o8 and E are disjoint scts,

of C (B x EYU(FE x B)is a binary relation called the flow relation of N, sueh that:

domain(FMY U range(F) = BU L,

The elements of B are called conditions and the elements of £ are called events. The flow
relation models a fixed "neighbourhood” relation between the conditions and events of a system,
In the graphic repyesentation, the conditions will be drawn as circles, the events as boxes and the
elements of the flow relation as directed ares.

Let N = (B, E, I') be a net, Thr'n,.\,v = B U FE is the sct of elements of N, For every z € X!

‘@ = {y| (y,2) € F} is called the pre-set of z,
2 = {y| (#,y) € F} is called the post-set of .

A pair (p,e) € B x I is called a self-loop iff (p,e) € F & (e,p) € I'. N is called pure iff I doces

not contain any self-loop. '

A net N is called simple iff its two distinct elements do not have the same pre-and post-set, i.e.

w=yAr =y implies 2 = y for every 2,y € Xn.

Let N = (B,E,F) be a simple net. A subset ¢ C B is called a case. Let ¢ € E and ¢ € B.
Then, e is said to be enabled at e (¢ enabled, for short) iff e C e&e' ¢ = . We denote: cfe > .
Let e € E, ¢ C B and ¢ be ¢ - enabled, Then d = (¢ — ) Ue' is called the reachable case from
the occurrence of e in the case ¢, and we write: c[e > d. Il ¢[e; > ci[ea > ...en[enss > d, we shall
write c[[ejea...en41 > d. So we adopt the following definition of the reachability of N:

The reachability relation of N is the relation Ry = (R1U R1~1)* , where R1 C P(B) x P(B) is
called the forward reachability in one step, given by:
(¢,d) € Rl ¢=» e € E, c[e > d.

Note that Ry is an equivalence relation. A net system we mean any quadruple: N = (B, E, F, C),

where:
(1) N =(B,E,F) is a simple net, called the underlying net of N,
(2) C¢ P(B) is an union of some equivalence classes of Ry, such that:

Ve € E,3c € C, then ¢ is ¢ - enabled.
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C is called the state space of N'. The state space reflects a transition system associated with the
net system. An equivalence class of Ry is called an orbit. So the state space consists of one or

more orbits.

Lernma 2.1 For every net system N = (B, E, F,C) :
1) The underlying net N is a pure net.
2) The state space C is a covering of B.
Proof: 1) By the definition of net systems we have (Ve € F,3e € C), ‘¢ € e&eNe' = @. This means
Ve ¢ E, ene =0. So N is pure.
2) We have to show that: (Vp€ B)(3c€C), pEe.
Let p € B. Since domain(F)Urange(F) = BU E, 3¢ € F such that (p,e) € F or (e,p) € F. So
p € ‘e or p € e, By the definition of net systems, 3¢ € C, ¢ is e-cnabled. Thus, p € 'e C ¢ or
pEeCd=(c—-'¢)Ue EC. o :

Note that we admit the empty net system Ny = (#,0,0,0).

Example 2.1 Let N' = (3, I, I) be the simple nel shown in Figure I,

Fig. 1

and € = {{1,9},{2,9},{3,9},{1,8},{2,8}, {3,8},{4,5},{4,7},{5,6},{6,7}}.
The quadruple N = (B, E, F,C) is a net system.
Let N = (B, E, F,C) be a net system,
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)
The net system A is said to be contact - free iff for each ¢ € E and for each e € C :

o eCc=>eNc=0and
seCce=eNe=0.

Thus, in a contact - free net system the occurrence of an event in a case ensures that the event is
enabled at the case. For example, the net system given in Example 2.1 is contact - free. We have
pointed out in [10] that the above definition is equivalent to the definition of the safeness presented
in [3]. In the major part of this paper we will pay our attention to the family of contact - free net
systems. We show that from a contact - free net system we can get a reduced net system, which
has no "redundant” cases. To do 8o, we introduce some new notions.

Let My = (B, £, F,Cy) and My = (B, E, F,C3) be net systems having a common underlying net
and holding the following condition: (Ye; € €)(3es € Ca), e C eg.

Then we shall write: A} < A3, In this case the contact - freeness of the "smaller” net system
follows naturally from that of the "greater” one:

Theorem 2.1 Let Ny, Ny be net systems and Ny < Aa. Then:
Ny is contact - free =» Ay is contact = free.

Consider a net system N = (B,E\F,C). 1f its state space C contains cases, which are proper
subsets of other cases, then the state space can be divided into two disjoint parts as follows:

¢l ={c|c'ecliceC,e ce} el =C-C,
Theorem 2.2 Jf N = (B, E, F,C) is a contact - frec net sysi*m then € and €' are closed under
the reachability relation Ry .
Proof: It sufficies to prove that C'/ is closed under Ry. Let ¢’ € €'/ and d' C B,
Assume that (¢/,d’) € R1, thus
Je € Eye C ke Ne' = B&d' = (' ~-e)Ue. So d' € C. Since ¢’ € €7 then Ic € C,¢' Ccand
eCd=>eCe
Applying the contact - freeness of A, we have e e = 0.
Let us put d = (c =) Ue'. It implies (c,d) € R1,80d € C and d' C d. This means &’ € /. In &
similar way we can prove that if (@',¢) € R1 then d' € ¢/, o

Note that Theorem 2.1 is not always true when the uncierly'in'g net N, is a proper subnet of Nj.
It is obvious that ¢! (similar to C) is large cnough such that every event of the system is enabled,
while C'T may be not. So, C'' can be ignored and we get the reduced contact - free net system:
NM = (B,E,F,¢) from N.

This fact will be used in Section 4 for composing contact - free net systems.
3. Behaviours of Net Systems

The most primitive behavioural representation of net systems is set of firing sequences. One can
show that it is a kernel for constituting other behaviours, e.g. traces or step sequences...

Let N = (B, E, F,C) be a net system and A = (B, E, F) its underlying net.
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A relation I C E x E is said to be the independency relation of N iff:
(e, /)T (eUe)N(fUS)=0.

Note that I is a symmetric and irreflexive relation ( a sir-relation). The independency relation
describes that in a distributed system two actions are independent iff they do not share any
resources,

D=FExE~—1Iiscalled thec dependency relation of N.

Let @ = eqeq...cx € I, (k > 0). a is called a firing sequence of Nl there exist e, e9, ..., 6441 EC
such that ey[e; > cofen > eq.exfer > eryr.

The language of .V , denoted by FS(AN) is the sct of all firing sequences ofA'. Note that, we
always may assume that e[c > ¢, where ¢ is a case of N, € is the empty sequence of E*. So
¢ € I'S(N), for every N.

It is a well-known fact that the language generated by a net system is regular and closed under
the In - operation, i.e. F'S(.V) = In(FS(AN)), where for every alphabet A, and for every langnage
LCA":

In(L) = {z|e € A*&Tu,v € A*,uzv € L}.

By the definition of the language generated by a net system and the construction of the reduced

net system presented above, we have:

Corollary 3.1 For cvery contact - free nel system: FS(N) = FS(NM),

Thus, every contact - free net system can be replaced by a behaviourally equivalent contact -
free net system without "redundant cases”. In the rest of this paper, unless otherwise stated, a
contact-free net system means a reduced contact - free net system,

Let N = (B, E, F,C) be a net system. Let ej,eq € E, ey # ¢z and ¢ € C. We say that e; and eq
can occur concurrently at ¢, denoted ¢[{ey, e} > iff c[e; >,c[ea > and (e1,e2) € I. And e, eq are
said to be in conftict at ¢ iff c[e; > and c[eq > but (ey,e3) ¢ I (see [12]).

We wilk point out that the concurrency and the conflict of two events can be "seen” from the
language generated by a net system. Now we consider the structure of the language.

Theorem 3.1 If a € FS(N) and o = uefv, where u,v € E* (e, f) € I then = ufev € FS(N).

Proof: By the definition of the language F'S(A), there exist ¢y, ¢2,¢3,¢4,¢5 € C, such that ¢;[[u >
cale > ealf > ea[[v > ep. It is enough to show that ea[[fe > 4.

Since eafe > cg then e C e e’ Neg = @ and c3 = (c2 — ‘¢) Ue'. Similarly, since ea[f > ¢4 we have
fCea fNea=0and eg = (ca—"f)NSf. Because ' f Cea = (e —'e)Ue and (¢, f) € I 50 we
get *f C cg. On other hand f-Neg = 0. ie. ((ea —=-e)Ue)N S = 0. This implics [ Nea = 9. Put
¢h = (g —f)U [, we have calf > ¢4 In a similar way ve can prove that ¢j[f > ¢4. That means
ea[[fe > ea.

From the proof of this theorem we can sce that if a = uefv € FS(N') and (e, f) € I then there
exists a case ¢ € €, such that ¢[{e, f} >. Otherwise, if ¢[{e, f} > then there exists at least one firing
sequence o = ue fv, for some u,v € E*, such that a € FS(N). (Of course, # = ufev € F'S(N)).
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So, two events are toncurrent iff there exists a firing sequence, in which one of them "stands”
immediatly behind the other and they are independent, The case they can occur concurrently at
is just a case, at which either of them is enabled. In other words, e and f can occur concurrently
at some case in the net system N iff ef € F'S(V) and (e, f) € 1.

When e, f are in conflict then first, (e, f) ¢ I and either of them may occur but not both. So
e, f are in conflict iff (¢, f) ¢ I and there are two firing sequences oy = ueg, ap = ufh € FS(V),
where u,g,h € EU {¢},e # hand [ #g.

So we introduce the lollowing relations:

A relation co € I x I is called the concurrency relation of N ifl:

(e, f) € coe=> (Fe€C),c[{e,[} >inN.

A relation el € E x I is called the confliet relation of N ill:

(e, ) € el 4= (3e € C), (¢, f) are in conflict at ¢ in V.

Clearly, for a net system, co € I and el € D,

Now we define the trace language of a net system,

A concurrent alphabet (A, D) consists of a finite set A of symbols and a reflexive and symmetric
relation D, the dependency relation. Its complement A x A — D, denoted by I, is called the
independency relation, which is symmetric and irreflexive. Let ~pC A*® x A* be the following
relation:

2 ~py <= (e, f€A)(u,veA)(ef) € I&ka = uefv&ky = ufev.

Define &= (~p)*, i.e. & is the symmetric and transitive closure of ~p. Note that a is an
equivalence relation, ’

Let [a]p denote the equivalence class of & containing a. It is called Mazurkiewicz irace over
D. The quotient algebra (A*,0,[¢]p)/ &, where o is the concatenation, is called a trace algebra,
Denote Tp = {[a]p|a € A*}, Pp =P(Tp).

Let N = (B, E, F,C) be a net system. Then N = (B, K, I') is its' underlying net. Let I be its
independency relation and D = Ff x I/ = I its dependency relation.
As presented in [6], we recall the reachability relation of N in the term of traces as follows:

The reachability of N is the least function Ry : P(B) x P(B) — Pp (with respect to the
inclusion ordering of its values), such that:

(1) [elp € R(c/d) > e =d;
(2) [elp € Rn(e,d) & cle > d, for e €

(3) tyotg € Ra(c,d) &> 38 € P(B), 1, € Rn(c,8)&ts € Rﬁ(s,d), for ty,t, € Tp.

The set 7(N) = U, 4ec Rn(c,d) is called the trace language generated by A, By Theorem 3.1,
we have: :
a € FS(N) <= [a]p € 7(N), for every a € E*.

Corollary 3.2 For every net system N : 7(N) = FSN)/ =~ .
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A trace generated by a net system is indeed a collection of a number of firing sequences generated
by the net system. So the firing sequence behaviour and the trace language behaviour of a net
system have some common properties, We will show this in the next seetions.

4. A Monoid of Contact - free Net Systems

Our main aim is to construct large concurrent systems out of smaller ones (especially, of atomic
components). The construction is based on the synchronization of languages. So we recall some
necessary notions, !

Let A be and alphabet and ¢ denote the emply sequence. Given two alphabets A, B such that
BC A, Let hg: A® — B* be an erasing homomorphism given by:
Ya € A hp(a) = aif a € B and ¢ otherwise;
and Vz € A*, hp(za) = hp(x)hp(a). Instead of hp(x) we shall write 2|p (& projected on B).
Similarly, for every language L € A® and the alphabet B2 L|n = {2|p] v € L}.

For a language L C A*, let 7, denote the least alphabet constituting L :
L= {a€ ABuvE A" uav € L}.

For two languages Li, Ly, the language Li# Ly is called the synchronizalion of Ly with Ly, is
defined as follows:
‘ In#ly={r|2z€ (T, UT:Q)'&'.!']E| € Ll&"’TE, € Lq1}.

The synchronization ensures that the occurrence orders and the number of occurrences of any
symbol in its every sequence are the same as in the respective sequences from which this sequence
has been constituted. So the operation # will play an important role in composing net systems.

Given two net systems N, = (By, Ey, Fy,€y) and Ny = (By, By, Fa,Ca). Without loss of gener-
ality, we can assume that the simpleness remains valid in both these net systems, i.e.:
(Ve,y € Xn,UXN,), 2= yAe =y ==Y
Let FS(N)) and FS(N3) denote the firing sequence languages of Ni, Na respectively, and
FS = FS(N)#FS(A3) - the synchronization of FS(Ny) with FS(N37).

It is natural to ask whether one can build up a net system N from Ny and Na such thatl its firing
sequence language is F'S. The answer will be in the affirmative.

A similar result in the terms of trace languages was achieved by Mazurkiewicz in [6] for pairs of
B - disjoint nets (B, N By =0).

In this and next section, our approach is devoted to the general case. _First, we answer the
question for the family of contact - free net systems, and then for the gencral case by using an
equivalent transformation on net systems.

Given two contact - free net systems Ni = (B;, Ei, Fi,Ci),i = 1,2, Let us define:
N = (B, E,F,C), where:

B = B, U By,

E=EUE,,
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P o= F], U Fg,

C={eyN(B,~B)UeyNegUey N (By = By)|ey € Cykeey € Ca).

Denote: M = Ny @.Vy. We show that A Is Just a net system that satisfies the above require-
ment. Furthermore, the contact - freeness I8 preserved by this synthesis,

Theorem 4.1 If Ny and Ny are contact - free net systems then N is also a conlacl - free net sysiem

and FS(N) = FS(M)#FS(N3).

Proof: 1) First of all, we prove that the quadruple A is a net system. It is easy to sce that
N:i=NUN;g= (B UBy,E\UE) F1UF) isa simple net,

a) We have to show that C is closed under the reachability relation Ry of V.

Lete€Cand d e B,

Assume that (c,d) € Ry, that means: Je € E, e CekeNe=0d=(c-ec)Ue.

We introduce some following auxiliary notations. For each ¢ € £

ey ='eN Bl n Bg, ey =reNn (Bl - Bg), ‘eg=eN (Bg - Bl),
eo=e¢NBINBy ey =eN(By-By), ¢y = e N(By - By).

Of course, ‘¢ = 'e,U'e;U'eg and ¢' = e, Uey Uey. Since ¢ € C then there exist ¢, € C,&ey € Gy,
such that

e=c1N(By— Ba)UeiNegUey N (B, - B,).

Let us put: ¢} =¢1N(By = Ba)UeiNegand ¢y = eaN(By = By)Ues Ney. Thus, ¢ = ¢} Ud}
and egU'e; Cef, i=1,2. (Here 'eg U ¢; and ep Ue; are just e and e respectively in the net N;
y for i = 1,2). Due to the contact - freencss of A} and N, we have:

eoUeiCeiCei€C = (e;Ue)Ney =0, i=1,2

So: di = (ci = (eoU er))U(epUe;) €Ci, i =1,2.
dyN(B; - Ba) = ((e; = (eqU ‘e1)) U (ep Ugi)) N(By — By)
= ((e1 = (eo U e1)) N (B1 = Ba)) U ((epUey) N(By = By))
= (c; 0(31 — Bg) - '81) Uey.
Analogously, we obtain:
daN (B3 = By) = (eaN (B3 — By) - ‘e3) U ey, Since
diN(ByNBy) = ((e; = (eoU ‘1)) U(ep Uey)) N (B N By)
"= (aNByNBy—-e)Uey, fori =12, thus
dyNdy = (dy N B, N B3)N(daN B, N By)
= (e Neg = eg) Uep.

Aphiying the above equalities, we get:

d=(c—e)Ue

=(ey N(By = Ba)UeyNeaUea N (B; = By) = (e, U ey U'ea)) U (e, Uey Uey)

= ((e1 N(By = By) - ‘ey)U es((ey Neg = ‘eoyUe,)U((ean(B; - By) = -e3)U ‘eg)
=dyN(B - Bg)Ud;ﬂd:Udgﬂ(Bg - By).

From the construction of C, we have d € C.
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In a similar way we can prove that if (d,¢) € R1n then d € C.
b) We still have to show that: Ve € E,3¢ € € such that e is ¢ - enabled.

Lete € = FE| U K.
Assume that e € Ey — Ey, then 3¢y € Cy,ei[e >. Hence ‘e C ey N (B, - Bz)ke Ney = 0. For some
g € Cgy put e = ¢; N(By = Ba)UcyNegUea N (By — By). Of course, ¢ C eke Ne = 0, ieele >
in NV,
In the case when e € Eq — Ey, we can proceed similarly.
Now assume that e € Fy N Ey, then 3¢y € Ci,eife > for i =1,2.
SoeqUe; Ccfand (e, Ue;)Ner=0. Put e=e;N(B) — Ba)Uey NeaUea N (B2 = By).

Hence ¢ € C and we have: ‘e = ey U'e,Uea CelUch=cande Ne=eN(ejUch) = 0, e
ele > .

So the quadruple A is a net system.

2) Now we prove that A is contact-free.
Let e € I and ¢ € € such that ‘e Ce.
Thus, there exist ¢y € €y, e3 € Caand e = ¢y N(By = Ba)UeyNeaUeaN(By = 51). By the contact
- freeness of Ay, Na we have, for i = 1,2, (e, Ue;) Nep = 0.
But ¢} C ¢, 80 (e, Uej)Nef = 0.
Hence e Ne=¢e N(cjUch) = (e, Uey) NefU(e, Uey) Neh =0
In the case when e € ¢, the proof can be proceeded similarly.

3) To finish the proof, we have to show that, for cach a € £ :
a € F'S(N) ¢= aip, € FS(V),i=1,2.
Alternatively, we may prove the following equivalent proposition:
(¥)  ella>din N, where
c=¢c;N(By = B)UeyNeaUey N(By = By),
d=d N(By - By)UdyNdyUdaN(Ba - By),
1, dy € Ci&ey,dq € Cy

@Ci[[ﬂla >diin Nj,i=1,2 (4.1)

We prove (4.1) by induction with respect to the lenght of firing sequences generated by the
composed net system A

a) If @ = ¢ then this case is trivial.
. b)Ifa=eande€ L then:

cle>din Né&=eCeke Cdc—c=d-c.

Assume that ¢ € E; — Eg, then ey = ejey = e,¢, = ¢, = €3 = ¢ = d&e C e, e C

dy, ey ='e=dy — e&ey = dy. So
(%) <= c1[e > dy in M&egle > dg in Ny <= ¢ € FS(N)&e € FS(N).
In the case ¢ € Fy — Ey, analogously we have (¥) = ¢ € FS(N)&e € FS(N3).
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Now let e € F'y N [y, thus, for i = 1,2
eNBy = eUe,, e NB; = eylUe; and ('e;U'e,) C ei&e(e,Ue;) € dileei =("eiUre,) = di—(e,U¢;).
Hence (#) <= ¢i[c > di in Nii=1,2,

¢) Assume that (4.1) holds for all @ € F'S(.V) of lenght less than or equal to n. We consider
e € I* with lenght (eve) = n + 1. Thus,

ellove > d inN 4= (s € ), 8 =8 N (B~ Ba)UsyNsaUsaN(Ba— B1), 81 € Cy 29 € Cayef[r >
sle > d inN <= eif(ae;p, > 8i (by the inductive assumption) &si[e)n, > di (from the case b) in
Mii=1,2) &= ¢iflaeyg, > diyi=1,2.

Thus, (4.1) holds in general, which completes the proof.

Note that after having composed, the state space € may contain "redundant” cases. Using the
reduction technique presented in Section 2 (Theorems 2.1 and 2.2) we can get a reduced net system
composed from two given contact - free net systems. So we define:

M & Ny = NM . the composed net gystem of V) and Na.

If confusion can be excluded, we will simply write A instead of A'M

Let CFNS, CFL denote the family of all contact - free net systems and the family of all fir-
ing sequence languages generated by contact - free net systems, respectively. As an immediate
consequence of Theorem 4.1, we have:

"

Corollary 4.1 { CFNS, @, Ny ) is a commulative moneid and CFL is closed under the synchro-
nization operation .

In the practical point of view, the operation €0 can be useful way for bulding large systems from
smaller ones, especially, for constituting their state spaces,

Let N = Ny U Ny be the underlying net ofA” = N\ @ N2 and I, D denote its independency and
dependency relations, respectively. It is clear that D = DyU Dy, So [ = D =Dy UDg =T, UTa.
Using the sir-relations composition operation propesed in [10] we have:

I=1 ®Ig =L Ul = (El N Ly) x (Elﬂfg)u.ﬁ ﬂ[:U(E[ = Eq) % (Eq = FE).

et co,coy,coq denote the concurrency relations, ef, efy, ely the conflict relations of N, N, N2,
respectively,

Corollary 4.2 1) co = coy @ coa, 2) el =cl, Uely.

So the composition operation preserves common pairs of concurrent events and develops con-
currency.

Now we consider the synchronization of trace languages generated by net systems.
Given two concurrent alphabets (A, D) and (B, 1)), where B € A, D' € D. The projection
hu: A® — B" can be extended to a mapping h @ Tp — T by setting: h([a)) = [hp(e)).

Let (Ay, Dy) and (Ag, Dy) be two concurrent alphabets. We define their union as:
(A, D) = (Al,Dl) U (A';, Dy) = (A U Ag, Dy U Dy).
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Let hy: Tp = Tp,(i = 1,2) be the corresponding projections. Given two trace languages Ly, Lo
over Dy and Dy, respectively. We define their synchronization L£y]|La a8 a trace language over /)
by:
Ly|[La = {t € Tp |hy(t) € L1&hy(l) € La).
Return to contact - free net systems and the composition problem, we have:
Theorem 4.2 If Ny, Ny are contact = free nel systems and N is their composilion then:
r(N) = r(N)||7(Va).
Proof: Follows from Corollary 3.2, Theorem 4.1 and the definition of the synehronization of trac

languages.
Example 4.1 Consider the following net systcis

A

b)

Iig. 2

Let My = (B, Ey, Fy,Cy), where Ny = (By, Ey, Fy) is shown in Fig 2a), €y = {{1},{2},{3},{4,5}
{4,7},{5,6},{6,7}}. This net system is contact-free. The independency relation 1, is shown in
Fig. 3a).

FS(Ny) = In({ab,edef,cedf}). In this net system we have {4,5}[{d,e} > and a, ¢ are in conflict
at {1}, coy = {(d,¢)} and el = {(a,c)}

Let Ny = (By, By, 'y, Cq), where Ny = (Ig, Ey, Fa) is given in Fig. 2b). Ca = {{8},{9}, {4,5},
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' Fig. 3

{4,7},{6,6},{6,7}}. This net system is also contact - frec and I is shown in Fig. 3b). I'S(Ny) =
In({cdefg, cedfg}*). :
Only {4,5}[{d, ¢} > in this net system, i.c. coy = {(d,e)},cly = 0.
N = Ny @N; is the same net system as given in Example 2.1. I = I} ® I3 as shown in Fig. 3c).
FS(N) = FS(M)#FS(Na) = In({abg, gab, agb, cde fg, cedfg}).
co = coy @ co; = {(d,e),(a,g),(b,9)}, ¢l = cly Uely = {(a,c)}. So in this composed net system
we have: {4,5}({d,e} >, {1,8}({a,g} > {2,8}[{b, g} > and a,c are in conflict at {1,9}.

Unfortunately, the operation @ is not well-defined in the family of all net systems. Consider
the following example.

Example 4.2 Let Ny = (By, Ei, F7),i = 1,2 and N = Ny UN3y = (B, E, F) be the simple nets shown
in Figure 4,

N, N, N

and Cy = {{1,2},{1,3},{2,3},{4}},Ca = {{3,4}, (3,5}, {4,5}}.

The net systems N; = (By, E;, Fy,C;),i = 1,2, are not contact - free.
By the definition of the composition operation proposed above, we have here:
¢ ={{1,2},{1,3},{2,3}, {4}, {1,2,5}, {56}, {1,3,5},(2,3,5},{1,6},{2,5},{4,56}}.

C is not closed under the reachability relation Ry because {1,5} € C,({1,5},{3}) € Rly but
{3} ¢ C. So the quadruple N = (B, E, F,C) is not a net system.

Now we attempt to choose C! = maz(C) = {{1,2,5}, {1,3,5},{2,3,5}, {4,5}}.
In this case ({1,2,5},{2,3}) € R1n but {2,3} ¢ C’. Even (B, E, F,C") is not a net system too.

Nevertheless, the behavioural synchronizations of all net systems will be shown when using an
equivalent transformation.

5. Synchronizations of Net Systems
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o

Fig. 4

In order to answer the question issued in Section 4 in the general case, wo will use an equivalent
transformation deseribed in (8] for net systems,

Let N = (B, E, F\C) and N = (B', E', I",C") be net systems. A" and \"" are called equivalent
if there exist two bijections: A E = E' and 7: € — ¢ such that, for all cases c,¢y € € and
each e € 21 eyc > ea <= y(e1)[Me) > v(e).

Lemma 5.1 If N and N' are equivalent then I'S(N) = FS(N') (upto isomorphism).

Denote: N ~ N"ill \" and N are equivalent, Note that ~ is an equivalence relation,

Let N = (B, E, F,() be a net system and let Py €D,
i) ¢ is called the complement of p iff 'p =g and p = q.
i) A is called complete il every condition p € B has a complement q € /4.

Every net system can be transformed into an equivalg*nt complete net system as follows:

Given a net system . Let P € B be the set of those conditions which have no complement.
For each p € P, we add a new condition p, and put: .

Fp = {(e,p)l(p,e) € F&p € PYU{(p,e)l(e,p) € F&p € P},

For each ¢ € C, let y(c) = eU {p|p € P&p ¢ c}.
Denote P = {j|p € P} and %(C) = {¥(¢c)|c € C}.
Then the net system N = (BU P, E, F U Fp,5(C)) is the unique complementation of N, "It is
obvious that A" ~ V.
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Let I and [ be the independency relations of A” and ', respectively. We have:

Theorem 5.1 1) I = [,  2) r(N) = r(N).

Proof: 1) Let ~e and e~ denote the pre-set and post-set of e in A/, while ‘¢ and ¢, as usual,
denote the pre-set and post-set of e in A, So:

“e=cU{plpeelpePlande” =e U{plpe elpe P}

Denote P, = {p|p € ‘eUe&p € P}. We have:

(e,f) el &= (eUe)N(fNS)=0& (eUe)N(SULIUPNP =0

< (eUe UPIN(SUS UP) =0 (CeUe)N("fUS ) =0<= (e, /) E L

2) Follows from Corollary 3.2, Lemma 5.1 and the part 1) of this theorem. °

So the equivalent transformation from a net system into its complementation preserves concur-
rency and conflict in these net systems,

Now we are able to extend the composition operation presented in Section 4 on the whole family
of net systems,

Given two net systems Aj and Vs, Let A} and N3 be their complementations, respectively.
Hence, N; and N3 are contact - free (see (8]). So we define:

Nl @.\"ﬁ = .\"1 e.":fg

The family of net systems with the above operation and the indentity .\y becomes also a com-
mutative monoid. Furthurmore,
FS(Nl eNy) = F.S‘(M)#F.S‘(A’g) and T(Arl @;\’9) = T(Aﬁ)”T(.’\fg).

co = co; @ coy and ¢l = ely Uely,
Summing up, we have:
Theorem 5.2 The family of firing sequence languages (trace languages) generaied by nel systems

and that by conlact - free net sysiems are the same and they arve closed under the respective syn-
chronizations.

Theorems 4.1, 4.2 and 5.2 give us an useful way to compute the behaviours of a composed
net system from its components’ behaviours, when they are already known (or easy to compute),
without computing from beginning.

Let V, W be two monoids and let p: V — [V,
p is said to be congruent iff;

Vu,u', v, 0" € Vyp(u) = p(u') A p(v) = p(v') = p(uv) = p(u'v').

Corollary 5.1 F'S and r are congruent.

6. Conclusion

We have presented our studies on a monoid of net system, whose operation is compatible with
the synchronization of two basic semantics of nets: firing sequences and trace languages. The
results are a step towards answering the question how some concurrent systems can co-operate
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and what properties the composed systems have. Though the presented approach is devoted to
net systems and their two basic behaviours, it can be applicd as well to other models and other
semantics. In many cases, the co-operation requires that an execution semantics of a composed
concurrent system must be complete in the following sense. Every execution of subsystems is taken
| part to build up the execution semantics of the composed system, i.e.
Ll#l’?lr; = Iy fori=1,2

It causes to introduce the notion of a complete synchronization, An investigation of this property
is under study.

Nevertheless, we believe that the behavioural synchronization will still be a basic charaterization
of the compostion for many models of concurrent systems.

The author would like to thank R. Janicki and P.S. Thiagarajan for their valuable suggestions.
This paper was written during my stay at the Tata Institute of Fundamental Research, Bombay,
India. I'm grateful to all the members of the Computer Seience Group of this Institute for hielping

me there.
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Abstract.

On Behavioural Synchronization in Net Systems
In this paper we define a new operation on Net systems. The operation is compositional with

respect to two distinet semantics - interleaving based on firing sequences and non-interleaving based
on {races.



