Tap Chi Tin Hoc vi Didu Khién Hoc
_Tép VIII(1992), S8 3, 19-32.

Labelled Transition System Approach to
Distributed Computing Systems

Dang Van Hung
Institute of Informatics
National Centre for Seientific Research of Vietnam

I, Introduction

Labelled transition systems defined by Keller [15]) in 1976 has been used widely for defining
operational semantics for parallel prograniming languages as well as models for parallel systems
[1,5,15). One advantage of them is that they are very simple. However, semanties represented by
them is interleaving one, i.e. they model independence by arbitrary interleaving. The situation that
two events are independent is modeled by saying that the two events may occur in any order, which
refers to a global ordering of the events. In order to overcome this shortcoming, Mazurkiewics has
introduced the concept of traces. Each Mazurkiewics’s trace contains sequences of events which
are equivalent by' an independence. One problem with traces is that the independence is fixed
in the system, which restricts the expressive power of the models with traces. Veclors of firing
sequences introduced by Shield [19] represents the behavior of concurrent and distributed systemns
more intuitively. This model has the same expressive power as traces [11], and is suitable for
synchronoys systems only.

In this paper we combined the mentioned concepts by considering an event of concurrent and
distribute| systems to contain atomic events executed in parallel by component processes, In this
way we car define labelled transition systems, an intuitive model for distributed systems, which
can expresses the concurrency explicitly and can be used in {esigning, implementing and verifying
distributed algorithms.

In order to show the advantages of our model we relate it to partial orderings of events [5,6,16,18]
and consider the problem of determining global states and the logical time of distributed systems.
By keeping partial knowledge of the others processes in the states of each process in the systems,
we propose a new algorithm for distributed snapshots. It is shown that the amount of global

20 Dang Van Hung

information which can be maintained in the local states of the processes of the system by exchanging
messages is not more than what derived from actions leading to them.

The paper is organized as follows. In the next section we introduce labelled transition systems
for distributed computing systems and some behavioral properties. In the third section we relate
our models to partial orderings of events, dcfine the logical time in distributed systems and present
a general algorithm for the maintenance of interesting global knowledge for solving some problems
concerning the distributed systems.

2. Labelled Transition Systems for Distributed Computing

In this section we introduce a formal, general model for distributed computing systems and
associate them with lahelled transition systems in order to describe their behavior. In this model
of the behavior, the semantics of the systems becomes easier to understand, and we can formulate
precisely some problems with the systems. The distributed computing systems considered in
this paper are taken from (2,10] as follows. A distributed compuling system consists of multiple
autonomous processors that do not share primary memory but cooperate by sending messages over
a communication network. The communication network is assumed to be connected so that each
processor can send meseage to any other, and to be reliable (i.e., messages are delivered error-free
without ever being lost). Logically, between any two ordered processors there exists an one way
communication channel. We consider in this paper two kinds of message passing: synchronous‘
and asynchronous one. With synchronous message passing, the sender is blocked until the receiver
has accepted the message. With asynchronous message passing, the sender does not wait for the
receiver to be ready to accept its message. Conceptually, the sender continues immediately after
sending the message. We also assume that cach message sent or accepted involves an explicit
action.

We start with the definition of labelled transition systems which are essentially those given in
(6,15,17].

Definition 1 (Labelled transition systems). A labeled transition system is a triple P = (Q,—, 4),
where @ is the set of configurations, A is the set of labels and — is the transition relation.

In the sequel, we shall write p = a — g instead of (p,q,a) €—. P is said Lo be deterministic iff
{1€Qlp—a—q}| <1, VERQ a€A

Definition 2 (Distributed Computing Systems). A distributed computing system with N processes
is a tuple D = (P, Py, ..., Py, C, = C, M), where

(i) P = (Qi,~ i, A;) is a labelled transition system, called the it process of the system, Q; is
the set of local states of the i'* process, and A; is the set of its local computation actions,

(ii) C is the set of communication actions of the system, C' = Uj j=1{au.r”}, Pij is the message
receive of the ith process from j** process, 8ij is the message send of the i'h process destinationed
the j'* process,

Labelled Transition System Approach to ... 21

(iii) M is a matrix, of which the i D row j D column element My is a set of possible messages
from the process i to the process j, P

(iv) ~C is a transition relation labelled over C, -s;; — C' C Qi x (Mj; X Q;) and —rq - C‘ C
(Qix M) x Qi i,j=12,..,N e

For the simplicity, we assume that the sets C, Ay, Qi, Miy,i,j = 1,2,..., N are pairwise disjoint.

D is said to be deterministic il each labelled transition system in the system is deterministic.

In order to describe the behaviour of distributed systems we first define the set of actions of the
system at each point of discrete time. An action of the system at each moment consists of ac(ions

of all process in the system including local actions, communicating actions and the idle action'!

Definition 8 (Action of distributed systems). Let D he a distributed system given a8 above.
S = AiU{rij,sij, A = 1,2, V] is called the set of actions exccuted by the'process i, where A
denotes the idle action. The set A = 37, x 57, x... x 3.5 is called the sct of possible actions of
the system, while the set A, = {@ = (a, aa, .. ,th)|n € Aka; = sjj if a; = rji} is called the set of
its synchronous actions.

"The behavior of the system now can be deseribe ns a set of sequences of actions of the system,
called vector of action sequences.
Definition 4 (Vector of action sequences). Let

VAS(A) = 8] x X3 x WEy.
Jach element of V.1S(A) is called a veetor of action sequences of D,

For the simplicity of our notation, in this paper we ddopt the following conventions:
For @ € VAS(A), w; will denote its i'" component, For @, @ € V'AS(A), the product W'
(concatenation) of @ and @' is defined as '

wu’ = (wpwl, wawhs, .. wxly),

For BC Y and w = aaz..ay € Y., #nte will denote the number of oceirrences of the clements
of 3 in w; n is called the length (number of letter accurrences) of w and will be denoted by [w].
The elements of the set {(i,a;)ji = 1,2,....n} is said to be letter occurrences of w. For a letter
occurrence (i, a;), we call a; its label. A single st will be identified with its element, X will denotes
the element (X, A, ...,A) € A, while Ai(a) denotes the element in A of which all components is A
except that the ith component is a. '

In order 1o associate a labelled transition system to a given distributed system, we have to
specify the state space for it. A state of the distributed system will consist of states of its processes
and a state of the communication rhanno].a. The states of the channels will be the sequences of
messages which have not been accepted.

Definition 5 (State space of distributed systems). Let D be a distributed system given as above,
The state space for D is the set

S=Q xQax..xQAyxT,

22 ‘ Dang Van Hung

where T' is the set of N x N matrices 4's of which the i=Drow j-column clement is a priori-queue
of possible messages from the process i to the process j. (v € M{}). '

Each element of S will be called & complete state of the system, while its n first components is
called a state of the system.

In this paper we consider a state of a channel as a FIFO queue of possible messages. The empty
queue will represent the fact that there is no message on the channel and will be denoted by
A, For FIFO queue yi; (content of the channel from the process i to the process J) the operation
put(7ij, m) means putting the message m into the channel, resulting my;; as its new content, while
the operation: getoul(yi;) returns the element at the front of the queue and takes it out from the
queue if the queue is not empty. Otherwise, the operation is undefined.

Labelled transition system for the distributed system D now is defined as follows.

Definition 6 (Labelled transition system for D). Let S and A be as above. The labelled transition
gystem
T =(S,—.A)
is said to be the labelled transition system for D, where — is defined below,
Let
AL = (A U{A}) x (A3 U (A}) x ..(An U {A)).

AR = (RyU{A}) x (ReU{A)) x (RN U{A)), Ri= UM (), i= 1,2, N,

AS = (ST U{A}) x (S2U{A}) x .(Sv U{A}), Si=Ula{aij), i= 1,2, N,
In the sequel, when labelled transition relations can be distinguished one fron: another by the sct
of labels, we omit the subseript if it does not cause any confusion.

For = (q1,q2..an ?), 7 = (41,03, ty,7') € ST = (1,03, an) € A, we say § @ — 7
iff '

() ae ALL(y = y)&Vi < N): ¢ —a; — q},

(ii). (@€ AS)L(Vie N):

((ai = A) = ((q = gD&(VF S N)+ (g = 9 D8((ai = ki) = (@0 — siki = (m, 7)) &

(put(yikiom) = 2fki)&

(Vi SN, J#ER): (vl =)

(iii). (@€ AR)&(Vi < N):

((ai = A) = ((gi = ¢))&(Vj S N): (w5 = i) :
&((ai = rik,) = ((m = getout (i,))&&((gi,m) = v, = ¢D&((YI S N, j# k) 2 (vl = 7i0))),
(iv). '

E(@ = @y a9as)& (@, € AL,y € AS, T3 € AR)L(3TF € 5) :

(=G =P=Gg=F —G3—7).
(Notice that for each @ € A, there exist uniquely @, € AL, @y € AS, @3 € AR such that @ can be
juely
written as @ = @, G443,

Labelled Transition System Approach to .. ' 23

The definition achieves.the general behaviour of distributed systems. Each process in a system
can perform its local computations independently from the others. The message passing is syn-
chronous if the specified channel is empty and the receiver is ready to accept message. The accept
action can be delayed until the receiver becomes ready to perform it.

The relation — is extended to the one labeled over 1V AS(A) in the natural way as follows:

For 7,7 € Q, We VAS(A), T— W — 7 iff there exist @y, @y, ..., € A, Ty, 7y, T € 5, and s,t
Go=0 T = ?1 and Gy —@ =g, i=12,..,k
Definition 7 ("Transition system for synchronized computations). Let T be the labelled transition
system for D. The restriction of 7" on the label set .1,

T, =1(5,~". A)
is called the labelled transition system for synchronized computations of D, or the synchronized

transition system for D,

Let 5o = (47,49, ...,4%, ®) be a fixed state, called initial state of D, (® denotes the matrix having
empty queucs as its elements).

Definition 8 (Behaviour and reachable states of distributed systems). Let
B={0eVAS(A)| §y—w—7, for some 7€ S},

R={7€S|y—T—7 for some W€ VAS(A)).
We call B the behaviour, R the set of reachable states of D (with the initial state 7).

With the substitution of V.AS(A) by VAS(A,) in this definition, we get the definitien of the
synchronized behavior and the set of synchronized reachahle states of D,

Now, we relate our model of beliaviour to the net theory by associating to each element of B
an occurrence net. The readers, who are not familiar with net theory, are refered to [18] for their
details. '

From the definition of 7" it follows that if o — W — @, W can be written as @y @s...0x such that
Gop =T =) = Az...—GKg = qp, G =7, where @,k < K, is an clement of A having only one
componen! different from A.

Let 7, = (qi’.qg,...,q’,{.,n). Wy = @@s..ag,k < K, @ = (w,wy, ..., wy). The occurrence net
n(@) = (G, 5, I') and the labelling function : G'U E — (UNL;Qi) U (Uj=; Mi;) are constructed
by induction on & as follows. M4
k=0:

Let 7(A) = (Go,0,0),Go = {9,098} lo(4]) = ¢},j € N. Io = B (R is introduced for the
construction of (W))

24 Dang Van Hung

bk~ k41 -

Let n(m,,)' = (G, By, Fi) ik + Gy U Ey — (UY Qi) u (U,-j 1Mij) have Ilygcn constructed,
I be a partial function from Gy to {(i,j,n)|i,j < N,n > 0} such that Ii(g) is defined when
l(g) € Um=l‘MU' Let @) = I;(a),

Then, Ersr = Ex U {e}, lk41(e) = a,lk1|muas = Ik, where e is a new transition ¢|q denotes
the restriction of ¢ on Q. Depending on a, we have the following cases:

a). a € A;. By the definition of —,¢f —a — qf'“. Then, Brsy = G U (g}, where g is a new
place, Liy1(g) = gf*!. Let ¢' be the place in By having no outgoing arc such that lx(g') = qf .
(Such a place exists uniquely). Now, Fry1 = Fr U{(g',¢), (¢, 9))}.

b). a = s; for some j £ N. By the definition of —, ¢; —a — (qf'“ m). Then, G4y =

Gy U {g,¢'}, where g, ¢' is a new place, lg1(9) = ¢t legi(9") = my Iega(¢') = (i, j, n), where
n is the number of the occurrences of &; in the i'* component of W, Let g” be the place
in G, having no outgoing arc such that /,(g") = qf. (Such a place cxists uniquely). Now,
Frgr = FrU{(g" ¢), (e,9)(e,0")}.

k1

¢). a = r;j for some j £ N. By the definition of -, (gf,m) = a — g
Then, Gr41 = G U {g}, where g is a new place, liy1(g) = q“’l. Let g’ be the place with
Ii(g') = (j,i,n), where n is the smallest number such that g’ has no outgoing arcs, g’ be the
place in G) having no outgoing arc such that I(¢"") = gF. (Such places exisl uniquely). Now,

Frgr = Fr U{(g") (e,9): (g, 0)}.

Example 1. Let

, where m = getout(v};).

D = (Plupﬂ»_’lcl i'w)l Mg = {110}

P = ('[%;Ql-@}i‘"s{b})l P = ({PO.PI,PE}:"N {“}
(90, 1) = r1a = qu, p1 = 821 = (po, 1),
(90, 0) = 713 = qa, po— 821 = (pa,0),
fo—a =g, po=b—p1,

Let

W= (rygaryg, bsyibsgisy) =

(A B)(A, .g,l)(:m,,\)(;\ b)(a, A)(A, 821) (A, 321)(r12,A), 40 = (g0, o, A), where
A)\]

e FE

The occurrence net defined for W is represented by the Fig. 1

Lemma 1. w(w) is deﬁned Furthermore, let
= {g € G| has no outgoing arc and I(g) € UL, Q:},
U = {g € B| has no outgoing arc and I(g) € Mu},
aij = g1ga...gn be the sorting of its elements such that g precedes g’ iff n < n', where I(g) =
(i,4,n) and I(g') = (i,4,n’), i, < N.

Labelled "Transition System Approach to ... ‘ 25

M
b
Pl
521
a0 /O Po
ri2 . :)
q1 Pl
u 821
q0 '/,O 21,2) P
r2 - | -321
¢! P2

Pig."'1
Then, g = I(5%) N Qi iy = loyy)

Lemma 2. There exists uniquely an one-to-one mapping r between the set of letter occurrences
of and the set I of transitions, preserving labels such that:
o for letter occurrences a, b in w;, a immediately follows b in w; if and only if there is a place g
with label in Q; such that (7(b),). (g, (a)) € F, '
o.for letter occurrences a, b, a is the h'* ocenrrence of rij in wy, b is the A'™ occurrence of 85i in wy
for some h if and only if there is a place g in G with label {n Mji such that ((b), ¢), (9, 7(a)) € F.

The lemmas 1 and 2 can be verified straightforward by induction on k. Details of the proofs are
left to the reader.

From Lemmas 1 and 2, it follows that many interesting behavioural aspeets of distributed systems
can be formulated in terms of vectors of action sequences. '

Theorem 1. If distributed system is a deterministic, so is its transition system, i.e,

He€Sh-T—q)| < 1, VPE S, @e VAS(A).

Proof. Since each transition in L' represents a transition labelled over Ai (i=12,...,.N)or C,
it follows from Lemma 2 that if the component transition systems in D are deterministic then all
occurrence nets constructed for @i corresponding to its different factorizations into'a sequence of '

26 Dang Van [Hung

actions of D are isomorphic. Henee, by Lemma 1, the state 7 is determined uniquely independently
from the way of factoring 1.

It follows from Theorem 1 that the synchronized transition system for a deterministic distributed
system is a deterministic one, and il p =7 — 7, W € VAS(4,), then § does not depend on the
way of fuctoring @ into a concatenation of synchronous actions.

In practice, parallel programs are frequently designed to be synchronized (e.g., OCCAM, CSP
programs), and then are implemented by asynchronous message passing distributed systems. The-
orem | says that such implementation is correet,

3. Maintaining the amount of global information in local states of process

We will formulate some basic notions such as causality relation, logical time, of the system, and
then propose an algorithm for maintaining the amount of global information of the system from
which some properties of interest can be drerived, The implementations of the algorithm may be
expensive, but it shows the upper bound of what can be maintained in the states of processes by
sending massages.

For simplicity, we present the above mentioned notions and results only for the case of asyn-
chronous message passing distributed systems ouly. The results, however, can be modified and
extended to the casc of synchronous and asynchronous message passing distributed systems as
well.

Let, in the sequel, D be a distributed system, T' = (S, —, A) its labelled transition system with
the initial state §,, 23 its behaviour,

For @ € B, an initial part of @ is defined to be a W € B, such that W = @W¥ with some
U € VAS(A). Let init(w) denote the set of all initial parts of . \

For W' = (w), wh, ..., wh), 0" = (wf,wh,...,uly) € init(W), denote:
max (@, @")= (max (w], w}), max (wh, w§),..., max (wh, wk)),
min (m’.w{')z (min (w], w{), min (wh, wy),..., min (Wi, wh)),
where for any u, v over an alphabet),

u, if v is a prefix of u,
max{u,v) = ¢ v, if u is a prefix of v,
underfined otherwise,

u, if u is a prefix of v,
min(u,v) = ¢ v, if v is a prefix of u,
underfined otherwise,

Lemma 3. With the oprerations max, min defined as above, init(T) is a complete finite lattice.

Proof. The lemma follows immediately from the fact that W' = (w},w),...,wly) is an initial part
of W = (wy,wy,...,wy) if and only if:

Labelled Transition System Approach to ... : 2

a) wy is a prefix of wy, i = 1,2,...,N b) Vi,j € N. the nunber of sends o Jinwis not greater
than the number of receives I':om i in wj '
- The details of the proof are omitted, Sl

init(w) is intended to represent all the possible past parts of the execution resulting @ of the
system.

For a given @ = (1, wa,...,wx) € B, an event structure can be derived to represent the actions
performed by local processors and the causality relation between theni. Each letter occlirrence in
wis will be called a event, Let £V FNI(w) denote all events in . ‘ il

Dl o
/

Definition 9. Let a,b € EVENT(W), a < b iff for any @ € inil(7), b € EVENT(iT') lmpllOS
a € EVENT(W). ‘

It follows from Lemma 3 that a < & iff the minimal initial part (according to the partial ordermg
relation generated by the operation min) of @ conlaining b also contains a. 'l’hun. the minimal
initial part of @ containing b.contains all events which lead to the occurrence of b,

It can be seen casily that if @ € init(@), then the posel (EVENT(W), <) is a left closed
subposet of (EVENT(W), <), Cyel

When a process i can perform an action b during an execution of the system resulting @, what
it can learn about the system is each predecessor of b has been occurred. Thus, -the .amoutit of
global information that the processor i can have at this moment is the minimal initial part of @
containing b. It follows that we can maintain only the knowledge of the system which is derived
from this amount of global information, Denote by Ki(va) the minimal initial part of @ having va
as its i component which is the ninimal initial part of @ containing a for an event a performed
by the process i (a occurs in @). When a is a fixed letter occurrence in wy , we write Ki(a) instead
of Ni(va) il it dovs nol cause any confusion.

Proposition 1. Let wy = ua'av, where a is a reccive, and b the corresponding send of a in wy (i.e.
wj = rby and #,,,ua’ = #,, x). Then

Ki(a) = max (Ki(a'), K;(b)Xi(a)

where X,(+) denotes the element of A, of which all components is A except that its i'h component
is a.

Proof. max (K(a'), Kj(b)), is an initial part of @ containing «'. Since b is the corresponding send
of a, if Gy - max (Ki(a'), Kj(b)) = § = (q1,...,qn,1) then 45 = A and the message m generated
by b is the first element of 4j;.- Thus, @ = max (Ki(a"), I\'j(b))x-(a) is in B, and hence, @' must
be the minimal initial part of T containing a. 'To sce why, we suppose in contrast that @' is not
80. This means that at least one component of K;(a) must be a proper prefix of @', which'ié the
corresponding component of either K;(a’) or K;(b). It follows that either min (K;(a'), K;(a))is"a

28 Dung Van Hung

praper initial part of Ki(a’) containing o’ or min (N(a), K;(b)) is a proper initial part of Kj(b)
containing b. This is & contradiction to the definition of cither K;(a’) or Ky(b). The proof is
complete.

Proposition 1 is a foundation of the algorithm for maintaining the amount of global information
of the system in the processes.

In order to keep our algorithm as general as possible, we introduce a f'unctmn [for representing
the knowledge of global properties that can be derived from Ki(a)'s. Let P be a partially ordered
lattice, f be a function from init(W) to P satislying:

[(max(@, @) = max(f(W0'), f(@"))
J(@X)(a)) = gi(f(7), a),

where g; is a given function from mil() x Ajto P, i =1,2,...,N.

The operation mlalx represents synthesizing global knowledge of the system of a process, and the
function g, lreprcsrznts the fact that if the process i has the amount of global knowledge A" of the
system before it performs the action @, then it has the amount of global knowledge gi(K, @) of the
system after it performs the action a.

Ll’t
o - W - ?’.En =T == (f]‘pf{an ---.q:\r.')"f)-;f”
= (¢, 04, v g% y"), W, W' € nil(T). The following instances of f are of interest.

a).
SO = ([, [whl, oo [y]), T € init(@), P =NV,

gl'(jhj?l '"jl'l '--jN) = (jl!jﬂl ---Jl’ + l: “'lj“)'

In this case, f(i@) is considered as partially ordered logical time of the system after the exectition
represented by . Then, f(i(a)) will be a timestamp assigned to a to ensure that Ki(a) < Kj(b)
iff a is a predecessor of b, An implementation of this can be found in [7].

b),

7Y = (uhl, ¢4, €4, (), @by Cady oy (i g Ox)), W € it (),

where € = ((nly,¢lg), . (nlx,€ln)), nig is the number of sends from i to j i wf, ef; = 7f; is the
queue of messages having not received by j [rom i after the exccution represented by @',

gi(((hn'hi) .(Jn‘li:c) s(jN:Qi\'IC'!fTV))va)
((JHQU ‘“)l' o(di + 1, pi, Cf -"'(J'Nqu'\'ICK’)L
where
Ci' = ((nfy, eft)y o (nffi i)y (0 €D 3 S N, :
(ghy gty |'I:\' Y') -xi(") == Gy oo Piy oo Jq;\'lﬁ)) Bij = cl;"!j <N,
nfi = njy + 1if a is s;j and nfj = nj; otherwise,
S(0") is considered as the global state of the system al‘ler the execution represented by w’ which:is
added with message counters and local time clocks. Thus, f(Ki(a)) will give a possible global state
when the processor i performs the event a. The operation max in this interpretation is defined as

Labelled Transition System Approach Lo .. 20

max (J(@), /(") = ((max (@], [f]), 01, C1),
(max (Juh,], g2, Ca), o (max (il [}, Cx),

_ { g0 it max (Jw)], Jw'V) = |uw),
" g i (lwils Jw"™) = |uf],

where

it max (],) = [uil,, max (Jwj], Jw"s) = |[wj], then
ni; = nfj‘ Cij = (';jl

it max (Jef], [w") = |wi],, max (!u"| lw"s) = fwjl, then nyj = njj, eij is the concatenation of the

first ni; = nfj elements of ¢f; and ¢}

lj B
The remaining cases of ¢;j are oblained by changing the roles of T and @ in the above definition.
Now, we can give an algorithm for maintaining f(Ai(a)) in the local state of the process i after

it has performed the event a. The algorithm is presented as a distributed system D', which is

bc'hmlourall\ equivalent to D' with' f(Ki(a)) bomg kept as a component of the local state of the

process i n['l(*r it performs a.

D' = (PP Py Co=' O M
where |
= (Qi x S(VAS(A)). = &', Ag) Mi; = Miz x [(VAS(A)),
— ' and — i is defined as follows.
Let q,¢' € Qi a €), W, W € VAS(A).

la€ Ajg=a—T7, then (g J(F) ~a—i'(¢,g:(/(T a))).
Ifa =sij.q—a = (q¢'ym), then (¢, [(W)) = a = "((¢' . 0i (S (W), 7)), (m, gi (S (W),).
If @ = ryj, (m,q) ='a —q', then ((m, f(7')),(q, [(77))) = a = ((¢’, max (f(m), (7).

Let g = ((rh.f(A)) 19, T, ""('IN'I(’\))} ®) be the initial stale of I,
Theorem 2, D and D' are hehaviourally-equivalent, i.e. B = B'. Furthermore, if (¢,d),q' €

Qi, d € f(VAS(.A)) is the local state of the process i of D' alter it performs the event a in an
execution resulting W, then d = f(N;(a)).

Proof. Let T and T" be labelled transition systems for 1 and [respectively. The prool goes by
induction on the length of derivation that

To=0—T7=(01,72 a8, 7)
if and only if
E'U = - ? — ((ql,f(l\;(w;)) l"[mf([\J w-l))) (-Vuf(l\N(wN))) v)

‘using Proposition 1 and the property of the function f, where v;; = A(yj;) with & being the
extended homomorphism of the projection on the first component. .

10 Dang Van Hung

By choosing & suitable interpretations of f, D' can be used in debugging distributed programs
a8 in [14,15), studying invariant properties and reasoning of the systems (8], distributed snapshots
(4], ete. With f being the global state function, a global state of D can be determined in only
one local process. If the determined global state is too old to be considered, some of local states
of some another processes may be accessed as well. Some of these uses of the algorithn will be

presented in separate papers.

Example 2. Let D, be as in Example 1, f and gi,i = 1,2 be defined in b). Since only the
process 2 sends messages to process 1, a channel state 4 can be written as a queuc of messages

from the process 2 to the process 1 (matrix 4 contains one element, and hence, Cy,i = 1,2 contains
1

v

one element). Then, the derivation represented by @ in 1) is as follows.

((qu ((0' 10, (0"\))! (leﬂl (0|A)))' (Fﬂt((ol 1, (U' A))‘ (nul’flv (0!)‘)))l ’\) - (r\.’)) -

(g0, (€0, g0, (0, A, (0,p0, (0,))), (P14 (0,70, (0, AV (1, 1y (0.A))), A) = (A) —

(g0 (0, g0, (0, A)) (Orpa. (0, AN, (o, (0, 40, (0,A)), (2, po, (1, 1)),

(1 (0140, (0,29).(2,po, (1, 1)))) = (r12,b) —

(g, (1,0, (0, M), (2, po. (1, ANy (o (0o (0, 0)), (3, Py (1, D)), A) = (a,5m1) =

(g0, ((2,90,(0, 1)), (2, po. (1, A)), (P1. ((0, 40, (0, A)), (4, po, (2, 11))),

(1 ((090. (0,). (4, py, (2,11)))) = (112, 812) =
(11, (3001, (0, M), (4, iy (20 M), (2. (0,0, (0, X)), (3,2, (3, 10))),
(0, (0, g0, (0. A)), (5, pa, (3, 110))))).

From the state ((71,((3,q1,(0,A)), (4, p1, (2. 1)) of the process 1, we know that one global state of
D is (g1,p1,2). |

Conclusion,

The vectors of sequential words generated by distributed labelled transition systems ate an
intuitive model for describing the behaviour of concurrent and distributed systems, The notions
of causality relation, knowledge of global information of processes, logical time are formulated
accurately in term of this model of behavior. It has been proved to be a good model for proving
the equivalence and verification of distributed systems. Thus, an extension of the model to the
case of systems of the processes created dynamically and an algebra of processes in this model
should be studied in support of design and understanding of concurrent and distributed systems.

Labclled Trapsition System Approach to ... a1

References

=

America 1M, & and Rutten J.LM M., A Parallel Object-Oriented Language: Design and So-
mantic Foundations, Languages for Parallel Architectures, J.W, Bakker, Fd., Wiley Series in
Parallel Computing, 1989, 1-50.

Bal 1L.E ; Steiner J.G. & Tanebaum A.S., Programming Languages for Distributed Computing
Systems, ACM Computing Surveys, Vol 21, (1989), 261-322. '

. Casavant 'T.L. & Kuhl J.G., A Commumicating Finite Automata' Approach to Modeling Dis-

tributed Computation and Its Application to Distributed Decision-Making, IELL Transactions
on Computers, Vol. 39, (1990), (28-634. '

Chandy K.M. & Lumport L., Distributed Snapshots: ‘Determining (he 'Global State of Dis-
(ributed Systems, A, Rev. Computer Science, Vol. 2, (1987), 37-68, !
Degano P& Montanari U, Distributed Systems, Partinl Orelerings of Events, and Event Strue-
tures, Control Flow and Data Flow: Coneepts of Distributed Programming, M. Broy, ed., NATO
ASI Series, Vol F L4, 1085, T-100. ‘

Degano P.. Gorrieri Ro & Marchetti S.o An Exereise in Coneurrency: V' CSP Process as a
Condition/Event System, Lecture Notes in Computer Science, Vol. 7, 1989; 85-105.

Iridge C., Logical Time in Distributed Computing Systems, Computer, Vol. 24, (1991), 28-33.
Halpern .1, Using Reasoning about Knowledge to Analyze Distributed Systems, Ann. Rév,
Computer Sci.ll 2, (1087), 37-68,

0. Hoare C.A.R.. Communicating Sequentinl Processes, CACM, 21, 1978, 666-677.

16.

17,

18.

Hung D.V., A Model for Analyzing Distributed Systems, Journal of Informatics and C'y herneties,
Vol. 1, No. 2, 1901, 15-23 (in Vietnamese),

. Hung D.V., Notes on Prajection Products, Trace Languages and Synthesized Coneurrent Com-
g gluag \

putation Systems: MTA-SZTAKT Kozlemenyek, Vol. 32, (1985), 87-101.
Hung D.V. & Kouth B., Semi-Commutations and Petri Nets, ‘I'heoretical Compnter Scivnee, n”.
G4, (1980), G7-81.

3. Hung D.V. & Knuth E., A Non-interleaving Semantics for Communicating Sequential Processes:

A fixed point approach, Acta Cybernetica, Szeged, Mungary, Tom. 8, (.3, (1088), 203-311.

. Josepl T.A., Rauchle T, & Toueg S., State Machines and Assertions: Integrated Approach to

Modelling and Verification of Distributed Systems, Scienee of Computer Programming, Vol. 7,
(1987). ' 22,

Keller K., Formal Verification of Parallel Programs, CACM, 19, 1976, 561-572.

Mazurkiewicz A. Ochimanski E. & Peuczek W., Concurrent Systems and Inevitabilify, Theoret-
ical Computer Scicnce, n%. 64, (1980), 251-304.

De Nicola R., Extensional Equivalences for Transition Systems, Acta Informatica, 24, (1987),
211-237.

Nielsen M., Plotkin G. & Winskel G., Petri Nets, Event Structures and Domains, Theoretical
Computer Selence, 13, (1881), 85-108.

37’ Dang Van Hung

10, Shield M.W., Nonsequential Behaviour, Part I, Tech. Rept.OSR-120-82 Dept. of Computer
Science, University of Edinburgh, 1982,

Abstract
Labelled Transition System Approach to the Distributed Computing Systems

The present paper introduces the notion of distributed transition systems for iodelling, design-
ing and understand:'né distributed computing systems. The concurrency can be expressed explicitly
in the model. Séme of the global properties of the systems are discussed and determined. It is
shown in the paper that by keeping knowledge of other processes in each process of a sysrem, some
of its global properties can be synthesized from only few local process states.

