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1, Inlroductlon.

Suppose by the irregularity of the reflectivity of the earth a seismic signal is not always stationary
in usual sense, but only long-run stationary (see [6] and [7] ). Then there arises a question :” Why
is Wiener filter ,which as well known, is uscd in prediction and filtering of ergodic stationary time
scries, also applicable in processing scismic signals ? *, In this paper we try to give answer for this
question.

2. Some remarks on Wiener filter.

For the sake of simplicity here we consider the following problem:

Let z, be a random process of second order and our task is to estimate x, from z,.;. The
criterion here is the least mean square (LMS), i.e. we find the value ¢ that

E(zn ~ ctn-)’ = min By = day-1)*. (1)
From (1) we get
- Pl(nrn - 1) ' (2)

ee(n—=1n-1)

where

wz(m,n) = Ea,z,. - (3)
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Then we estimate r, by
Iy = crp-y. (d)

We call the coefficient ¢ the Wiener filter and &, the optimal - -timate of ;. Because (1) and
(2) are equivalent , we can consider (2) as the definition of the Wiener filter. As we can see, in
definition the Wiener filter requires only that the process r,, is of second order, ie. Exl < oo,
However in practice we do not know the correlation function ¢(m, n), we can only estimate it from
the observations », -y — 8 in the case 2, is an ergodic stationary process. The

w(1) .
L b
@:(0) )
and we estimale it by '
N ¢ RPN &~ SN
e = f'r( )u ’.r(s) ey "Z=‘:34n+alm (?)
hence &y, is estimated hy
vy = éullna.ll (7)

we call &, the approximant of &,. We probably keep in mind that:
]

a. &, is a good approximation of &, only if the sample correlation r.(s) is a good estimation of
@a(8), i.e. the process x, is ergodic and stationary,

h. The optimal estimate &, is better than its approximant &y, especially in the case when the
process ry, is not ergodic and stationary.

By the following examples, we want to show that the above thought is not always true.

Example 1. Let x, satisfly
ntary-; = up ,n=012,., (8)

where |n| < 1 and
a. The variables wp, uy, uy,... are independent with mean 0 and

Eluy|® < K < (9)
for some I and ¢¢ > 0.

N=-1
lim%r- ZE‘HE =0 > 0. (10)

n=0
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Lt ayz+agz?+ . 4+aps’ #0, Vz:|z| €1, (11)

‘i.e. @ is A long-run stationary autoregressive process of first order (see [6] and [7]).
We can see

E(rg/en-1) = E(=arq_y +tupfetna1) = —a2yoy + Euy = —azp.y, (12)

hence i, = —awy.-; and ¢ = —a. Using the main thcorem in [6] or [7] we have

g:(1) _ limyowrs(l) _ _ _ge(mn=1) (13)

TEE 0 T Tmyewers(0) - T Gan—Ln—1)

Because the process r, defined above is not stationary, its correlation function is bivariate and
unestimahle by the sample correlation rp(s). However from (13) we can sce that the optimal filter
is estimable . More exactly speaking, in this case if we wrongly suppose that the process were
ergodic and stationary and estimate ¢ by (6) then we get good estimate for ¢ because

re(1) _ pe(nyn=1)
Neeor,(0) ~ e(n=1n=1) ~ ¢ (1)

although
Jim ra(1) # pa(nyn=1),
Jimre(0) # p(n=1,n= 1),

In this case the correlation function is ” a had intermediatory device” in definition of the Wiener
filter, because the formula (2) make us thinking that the Wiener filter were not estimable, If
instead of (2) we define the Wiener filter by

= o=(1)
¢ = 9:(0) (1)

then in this case the filter is the same as one defined by (2) and it scems estimable as it is,

Example 2. Let 2, = cosnw , where w is a uniformly distributed random variable on [0,211]. In
(8] we have shown that z, is not ergodic ( although it is stationary ). As well known z,, is white
noise, therefore ¢ = 0 and the optimal estimate #, = 0, the mean square error for ¢ is

E(wn e i'")n = 0-5- (16)

Suppose that z,, is ergodic and we can estimate ¢ by

N
‘= re(1) - &Eicosnwcoa(n-fl)w an
f'.r(o) Z:IHI cosﬂnw :
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(cos(2N + 1)w — cosw)cosw
sin(2N + Dw + (2N — 1)sinw’

= cosw +
We can see
liMyawt = cosw = 0 = ¢, a.s. (18)

In this case ¢ is really not a good estimate of ¢. It is a natural thought that perhaps the approximant
&y, 18 worse estimate than &,. However we have

E('l"ll = .‘i:,;) F( n = Clp- l)2 (19)
~ E(cosnw — cosweos(n = 1)w)? = E(sin®wsin®(n — 1)w)
< Esin’(n—-1w = 05.

Thus
E(xy - ii'n)? < E(en - 5}“)2.
In this case the approximant gives better results than the optimal estimate. If we define our filter

by (15) instead of (2) then we have the following advantages:

a. It is estimable from the observations x, = s. ( As'we have seen, the Wiener filter is not estimable

).

b. It gives better estimate for x, than the Wiener filter. i

In the next section we propose a definition of such a filter, which in the above cases gives (15)

3. Least time-mean square filter,

Definition 1.
A process xyy, n = 0,1,2, ... is called a long-rnn stationary process, if there exist the limits

RO 1 = PRy
lﬁlgam — /\!EE@N gaj,. = A as. (20)
y St
Jim r(s) = Jim < Z PnteZn = go(8) as.8 = 0,1,2,..., (21)

We call A, the time mean and g,(s) the time correlation function of the process zy,.

Definition 2.

Let z, and y, be long-run stationary processes. We say that thcre exists the time crosscorrelation
function between them if

. .
Jim rey(s) = lim Genran = gny(s) asns = 01,2, (22)

If goy = 0 for s = 0,1,2,... then we say that 2, and y, are time-uncorrelated.
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Definition 3.
A long-run stationary process uy, is called a long-run white noise, if A, =0 and

(s)_{af“, fors =0
Bul®7= 010,  otherwise
where ¢ may be a random variable (sce [8] in more details for properties of long-run stationary

time series).

Suppose x, and yy are long-run stationary processes and there exists the time-crosscorrelation
function g,y(8). Our task is to estimate z, from the observations yn, ¥n=1, 1 Yn=yg where q is a
non-negative integer.

For arbitrary vector-random variable 8 = (8o, B1, fa,, s B) f)y using the long-run stationarity
of the processes x, and y, it is easy to prove that there exists the limit

llll‘l N Z(l‘n = Boyn = Biyn=-1= —ﬁqyn q) = eﬂtﬁ (23)
n=0

we call the quantity e?(3) the time-mean square error (TMSE) of the filter 4. We will prove that
there exists 4 for which

e?(y) = mine*(3). (24)

Definition 4.
We call 7 the least time-mean square (LTMS) filter and we estimate 2, by

Axn = YoUn + T¥n=1+ o+ Vgln=g (25)

Thus, the LTMS filter is optimum for the TMSE ,i.e. its TMSE is minimum,.

Theorem 1. The L'T'MS filier satisfies the equations
f- awl0) gy(1) -'-gy(‘I) ] rTD ] er(o) W
ay(1) gy(0) gy(g=1) || m| | 92(1)

i

...... (26)

Loy(@) gy(a=1) gy (O)]| 7| | 92(2)
Proof. )
For fixed N we define ¥(N) = (yo(N), 11(N), .., 7¢(N)) as follows

N Z 'TD(N Un = (N)yn-l _-—ven "!’r,l(N)yn-q)2 (27)
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N=1 ‘
= mings: 3 (n = oYt = Bu(N Y=t = .= By(N )=y

n=0
where y, = 0 for n < 0. Then we can see that 4(/N) satisfies the equation
[14(0,0) 15(1,0)..ry (9, 0) [[(N)] [ 72y(0)]
ry(0,1) ry(1, 1),y (0, 1) |1 (N) rey(1)

(28)

Lr'v(OMI) "y(1|9)---"y(’!n“1)_ _Tq(N)_ rey(1)

where

1 Ne=2a 1 N=2
"y(lu §) = ﬁ Z Unga=iling Yoy = 17 Z Undaling 8,1 = 0.11---f1-
n==s+1 n==a+41
As 2, and y, are long-run stationary, we have
limry(l,8) = limry(l=8) = gyl =8), limrey(s) = gey(s).

After limiting (28) we get (26). Similarly by taking the limit of (27) we obtain (24). Thus the
theorem is proved.

Theorem 2. Let xy, be a long-run stationary autoregressive process of order p, i.c. @y, satisfics the
equalion

Tp+ Ty Faaly-n+ ...+ Api'p=p = lUp, N = 0,1,2,.. (29)

and the conditions (9), (10), (11). Our task is lo prediet the value @y from @p—y, Tn-g, . Znag,
where q > p.
Lety = (71, v2,.00 %) be the LTMS filler; e = (eq,e3,...,¢,) be the Wiener filler, i.e.

T = min E(wp =dpenay = .= dgwn=g)®.

E(zp =croy-g = ...~ o=
( n 1¥n=1 q&n q) de R

Theny = c. (As we want thal the index i of y; denotes the time lag, we writey = (¥1, ¥2,.., ¥q)
istead of ¥ = (Yo, 1, .., Yo=1) ‘

Proof. ; .

In [6] and [7] we have shown that the process z, is & long-run stationary and the coefficients
ay, ag, .., ap satisfy the following equations . 3

[ 02(0) ge(1) oo gelp = 1) | [ ] 5:(0) |
9:(1) 9(0) . ge(p=2) | | @2 g:(1)

|1

0

{ 9z(p = 1) go(p = 2) ... 9(0) J
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It follows from Theorem 1 that the/1MS filter 4 satisfies the equations
0:(0) go(1) o gelp= D] [m] [ 9:(0)

gr(l) g:(0) . ge(p = 2) 2 g:(1)
...... = (31)
(0= 1) 9u(a=2) .. m-(O)J Yy i g.(qg=1)
Hence - -
_ { —a;, fori=12.p
M=0, foriz=p+lp+2.g (32)
and therefore '
Ar = —map.y = agp-a = ... — (p¥p=p (33)

On the other hand
E(ep/tn-1,tn=2y 0y Zney) = E(=ayrp_y —avp-a—...=ap2n-p+ Un/@pn=1, ) Tnagq)

- Tym) = A3ty = o= Qp2yap + By = = 2y = Q2Tpop = o = f/pl‘n—-p-

This means that forq 2 p

] ' " 2
E(a:" = lp=] = 0= ﬂq;l‘"_q) = ‘}EHL E(-En - dlmn...‘ - = dqa,"_q) f

From which we get

o = {—a;, fori=1,2,..,p
=10, fori=p+lp+2 .. (34)

The statement of the theorem follows from (32) and (34). Thus the theorem is proved.

Theorem 3. Suppose a process y, has the form
Yn = Zn -t Un, (35)

where @, is a process salisfying (29) and the conditions (9), (10), (11); vn-s are indcpendently
distributed random variables with mean 0 and independent of xp; furthermore

N1
1
7|2+ H — nyd = )\
El|**t < L < o0, h!l-gloN E%Ev,, = A (36)
forsome yo > 0,L > 0, X > 0.

Let our task be the estimation of the value 2, n = 1,2,... from yn,Yn=1,s¥Un=g; where q is some
fized positive integer. Then there exists the LTMS filler y = (V0,711 -1 %)y which is uniguely
determined by the equations
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ﬂru(ﬂ} dy(1) (@) Tho ] 1, (0) = A%
ay(1) gy (0) cgyla = 1) ™ y(1)

.

a (37)

L ayla) aylo = 1)y (0N 74 iy (4) J
where the matviv on the left side is positive defintte,

Proof.

In [6) and [7] we have shown that w, and vy are long-run white noises | i.c.

Hu(n‘f):{ 0%, fora=40,

0, otherwise,

(%) Mo Tors=0
flu(8) = '
& 0, otherwise, (38)

By (36) Lul <« Ny, Eved < Ly forsome Ky > 0. L > 0. Tor ks =0,1,2,..let us consider

tn

N=1

F'(=l= z Mpmhlnga)® = FL\Z-I Eud_ vy, £ i"—"‘—o
N n=0 S B N n=0 sk 2 N ‘
Therefore by Tehebyehel's inequality we get
. |-
/ ;\!E-TJUT E, Upeklpgs = 0..
(Llere Plim means the limit in Probability).
Note that ‘the variables &, = Unwklings, N = 0,1,2,... are i!l(l(;|)c;11(|(‘llt, furthermore we can see

Elzpl™ < M < oo for somel < jig £ 2

-

and hence
E|z|to
—_—— <

1
nito nHe

Me
Me

— < o0,
1

By the theorem 3.2 in [1], p.169 we have

N=1

. 1
‘JE}L F.,Z;H"-kv"“ = 0. as ’ (39) .

By (11) we can take the reciprocal B(z) of the Z-transform A(z)

1
l+ayz+..+apz

B(z) = = 14byz+bgz? +.

\
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and z, can be written in the form

[==]
z, = Zb,.n,,_,. u, =0, ¥n < 0.

s=0

Then

2

1 N=1 1 =1
pur(8) = Jim 5} anvngy = Jim
n=0

Ne=oo N=co

)
z bl p = kVn s
=0 k=0 .

=

N=

) | 1
= E lim =— Up—kVnts
N = 7 s
pmn N L

Using this fact we can sce there exists the time-crosscorrelation function gry(8) and
Yey(8) = gy(8) = g12(8) = gv (s) (40)
N { gy(0) =A% fors=0

- gy(8), fors=1,2,..

By theorem 1 there exists the LTMS filter 7 satisfying (26) , from which using (40) we get (37).
Now we prove that the matrix on the left side of .(37) is positive definite.

Let us denote

9:(0) g:(1) o ge(p)

9x(1) 92(0) ... ge(p=1)
G = : 7, :

9:(p=1) g:(p=2) ... g:(0)

9(0)  gy(1) gy(2)
gy(1) 70 ... glg=1)

Gy =
9(9) gylg=1) ... 9y(0)
Then Gy = Gz + A? I, where 1 is a unit matrix 7. [8] we have shown that ¢, is positive definite.
Let d = (dy, dy, ..., dg) be an arbitrary non-zero « - ~tor, Then

dGyd = d'Gd+Ad'd > d'Ge,d > 0

- which means that G is positive definite. Thus the theorem is proved.

Remark: In practice it is usually a case when we have to estimate the signal z,, from the noisy

signal y,, which we can observe, It is reasonahl» to think that in many cases we can invesigate the

strength of a noise before producing the sequence y,. ( For example before we start an explosion to

produce an elastic wave into the ground ). When there only the noise v, appears, we can estimate
A? by r,(0). Thus we can suppose that A is known. Then we can estimate ¥ by
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I 5 \
ry(0) ry(1) ..y (g) o | [ry(0) = 32
ry(1) 7 (0) ry(g = 1) [ m ry(1)

...... = T (41)

1 by

ry(q) ry(g=1) ---"y(o)_ ‘)‘qJ I ry(q) ) ,
then limy =y, a.s. When the processes z,,, ,y, are stationary , u, and v, are white nojsea with
Eup = ¢ and Ev, = )it can be shown that the Wiener filler ¢ = (eq, ey, vy €g) satisfies the

equations
[0(0) (1) .40 1] [wu(0) = A7
ey(1) ¢y (0) .py(g = 1) 71” y(1)

- ()

-

w(q)wu(q—-l)---w(O)J_w ey(q) |

IT furthermore the above processes are ergodic then we can estimate ¢ by

( ry(0) ry(1) wry(q) 1 feo r, (0) = A2
ry(1) ry(0) oy (g=1) | | ey ry(1)

U]

...... | ' (A

L @D en 0] o 6 |

which is formally the same as (42).

Conclusion.

As well known, the problem of recognition of ergodic stationary time series is very difficult in
practice. It can be shown that for arbitrary time series 2, ( not necessarily ergodic and stationary
) if there cxist the limits

limy—cor:(s) = gs(s),8=0,1,2,..,

then g, (s) is non-negative definite, i.e. it is a correlation function of some stationary process. Thus
if ry(s) converges when N tends to o then for N large enough it likes a correlation function of a
stationary process, inspite the process 2, is stationary or not. Therefore we can not recognize, the
stationarity of the time series 2,, by its sample correlation function. By this reason in practical
application sometimes we may wrongly suppose that our time series were ergodic and stationary (
but in fact they are not ) and apply, the Wicner filter . What happens then ?
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a. If 2, is a long-run stationary autoregressive process and our task is one-step predietion then
the result is an approximation of the Wiener filter, inspite of the fact that the correlation funetion

is unestimable,

b. If our time series are long-run stationary only then in many cases the result is not an approx-
imation of Wicner filter, it is an approximation of the LTMS filter only. However this does not
always cause much matter, because by the example 2 we can see sometimes the IMS filter gives
better result than the Wiener filter even by the least mean square criterion ( by definition the

LTMS filter is optimum for the least time-mean square criterion ).
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Abstract.
On Prediction and Filtering Problem of Long - Run Stationary Time Series

Suppose by the irregularity of the veflectivity of the earth a scismic signal is not always stationary
in usual sense, but only long-run stationary (sce [6] and [7] ). Then there arvises a question: "why
is wiener filter, which is as well known is used in prediction and fillering of ergodic stationary time
scries, also applicable in proccssing seismie signals?"

In this paper we try lo give answer to this question.



