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.1. Introduction

The boundary value problems for rllif)bic equations after: discretization by- the method of finite
differences or by the finite elements inethod are reduced to the large system of linear algebraic

equations
A=, - ' (1.1)

where A is a symmetric, positive definite matrix of order N equal to the number of nodes of
the grid. There have been many effective metheds for solving the system (1.1) (see e.g. [1-4]).
Besides, in order to accelerate the convergence rate of the main iterative processes one proposed
some interesting methods. First we should mention the group of accelerated methods by additive
_correction ( see [3] and bibliography therein ), whose most important rcpresentatives are the
‘ multigrid methods [5-7]. These methods are int-en.s'ivély developed now. The second group of
accelerated methods are those by multiple correction [8,9]. In spite of the existing methods the
claboration of new methods either more effective or easily realized on parallel computers is of

interest to rescarchers.

In this work we propose a method accclerating the 'convergence ‘rate of certain well known
iterative methods such ‘as the alternately triangular method (ATM) and the alternating direction
method (ADM) [1,4,16,17]. More preclsely e suggest new algorithms on the base of the above
mentioned methods and. prove that our alg,onthms +onverge faster than ATM and ADM applied
directly to the system (1.1). Our idea is based on the construction of an appropriate combination
" of the solutions of the systems, which may be solved faster than the original system (1.1). This
idea on the continuous level was used by ourselves in [10-12] to construct effective algorithms for
solving biharmonic equation and the second order elliptic equation with discontinuous coefficients.
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s possible to consider this idea as an expession of the new approach to numerical modelling of

hlems in physics and mechanics stated recently in [13,14].

~onstruction of approkimate solution of operator equaiion by parametric extrapolation

n this section we construct the theoretlcal background of our accelerated algorithms. First we
ablish some auxiliary results. Let A be a linear, symmetric, positive operator in the Hilbert

ce H with the scalar prodqu (.,.). Consider the equation
Au = f; G.R(.—i). | (2.1)
coi-glingfto this equation we intyoduce_the purt.urlvled equalion
Aue + €Pu, = f (2.2)

rre ¢ is a small parameter, ¢ > 0; P is"a linear, symmetric, positive definite operator Pt Pras

', ;0> 0, I is the identity operator.

nma 2.1. Let u, and u, be the solutions of the equations (2.1),(2.2) respectively, where A, P

» the operators described above. Then

n

(Auc,ue) £ (Aug,ve) = (f. ua). " (2.3)

oof. From (2.1) and (2.2) it follows that

Au, + cPu, = Aug.
itiplying both sides of the above equality by u. and taking into account that > > 0 we get

(Aue,ue) £ (Aug, ue). | (2.4)

>m the inequality '

(A(‘ug — ug), ue — ug) = (Auc, uc) +(Auo, uo) — 2(Aug,u) 20

derive
2(Aug, ue) < (Aue @) + (Aug, ug)

lis estimate and (2..4) imply the desired inequalitlv (2.3).
mark 2.1. In the case when H is finite-dimensional ppace from (2.3) we have

' ”'“'t”"2 < Ci(fouo),

iere C) = const., independent of e.
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Remark 2.2. If in addition to the assumptions of Lemma 2.1 we suppose that the operator A is
completely continuous and the operatoxs A and P are commute then mstead of (2.3) we get the
stronger estimate
. lluel| < lluoll-
This result in the case P = F was prov«*d in [10,12]. Here it should take into account the commu-
tativity of A and P.
In the future we shall need the following result.

Lemma 2.2. (see [15], Appendix). Let M be a natural number. Then the solution of the system

M1 M1,
}_; vi =1, 21: Tl =0, l=1,M
= =

is given by the formula
(_1)M+1-—s'z-M+l

ME M 1<)

Now we prove a theorem on asymptotic expansion of the solution of the purturbed equation (2.2).

ci=1,M+1. ' (2.5)

Theorem 2.1. Let A be a lincar, symmetric, positive operator ; P be a ]inéar, symmetric, positive
definite operator in the Hilbert space. Let M be a given natural number such that the equations

Avy = ‘Pi’k-‘-l, k =1, M 41, vp =y (2.6)
have solutions. Then the solution of the eyuation (2.2) can be expanded in the form
M :
Ue = uo - Z( v + r‘M‘Hw;, (2.7)
k=1

where ug is the solution of (2.1), v, (k = 1,87) are elements independent of ¢, and w, satisfies

~

' the estimate
(Aw, .l we) < Cq = const. (2.8)
Proof. Substitute (2.7) into (2.2). After balancing the coefficients of ¢ we get the equations
| Avy = ~Pu_y, k=T,M,
(1 -+ c‘}"‘)uic = —Puyy.

—rmen

Clearly, vy (k = T, M) do not depend on ¢ and by Lemnia 2.1 we have
(Awe, we) < (Awo, wo),
where wj is the solution of the equation sofable by assumption

“? :"»
Awg = —Puyr.

Thus, the theorem is proved with Cp = (Awo, wo).
. In order to use Theorem 2.1 for constructing solution of grid equations we restate one in the case
of finite-dimensional space with the attention that in this space positive operator is also positive

definite,
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Theorem 2.1a. Let A and P be Iinear, symmvetn'c operators in N-dimensional Euclidean space.
Moreover, A >0, P > 0. Then for any natural numher M it is possible to expand the gsolution of
the equation ( 2.2) in the form -

M .
Me = ug + Ze"vk + Mty ) (2.9)
k=1

where v (k = 1, M) are eleinents independent of ¢,
llwel| < C. ' (2.10)

We now construct the solution of (2.1) bv extrapolation of solutions of (2 ?2).
Put
' ‘ M+1

= ) Tties, (2.11)
k=1

where v, (k= 1,M + 1) are coefficients given by (2.3), U,k are the solutions of (2.2) with the pa-
-ameters ¢/k. These solutions are called'the basic solutions and UZ is considered as an approximate
iolution of the equation (2.1).

Theorem 2.2. Let A and P be operators, satisfying the assumptions of Theorem 2.1a. Then for the

"

ipproximate solution of (2. 1) conatructed by (2.11) there holds thé estimate
- “U — UQ“ < 4€M+1 (2.12)

Proof. We use the expansion (2.9) for u,/(k = 1,17 + 1) and form U* by (2.11). Then applying
.emma 2.1 and the estimate (2.10) we obtain (2.12) with
M+1
Cs=Cs Z km1

k=1

“hus, the theorem is proved.

We see from above that in order to construct approximate-solution of the original problem (2.1)
‘e have to solve a number of purturbed problems (2.2) with the parameters e/k (k = T, M + 1).
Jsually, we can not find exact solutions of these problems but ouly their approxinate solutions.
uppose that by iLergtiye method we have found approximate solutions yf;‘:) of the purturbed

quations with accuracy 6, i.e.

; e,
i) = wipll <60 k = AT+ 1. (2.13)
hen instead of the theoretical approximate solution IJE we obtain the real one
M+1 .
Z 2 i, (2.14)

.18 easy to get
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Lemma 2.3. For the real approximate solution YZ we have
IYE = ug|| < Cae™*! + Cs8,

wflere
M4+1

Cs = Z 7]

k=1
Let M be chosen, that is we have fixed the number of basic solutions for constructing U E, From

Lemma 2.3 we obtain

Theorem 2.3. Ife"‘“ = 0 then Y computed by (2. 14) is approumate solution of the problem

(2.1) with the accuracy .
IY" — uol| < €0,

where C = Cy + Cy independent of 8. .

Suppose that the equations (2.1), (2.2) are solved by such a same iterative method. Then the
construction of the solution of (2.1) by the parametric extrapolation (2.11) is effective if the total
computational cost needed for solving the purturbed equations is less than for solving the original
_equation. In Section 3 this fact will be estabhshed for some iterative methods.

Remark 2.3. The basic solutions .y, are sought independently from each other. Hence, it is optnnal
to realize the parametric extrapolation method on parallel computers. Otherwise, on sequential
computers if the purturbed equations are solved iteratively then for reducing the computation tine

Zf IJE;‘;) to be the starting approximation in the iterative process for

it is proposed to take 3
finding u/(r41). Here yf/") is the approximation of u.; with given accuracy.

3. Application to grid equations -

In the N-dimensional Euclidean sipaée consider the equation

Aus=f, - (3.1
'. where A is a linear, symmetric, positive definite operét.or:
A=A"26E.‘6>’0. o7 (3.2)

For solving the above equation one usually constructs two-layer iterative process of the form

(k+1) _ (k) %
BY T TV LAy = f, k=0,1,0n -1, (3.3)
. Th41 ' .

Here B is an operator, satisfying the following requirements: i) B may be fast inverted ii) the
ratio of the energeti¢ equivalence coefficients of the operators A and B reaches maximal value, i.e.

v1/v2 — max, where vy, 72 are the coefficients in the relation

1B <AL 7B,
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¢ w

e parameters of the Chebyshev collection (see {1,16]). The convergence rate depends on

i/72: :
aally, for the congtruction of B one starts from an operator R = R* > 0, which is energetic

alent to 4, i..
CiR<S A< CiR, C32C1 >0, (3.4)

¢ the above idea and the results of Section 2 we shall construct efficient algorithm for solving

quation (3.1).

bppse that the operator R can be decomposed into the sum of operators. We shall consider

sllowing cases.

~ase 1¢ R is the sum of two noncommute but conjugate cach other operators i.e.
R= Ry + Ry, R} = Ry, RiRy # RaRy.

is case we choose P = R R.. Cleafrl:y, P=P >0
ynsider the purturbed equation '

At = f, : ) (3-5)

Ae=A+eP, ¢>0. ' (3.6)
si’nall construct an'operatnr B, energe‘ti.c equiva.l;:nt to A in the form
B:(}?+wR,)(E+L¢R2). | (37
pro‘blem i‘s to choose w so that the ratio v;/72 rt-;aches the more the better value. He;e Y1y Y2 |
the coefficients in the relation

7B < Ac<12B | (3.8)

ma 3.1. Let us choose w = ar/e, where a is a real number, satislying

N by v
a> -, 3.9
2 G (3.9)

being the coefficient in (3.4). .
'hen we have the inequalities (3.8), where N

6 C -
"= 1+602.72%= ™oy (3.10)

< ¢ < C2/6 then the ratio § = v /72 reaches maximum when

a=a=1/V6 - (3.11)
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In this case we have

Proof. For all & € RN we have
(Ba,r) = ||#I" + w(Re. x) + W?||Ryz||?,
(Ae, ' . (A7) + €||Rax|)?.
Inserting w = ay/c into the al- ... cqualities and taking into account (3.4) we get

(Be,x) > ||z + %E(A.zr.:r) + a’¢||Ruz||?

”‘f(( Ao, r) +c,nf||1m|| ).

Using (3.9) we obtain

(Be,2) > (C\/-((‘h r) 4 ¢€||Ra])?) = M( Aex m)

(XN

that is
B> —=A,. (3.1

Next we get an upper bound for B. We ha\e

\/_

(Bz,r) < l|]|? + == (Ar r) + a’e|| Ryl

(41 )+ a’( \é,gl(4‘\-1‘,1')+(HR21'||2)

Oalr—l

%( L.’L r) + a’((Ax, 8) + €| Raz||?) < (-;— + a®)(Aex, z).
Thus, we get
B < (%+a"’)4-l,. (3.1

From (3.14).(3.15) we obtain (3.8) withy1. 72 computed by (3.10).- Their ratio is a function of

€=€(a) = = =—-6—\/lq—
Y2 (2(1 +b(l")

-2

fOo<e< Ci*’/& then  max ;5 /¢, é(a) is reached when a = a = 1/\/{_5.. In this case we ha

0
=6 m= 31, 72 =72 computed by (3. 12), (3.13).
The lemina is proved.
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“For solving the purturbed equation we use the iterative process

y(k+1) ik o
B—‘—T—‘-I—f’- +A y“"-f, =0,n-1, (3.16)

0 fg given.
From the theory of two-layer iterativ'elprocésses in [1,16] we obtain the following

=(E+ \/gR;)(E‘ 3 \/ng)

d {7i}}=y is the Chebyshev parameters collection. constructed according to the hounds 71, 72
fined in Lemma 3.1 then for the iterative process (3.16) there. holds the estimate

veorem 3.1. If

lly( ") “t” < qn”y(o) - u¢||, ‘ (3.17) -

\ere

5 0

order to achievé the relative accuracy 0, that is to have
™ = uell < 011" = wl - (319)
is nceded to implement n iterations, n > n.(f), |
ne(@) = In §/ink ~ nd/(\[E 845,

r the stationary iterative process with

tead of (3.17) we have
9 = el < P17 = el k= 1,2,

ere

1+¢

this case the number of 11®gutions needed to achicve the relative accuracy 6 is n, n > ny(6),

ng(f)= In 9/ \/_\/-
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Example 3 1 We illustrate the proposed method ou the Dirichlet problem for the sccond order

elliptic equation

Cop s
Y- g bel2) gy = ~1(2) 2 €, (322)
=1

u=0,z€l‘.'

Here Q is a parallelepiped in p-dimensional Euclidean space (p = 2,3)

ﬁ={05wa51,m a=1p}

T is the -l)dun:iz;'y of Q.
We introduce over Q the grid

U= {la=1igha, 05 iqa < No, a= 1,p}

with the boundary v. Here Nyh, = lo, a = T,p.
We approximate the problem (3.22) by the difference scheme

Ay = Z(anu%),a =-[f(2), ¢ € w, (3.23)

a=1

y=-U xX€%.

Ilere and hencefor ward we use the difference notatlous taken rom [1,16].

. Let us denote by H;, the space of grid functions defined on @ and vanishing on 7.. Then the

difference scheme may be written in the form of operator equation

Ay= /. (3.24)

where AJ =-Ay, y€ Hh

In Hh we also define the operators R, R, Ry as lollows

P °
Ry = Z 3;;?"-‘ Ry = Z Ry = ZJ'Q o

a=1 @ n—l

If in (3.22) it is assumed that

Ci < ka(2) €02, C22C1 >0, a=Tp

then we have
- Ci1R< AL CyR.

For 6 in (3.2) we can take

L~ 3

1l

@
[~
| —

b
i
—
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‘Since the difference scheme (8.23) of the problem (3.22) has accuracy of order W, (h¥= 30, hl),
in oxder to have consistence we also 1mplement iterative processes with accuracy 8 = hZ. Wlth this
accuracy when fixing M =1, i.e. when solving two purturbed problems it should be taken € = h.

Then the purturbed problem (2.2) has the form - "
Ay + hR1R2y =f.

It is easy to verify that the number of iterations needed for solvmg thxs problem with accuracy
0= h?is

ne 0) (th '111;}5. |
Hence, the total. number of iterations for obtannng thé'approximate solution of the problem
(3.22) with the same accuracy is a quantity of order C’)( . In & R This number is less than
O(+rs s In 4), which the alternately triangular method w1t11 the Chebyshev parameters collec-
tion requires (see[1,16]) if applying directly this method to the orrgmal dlﬁ'erence problem (3 24).

Whén M > 1 we must solve mote than two purturbed problems. In. this case, choosing ¢ =
h2/(M+1) we shall reduce the number of iterations needed for obtaining the approximate solution

)

of (3.22) with.accuracy h? to O(W%f;g In hl)

3.2 Case 2 : R is decomposed into the sum of two symmetric, commute dperators
R=Ry+ Ry, R, =Ry (a="1,2), RiRy = RaR;.

Suppose 6, E < Ra < AoE, 64 > 0,0 = 1,2,
- Taking P = R;R; and making the same arguments &s in Case 1 we obtain similar results.

Example 8.2. Consider the Dirichlet 1>1oblem (3.22) with p = 2. We also approxrmate 1t by the-
difference scheme (3.23). The operators R, Ry, Ry are defined as follows

’

g = YR T Ygaza Ray = =¥z, Royy = —Yz,0,

The estimate for the number of iterations is similar to that in Example 3.1, where R is the sum
of two operators comugate each other. C‘omparin'g with ADM applied directly to the original
difference problem we see the eﬂectlveness of our parametric e\trapolatlon technique.

The case, “where R is split into the sum of tlnee commute operators, which we meet—when
solving elliptic problems in three- chmensmnal domams and a comparative analysis of the proposed
algouthms on numerical examples will be plesented in an anot;her paper.

This work is completed with the ﬁnancml support from the National Basic Research Program

in Natural Sciences.
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Abstract. In this paper we propose a technique accelerating the convergence rate of the known
iterative schemes for solving grid equations such as the alternately triangular method and the
alternating direction method. Our idea is by the parametric extrapolation of the solutions of
equations, which can be solved faster than the original ones. The cfficiency of the accelerate

methods is shown on examples.



