10(3):1-13 Tap chi Tin hoc v3 Diu khién hoc 9-1094

INTERVAL-VALUED PROBABILISTIC LOGIC
FOR LOGIC PROGRAMS

Phan Dinh Dieu and Phan Hoﬁg Giang

Institute of Information” Technology,

1. Introduction

This paper presents an approximate method for the probabilistic entailment prob-
lem in knowledge bases where a portion of knowledge is given by a sentence in
propositional logic accompanied with an interval representing its truth probability.

Let B be a knowledge base consisting of sentences 51, Ss,...,S. given together with
their inteval-valued truth probabilities I, I,,... ,I;: B={< S;, ;>]i=1,... ,L}. Let
S be any given sentence. By the semantics introduced by Nilsson in [11], the problem
of entailling interval I for S from B is reduced to solving two linear programming
problems which are usually of size ~ 2L x 2¢ (about 2L linear constraints and 2%
variables). The method presented in this paper proposes a new way to solve the
problem. It reduces the entailment problem to the one of finding the set of "prime
implicants” of S expressed through variables S, S,,...,S.. It allows us to avoid linear
programming problems of very large sizes and therefore makes the probabilistic
entailment problem manageable. However, instead of exact solution, it gives only
approximate one.

This approximate method is shown to be especially efficient for probabilistic logic
programs when logical skeletons of knowledge bases form ustal logic programs. In
this case the set of prime implicants can be found by SLD- resolution applied to a
deterministic extension of logic programs. '

The proposed method is preseﬁted in section 2 for general case and in section 3
for the case of probabilistic logic programs. The last section containts discussion
and some concluding remarks.

Typeset by ApqS-TEX

Ean R SRR,

2 Phan Dinh Dieu and Phan Hong Giang

2. Entailment problem and approximate solution
2.1. Entailment problem in probabilistic logic

Firstly, we recall some basic notions of the theory of interval-valued probabilistic
logic developped on the basis of the semantics given by N. J. Nilsson in [11]. A
presentation in details of this theory can be found in [12,14].

A knowledge base B is assumed to be given in the form:

B={<Si,1i>,i:1,...,[,}

where S; is a sentence in propositional logic. and I; = [a;, 8] C [0,1] is the interval-
value for its truth probability. Let S be a target scntence. Tts truth probability
must be also an interval denoted by I(S) = [«(S), 3(S)]- The eutailment problem is
the problem of calculate the lower and upper bounds of I(5).

We put T = {S;,S,...,5.} aud ¥ = {S;,5,....,5.,8}. T is called logical skeleton of
B. :

Let U = {uy,... .ux} where u; = (wyj,-.. ,uI_J-)T, for j=1,...,kand V = {v,... ,v3}
where v,, = (tym.... ,vpm,vsm)T for m = 1,... h be the sets of consistent vectors of
boolean values of sentences in T and T respectively.

Each vector of V characterizes a %-class of possible worlds. Given a probability
distribution ¢ = (qy,...,qx) over the set of S-classes, the truth probability =(S;) of the
sentence S; is defined to be the sum of probabilities of classes of worlds in which S;
is true, i.e., m(Si) = vi1.q1+...4+vn.qn. From this semantics it follows that lower bound
a(S;) and upper bound A3(S;) of interval I(S;) are the solutions of the following linear
programming problems: '

a(S) = min (vs1.q1 + ...+ sh.qn) (1)

B(S) = max (ver.qs + ...+ Vsh-qn) (2)
subject to constraints: '

vi1q1 + ...+ vipqn € I; fOI‘i:l,...,L

Z:::l Im = (3)
’ImZO f:()rm:l,...,h

We usually denote [a(S), 3(S)] by F(S,B) and write B F < S, F(S,B) >.
Example. For a knowledge base given as follows:
B=1{S:AV-B[9 1]

Sa: BV-D[8 9]

S3: CVv—-4 [6 8]

54 : D [8 1]

Ss: C (2.4])

P 2 L«] 5

Interval-valued probabilistic logic for logic programs 3

S: A

Its logical skeleton and basic matrices will be:
F={S, :AV-B

Sa: BV~-D
Sz: CV-A
S4: D
Ss: C }
Uy Uy U3 Ug U Ug U7 U Uy Uyg UL U2
$S/1 1 1 1 1 1 0 0 0 0 1 1
SS|1 1 1 1 0 o 1 1 1 1 0 1
U=g5;]1 1 o 0 1 0 1 1 1 1 1 1
Ss/1 o 1 o 1 1 1 0 1 0 1 0
SS\1 1 0 o0 1 0 1 1 0 0 0 0
and
vy, vy vz U4 Vs Vg U7 Ug Vg Vigp U1y Uiz Uiz U4
Sf{t 1 1 1 1 1 1 1 0 0 0 0 1 1)
SSl1 1 1t 1 1 0 o o 1 1 1 1 0 1
poSsft 1 1 0o 0o 1 1 0 1 1 1 1 1 1
S/t o o 1 0o 1 1 1 1 0 1 o0 1 0
Ss!t 11 0 o0 1 t 0 1 1 0 O 0 O
s\t 1 0 1 1 1 0 1L 0 0 O O 0 0

2.2. Reduction of linear propramming problems

Let w = (u;,....u;) be a k-dimentional boolean vector and ¢ € {0,1}. We denote
uoc = (uy,... .up.0) and call it an (k + 1)-dimentional extension of .
We note that ecach I'-consistent vector v € U has at least one extension ue € V and

conversely each T-consistent vector v € V is an extension of some vector in /. We

can partition the set U into the following subsets:

U=T(S)UF(S)UN(S) where

T(S) ={u; € Ulu;1 € V and u;0 ¢ V)
F(S) ={u; € Uly;0 € V and u;1 ¢ V}
N(S)={u; € Ulu;1 € V and w;0 € V} = (U \ T(S))\ F(S) .

Example (continued).

4) Phan Dinh Dieu and Phan long Giang

T(A) = {uy = (L, L,LL, DT, uy=(1.1,0.1,007, ug=(1.1.0,0.0)7, ws = (1,0.0,1,0)7}

F(A)= {ur = (0.1,1,1,1)". usg = (0.1,1,0.)7, wg = (0,1.1,1,007, wjo = (0,1,1,0,0)T,
wy = (1,0, 1,1,0)7, w2=(1,1,1,0,0)T}

NA) = {us=(1,1,1,0,)7, u5=(1,0,1.1,1)7}

Now let consider two following linear programming problems:

a(S) = min Z Pj : (4)
u,€T(S)
B3(Sy=1-min Z P (5)
: u,€F(5)

subject to constraints:

upppr + ..+ uppr €1, lori=1,...,L .
Y =1 (6)
rj >0 for j=1....k

The major difference between two pairs of problems (1),(2),(3) and (4),(5).(6) lays in
the fact that in the former, minimization (maximization) is done for the sum of all
variables with corresponding values in the last row is 1. but in the later it is done
for the sum of variables which belong to group 7(S). The 1elationship between them
is made clear in the following theorem.

Theorem 1. Problems (1)—(3) ((2)=(3)) and (4)=(6) ((5)—(6)) have the same solution.

Proof. Let oy and a2 be the values of o(S) given by solving problems (1) — (3) and
(4) — (6) respectively. We shall prove a; = a-.

Suppose that ay is reached at vector (q,,... .qx). We define a vector p= (pr,... . px)
as follows:

{ G- if vy = ujo for some o € {0,1} and u; € T(S)U F(S)
;= PN
! dm +q. M uj € N(S) and v, = u;l, vy, = u;0

[t s casy to sce that vector p satisfies conditions (6). and moreover,

h

a; = Z Usmm > Z Vi
m=1 u,ET(S)
Therefore oy > a..
Conversely, suppose that value as is reached at vector (p1,. .pi). Now we define
a vector ¢ = (q1,... . qy) as follows:

pi if vy = ujo for some o € {0,1} and uj € T(S)U F(S)
am =20 if v, =u;1. and u; € N(S)
Pi if vy, = u;0 and u; € N(S)

Interval-valued probabilistic logic for logic programs 5

It is obvious that vector ¢ satisfies conditions (3), and moreover,

h
Qo = Z pj 2 Z Vsmqm

u;€T(S) m=1

Therefore as > a;. Thus a; = a5 is proved. Similarly, we can also prove that the
values of 3(S) given by solving problems (2) — (3) and (5) — (6) are the same.

Example (continued).
Solving problems (1) — (3), (2) — (3), (4) — (6) and (5) - (6) for S = A by the simplex
method we have the same pair of answers a(1) = 0.5, A(1) = 0.8.

Corollary 2. Let B be a knowledge base, and S and S’ be two <entences. If T(S) = T(~")
then o(S) = a(S"): and if F(S)= F(S’) then B(S) = B(S").

Remark. Theorem 1 renders a slight reduction of the cost of finding interval F(S,B)
by linear programming method. Indceed, the size of problem (4) — (6) is smaller than
that of problem (1) —(3) since & < h; moreover the formulation of constraints (6) only
requires the fixed set U of I'-consistent vectors of B which does not depends on the
target sentence (in the case of (3). for each new target we need a new basic matrix).

2.3. An approximate solution

Let consider the set W = {0, 1. x}%, where * stands for "undefined” . Elements
of W are called L-dimentional extended boolean vectors. Let u = (uy,... ,ur) be an
extended vector. Denote I'' = 7' A ... A SFt. where ST =5, SO = -5 (we write also
S), and 5* = true. For example if uw = (1,%,0,1.%) then I'¥ = 5,535,

Let us define a partially ordering relation < on {0, 1, %}, specified by axioms
Vre {0,1.+} <2, 0 < +and 1 =< x. This relation can be naturally generalized on
the elements of iV, For w,v € W, we writeu < v iff v; < v for j=1,... L.

Let w € W. We say that a boolean vector v € {0. 1}f is an instance of u, if v is
obtained from u by replacing (independently) each occurence of « by 0 or 1. Denote
by E’(u) the set of all instances of w and then put E(u) = E/(u)n U, (Remember U7 is
the set I'-consistent vectors. so E(u) is the set of all I'-consistent instances of).

Let A7 be a subset of 1. We denote

EQn = | E(u)

u€ M
and notice that

E(M)=T (\ r") ()

ue M

6 PPhan Dinh Dieu and Phan Hong Giang

A vector u € W is called a T-supporting vector for S if E(u) C T(S). Further, if there
does not exist any other I'- supporting vector «' such that v < «’ then we call v a
maximal T-supporting vecetor for S.

It is evident that if w € 7(S) then I'* | S, and if we F(S) then T =S lf ue W is
I-supporting vector for 5. then I'* E S: in this case we say that I'* is an implicant
of S. If w is maximal T-supporting vector for S then I'* is called prime implicant of
S (expressed through variables S;.... .. St).

A set M C W is called a complete sel of T-supporting vectors for S if E(M) = T(5).
From (7). it follows that if A7 is complete set of I'-supporting vectors for S then

a(S)=a (\/ F") (8)
LeM

We say that M is a ‘maximal completc set il it is complete and each element of A7 is
a maximal [-supporting vector for 5. Note that the set of all maximal I-supporting
vectors is maximal complete.

We say that two vectors u,v € W are incompatible iff E(u)yn E(v) = 0. In other
words, u and v are incompatible iff there is an index 1 < < L such that either v, =0
and v;j=1or u; =1 and v; = 0.

Now let A7 be the set of all maximal I-supporting vectors for S. A subset of A/ is
called reduced iff it contains pairwise incompatible vectors. Let {Af, Ma.... A} be
the set of reduced subsets of A7. From (8) we have

a(S)=a (\/ (\/ I‘")) (9)
1<i<r \u€hl,

Recall that in the theory of probabilistic logic we have:
(a) a(S1V Sa) > maz(a(S)),a(Sa)),

(b) if S} A Ss is false then a(S; V S2) = a(S)) + a(S2),

(¢) a(Si A S2) > max(0, a(S))+ a(Sy) —1).

From these facts and (9) we have:

2 (Z u(F")), (10)

92 g,
-~ u€M,
where
afT¥) > maz (0, a(S{*)+---+a(SfE) — L + 1) (1)
The expression in the right side of (10) with o(T'*) evaluated by the right side of (111
can be taken as an approximation for a(S).

Interval-valued probabilistic logic for logic programs 7

The upper bound of the interval for S can be calculated as the lower bound for
=S, since 3(S) =1 - a(=S).

In summary, the approximate algorithm for calculation of interval [a(S), 3(S)] con-
sists of four steps:
1. Find the set M of all maximal I-supporting vectors for S;
2. Find all maximal reduced subsets of A7, assume they are Ar,... M,;
3. Calculate the approximate value for o(S) by expressions given in the right sides
of (10) and (11);
4. Similarly calculate the approximate value for a(=5). and take 3(S) = 1 — a(=9).

Example (continued).
The maximal T-supporting vectors for S are (1,1,.1,*) and (,*,0;%,%). They are
compatible, therefore

a(S) > max (a(SlS3.S'4), 0(5'3)) =mar(05, 0.2)=0.5

The maximal I'-supporting vectors for =S are (0,*,%,+,*) and (x,*,1,%,0). They are
compatible, therefore

~

a(=S) > maz (a(S1). a{S3Ss)) = max(0, 0.2) = 0.2

It means 3(S)=1-02=038
We note that the interval [0.5, 0.8] is exacly what obtained by solving linear pro-
gramming problems.

3. Probabilistic logic programs

As mentioned above, the proposed appoximation for the entailment problem.in
probabilistic logic requires the set of all maximal I'-supporting vectors for target
sentence S. There is a straightforward way to compute it from the basic matrix for
I. But this way becomes impractical once I' has dozens of sentences, because the
formulation of the basic matrix alone, in genecral case, has the exponential complex-
ity. Naturally, some question rise: is there any way to compute the set of maximal
I-supporting vectors without having the basic matrix for T?7 At least, for what
restricted class of knowledge bases the question can be answered positively?

In this section, we consider knowledge base B, logical skeleton T' of which is a
set of disjunctions! of literals. By interpreting expression < A(z),[a(z),B8(x)] > as
a set {< A(c),[a(c),B(c)] > |c is constant symbol }, the database logic programs and
knowledge bases of a large number of expert systems using first order language

slA knowledge portion < S, [a(S).3(S)] >, where S is a conjunction of literals S = By A... A Bm could be mad:
fit in this framework by using its negative form < =S, [1 — 3(>),1 — of5)] >. where ~S=-B; V...V —=Bp.

8 Phan Dinh Dieu and Phan Hong Giang

having no function symbol and a finite number of constant symbols could be brought
back to propositional language. Therefore, they fall into the considered here class. *

The procedure of computing the set of mavimal I'~supporting vectors for an atom
A comprises two stages. Firstly, T is unfolded into I', - a set of definite program
clauses. Then, on the obtained I'., a modified version of SLD—resolution is ap-
plied. We will prove that the proposed algorithm is correct. We use the terms
definite programn clause, definite program, definite goal, resolvent, SLD-derivation,
SLD-refutation, and SLD-tree as defined in [10].

3.1. Unfolding the declared program

For each declared clause S; of T - S;: 41 VA, V...V A, we create 2k new clauses:
Al — AT, AL AL AR fori=1,...,k "
A; — ST for i=1,... k,

where S; are special symbols, which are reserved for naming the clauses. A; and
S;7 are newly introduced symbols. The set T, of newly created clauses is called

unfolded program from T.

Example (continued). Unfolded program T, will be as follaws:

re={A —S$.,B (1)
B~ — 5,47 (2)
B — 57 (3)
AT — ST (4)
B —S.D (5)
D= — S,,B~ (6)
D —sy (1)
B~ —s; (8
C =S4 (9)

"AT — 5. (10)
A —S7 (11)
Cc- — 55 (12)
D — 5 (13)
D~ — 57 (14)
c — S (15)
Cc- — 57}, (16)

A clause of & literals in I' will correspond to 2k clauses in T,. For a declared
program of L clauses, and [literals each, the unfolded program will consist of 2L *1
clauses. [n practice, the numbers of literals in a clause of knowledge bases are often
limited to small enough constant. If the number of literals in declared clauses is
bounded then the size of unfolded programs is linear proportional to one of declared
programs. 7

Interval-valued probabilistic logic for logic programs 9

3.2. Algorithm for computing a set of I'-supporting vectors

Formally, T, is a definite logic program, we can apply SLD-resolution to prove a
clause. We will modify it as follows to find the set of I'-supporting vectors.

+ Each resolvent will be checked against contradiction i.e. the simultaneous
presence of a complementary pair of either normal literals A and A~ or special
literals § and S—. If found, stop.

+ Skip subgoal which is a special literal S; or S;.

With such modifications, the final resolvent for a finite? derivation will fall into
one of three categories:

+ Success: when all remained subgoals are special literals.

+ Failure ol type 1: when the sclected sub-goal can not match with any head of
program clause of T,.

+ Failure of type 2: when the contradiction found in the resolvent.
We call the modified SLD-resolution PSLD-resolution.

Let target sentence S be the single atom A. After applying PSLD-resolution for
[, U{— A}. we construct for each success resolvent R a success vector v = (vy,... ,u)7
where:

1, if S;eR
v, =40, if ST ER
x, otherwise.

Let V" be the sct ol success vectors.
Example (countinued). Solution

PSLD-tree for T, u{— A} has 2 success vectors: V = {(1,1,,1,%), (*,+,0,%,%)}. Note
that E(V') = T(4). and moreover the clements of V are maximal T'-supporting for 4

¥

2For the considered class of logic programs, there are some techniques that allow avoiding infinite derivations. See
[8], [15] for example.

10) Phan Dinh Dieu and Phan Hong Giang

— A
1 11
—~ 5,B — 53
Success
3 5
"'—Sl_vslsB *—'SI,SQ,D
Failure II
7 13
‘—‘Sl,SZ,S?-_- ‘_51152734
Failure II Success

PSLD-tree for T. U {— 4~} has 2 success vectors: V' = {(0,%,%,%,%), (*,%,1.x.0)}.
Note that E(V') = F(A4), and the elements of V' are maximal I'-supporting for =A.

4—A_-

4 10
— Sl_ — S3) Cc-
Success
12 16
— 53, 53_ Al 53, 55—
Failure I1 Success

Note that by the resolution algorithm, we come to the solutions presented in the
last example of section 2. Now, we will validate the proposed approximate method
by proving the correctness of the PSLD-resolution.

Definition. Let v be a truth vector, a simplification according to v of the unfolded
program TI'.(v) 1s the set of clauses which contains S; provided v(i) = 1, or S; provided
v(i) = 0. Then in the obtained progran, all special literals are deleted.

Example (continued). Let v.=(1,1,%,1,%)

Interval-valued probabilistic logic for logic programs 11

B~ — A~
B —D
D~ — B~
D —}

With identification of A~ and =4, it is clear that I'.(v) and ¥ are logically equiv-
alent.

Theorem 3. Soundness and completeness of the PSLD-resolution.
The sct V of consistent success vectors yiclded by application of PSLD-resolution
for T.u{— A} is complete and contains all prime implicants of A i.e F(V) = T(A).

Proof. Our proof is based on the soundess and completeness of the resolution prin-
ciple proved elsewhere (sce [10] for example).

Soundness: E(V)C T(A)

Let v € E(V). By defiuition of £(V), there is a success vector v which has v
as a consistent ground instance. The success derivation of PSLD-resolution for
I, U{— A} may be reduced to a normal suceess SLD-devivation for [o(»)u{= A}
By the soundness of resolution principlc. we have I'.(v) | 1. Since v, 15 a consistent
instance of ¢ we have I',(v,) = U (v). Therefore () 2 A 1t means v, € T(A).

Completeness. 7(A4)C E(V)

Let ¢ € T(:1). By definition ' | AL or ['(f) i= A, By the completeness of S7.D-
resolution. there s a refutation for T'e(t)U {— A}. $he corrsponding derivation in the
PSLD-tree for F.u{- A} will termirvate with a success resolvent which corresponds
to a success vector oo f 1s one of consistent ground instances ol . It means t € E(V).
Moreover if ¢ is a maximal -supporting vector. then by the same argument we can
conclude that tisin V. Q.15.D.

4. Conclusion and discussion

The goal of this paper has been to provide an approximate method for solving the
entaillment problem in the interval-valued probabilistic logic. The problem consid-
ered in the framework of Nilsson’s semantics amounts to two linear programming
problems which are yusually of very large size. The key idea of our approximate
algorithm is to find for a target sentence S, given a knowledge base B with logical
skeleton I, the set M of all M-supporting vectors for S and the set M of all maximal
reduced subsets of M. Irom set M we can calculate casily a bellow approximate
value for the lower bound ol the truth probability of S. This appoximate method
allows us to avoid lincar progamming problems of large sizes. It is shown to be very
efficient for probabilistic logic programs. i.e.. when logical skeletons of knowledge

12 Phan Dinh Dieu and Phan Hong Giang

bases are usual logic program. In this case the set M of I'-supporting vectors for
S can be found by applyving SLD-resolution for a certain extention of T. The solu-
tion obtained by the proposcd method, as has been shown by our experiments, are
very closed to - and in many cases, are coincided with the results given by solving
corresponding linear programming problems.

To represent bases of knowledge under uncertainty, a set of propositional sentences
weighted with two values in the unit interval was used by many researchers prior to
us [1], [5], [7] and [16]. But the syntax may be only thing shared by those approaches.
The semantics underlying the weights-numbers differ from one to another. The rule
of uncertainty’propagation in the support logic programming [1.2,3] is justified by
voting model and fuzzy set. Neccesity-valued knowledge base [5] has fuzzy theory
semantics. Among probabilistic approaches [13], [16] and [7], the distinguishing
feature of our is preserving the uniforn (declarative) style of treatment for "rule” and
“fact” knowledge of logic programming. Ilere, we do not have to invent an explicit
mechanism of uncertainty propagation. In our method. the classic machinery of
resolution is exploited instead.

The accuracy of an approximate method is alwayvs a vital question. Assumed
Nilsson’s semantic, the interval found by linear programming method is the best
(tightest), it would be intersting to ask a question: what relation the interval calcu-
lated by proposed algorithms forms with the tightest one. At this moment, we are
not able to provide a absolute estimation except that the later lays inside the former.
But we have an evidence that the accuracy of our method is good comparatively with
proposed in literature rules of probability propagation. In [7], Frisch and Haddawy
presented a comprehensive set of rules which had inherited many proposed in ealier
works. These rules work with conditional probahility. It is interesting to note that if
we reduce them to unconditionan cases, they could be modeled by our method, i.e,
they can be derived as special cases of our algorithms. It mmeans that with restriction
to unconditional probabilities our method would provide better approximation.

The serious estimation of this approximate method is a subject of our further
work.

References

. Baldwin J.F.. Support logic programming. International Journal of Intelligent Sys-
tems, 1, 1936, 73-104. |
2. Baldwin J.F.; Evidental support logic programming, Fuzzy sets and systems, 21,
1987, 1-26. |
3. Baldwin J.F., Computational models of uncertainty rcasoning in expert systems,
Computer and Math. with Appli.. 19, 1990, 105-119.
. Bundy A., Incidence calculus: a mechanism for probabilistic reasoning, Journal of

Interval-valuved probabilistic logic for legte programs 13

automated reasoning, 1. 1985, 263-283. :

5. Dubois D., Lang J. and Prade ., Possibilistic lugic, Technical report, IRTT, Uni-
versity Paul Sabatier, Toulouse, France 1991.

6. Dubois D. and Prade 11., A discession of uncertainty handling in support logic
programming, International Journal of Intelligent Systems, 5, 1990, 15-42.

7. Frisch A.M. and Haddawy P., Anytime deduction for probabilistic logic, Technical
rcport, University of Wisconsin, Alhilawkee. 1992.

8. van Gelder, Negation as failure using tight derivation for general logyic programs,
Foundation of deductive databases and logic programming (J. Minker ed.) Morgan
KNaufmann, 1958.

9. Genescreth M.R. and Nilsson N.J, Logical foundations of artificial intelligence,
Morgan KNaufmann, 1987.

10. Lloyd J.W, Foundalion of logic programming, Sccond edition, Springer Verlag,
1987.

I1. Nilsson N.J., Probabilistic logic. Artificial Intelligenee, 28, 1986, 71-87.

12, Phan D.D., Probabilistic logic for approrimate rcasoning, Artificial Intclligence
and Information control systcms of Robot-89, North Holland 1989, 107-112.

13. Pearl .J.. Probabilistic rcasoning in inlelligent sysiems. Morgan Kaufmann 1988.

14. Phan D.D. On the interval-valucd probabilistic logic, Technical Report, ICS,
NCSR of Vicilnam, 1990.

15, Phan 1.G., A method for dclccting infinilness for Prolog programs, Proceedings
of Pacific Rim International Conference on Al, Nagoya, Japan, 1990.

16. Raymond Ng. and Subrahmanian V.S., Probabilistic logic prograniiiing, Informa-
tion and Computation, 101, 1992. 150-201
17. Quinlan J.R., INFERNQO: A cautious uapproach to uncertain inference, Computer
Journal. 26. 1983, 255-269.
Abstract

This paper presents an approximate method for the probabilistic entailment problem

i knowledge bases wherc a portion of knowledge is given by a senlrnce in propo-

sttional logic accompanicd with an interval representing its trutli probability. This
method reduces the entailment problem to one of finding "prime implicants™ of the
targel scnlence cepressed through sentences in the given knowledge base. It is shown

that in thc case of probabilistic logic programs the sct of such prime implicants can

be found by using the SLD-resolution method for usual definite logic programs.

