Reasoning in knowledge bases with extrenal and internal uncertainties

Phan Dinh Dieu \& Tran Dinh Que
Institute of Information Technology

I. Introduction

In the recent years, in A.I. a great deal of attention has been devoted to formalisms dealing with various aspects of reasoning with uncertain information, and a number of theories and methods for handling uncertainty of knowledge has been proposed, notably, the probability theory, the Dempster-Shafer theory, and the possibility theory. Among these theories, the propobality one is surely the most developed by its long history and elaborated foundations.

In this paper the uncertainty of a sentence will be given by an interval of possible values for its truth probability. Two types of knowledge with uncertainty will be investigated: external uncertainty and internal uncertainty The former is given in the form $\langle S, I\rangle$, in which S is a sentence, and $I=[\mathrm{a}, \mathrm{b}]$ is a closed subinterval of the unit interval $[0,1]$; it means that the truth probability of the whole sentence S lies in the interval $I . I$ is then called the interval of truth probabities of S. In the later case, intervals of truth probabilities are given to subsentences of the given sentence S. For example,

$$
<S_{1}, I_{1}>\wedge<S_{2}, I_{2}>\wedge \wedge \wedge<S_{n}, I_{n}>\rightarrow\left\langle S_{n+1}, I_{n+1}>\right.
$$

is a knowledge with internal uncertainty.
Let \mathcal{B} be a knowledge base with these types of uncertainty and S be a any sentence. A semantics, which underlies a method of deducing the interval of truth probabilities of S from \mathcal{B}, will be given.

The paper is structured as follows: In Section 2 we shall review the probabilistic logic by N.J. Nilsson, and its extention to probabilistic logic with interval values. In Section 3, we shall discuss a method of reasoning from a set of knowledges with internal uncertainty. Section 4 is devoted to a method of reasoning from a knowledge base containing both external and internal uncertainties. Some illustrative examples will be given in Section 5 .

2. External Uncertainty

We shall use methods of the interval-valued probabilistic logic for reasoning in knowledge bases with external uncertainty. This logic is based on the semantics given by N.J. Nilsson [4], and is presented in details, e.g., in [6].

Let us give a knowledge base

$$
\mathcal{B}=\left\{\left\langle S_{i}, I_{i}^{\prime}\right\rangle \mid i=1, \ldots, L\right\},
$$

and let S be a target sentence. We put $\sum=\left\{S_{1}, \ldots S_{L}, S\right\}$, and suppose that W_{1}, \ldots, W_{k} are all $\Sigma \dot{E}$ - classes of possible worlds. Every class W_{j} is characterized by a consistent vector ($\mathbf{u}_{1 j}, \ldots, u_{E_{j}}, u_{j}$) of truth values of sentences $S_{1}, \ldots S_{L}, S$.

Given a probability distribution ($p_{1,}, \ldots p_{K}$) over the classes. W_{1}, \ldots, W_{K}, the truth probability y_{i} of sentence S_{i} is defined to be the sum of probabilities of classes of worlds in which S_{i} is true, i.e., $\pi\left(S_{i}\right)=u_{i 1} p_{1}+\cdots+u_{i K} p_{K}$. From this semantics it follows that, given the knowledge base \mathcal{B}, the derived interval-value $[\alpha, \beta]$ for the truth probability of the sentence S is defined by

$$
\alpha=\min \pi(S), \quad \beta=\max \pi(S),
$$

where

$$
\pi\left(S_{i}\right)^{\prime}==^{\prime} u_{1} p_{1}+\cdots+u_{K} p_{K}
$$

subject to the constraints.

$$
\left\{\begin{array}{l}
\pi_{i}=u_{i 1} p_{1}+\cdots+u_{i K} p_{K} \in I_{i}(i=1, \ldots, L) \\
\sum_{j=1}^{K} p_{j}=1, p_{j} \geq 0(j=1 \ldots, K) .
\end{array}\right.
$$

We denote the interval $[\alpha, \beta]$ by $F(S, \mathcal{B})$, and write $\mathcal{B} \vdash<S, F(S, \mathcal{B})>$.
Now, let us give a set of sentence Γ. We define \mathcal{I} to be the set of all mappings from Γ into $C[0,1]$ - the set of closed subintervals of $[0,1]$. A such mapping I assigns to each sentence $P \in \mathrm{\Gamma}$ an interval $I(P) \in C[0,1]$.

The given knowledge base \mathcal{B} defines an operator $R_{\mathcal{B}}$ from \mathcal{I} into \mathcal{I} as follows: For every $I \in \mathcal{I}$, we establish a new knowledge base

$$
\boldsymbol{B}^{\prime}=\mathcal{B} \cup\{<P: \mathcal{A}(P)>\mid P \in \Gamma\} .
$$

and then we take for every $P \in \Gamma$ the interval $I^{\prime}(P)=F\left(P, B^{\prime}\right)$. The mapping I^{\prime} is $R_{B}(I)$ defined to be the image of I by the operator $R_{\mathcal{B}}: R_{\mathcal{B}}(I)=I^{\prime}$.
It is easy to see that if $R_{\mathcal{B}}(I)=I^{\prime}$ then $R_{\mathcal{B}}\left(I^{\prime}\right)=I^{\prime}$; therefore

$$
\begin{equation*}
R_{\mathfrak{B}}^{n}(I)=R_{\mathcal{B}}(I) \quad \text { for any } n \geq 1 \tag{*}
\end{equation*}
$$

The calculation of the operator $R_{\mathcal{B}}$ is reduced to the solution of linear programming problems which has to face up a very large computational complexity whenever the sizes of \mathcal{B} and Γ are large. Some attempts to reducing the size of linear programming problems have been investigated, e.g., a method of reduction is given in [7] for the cases when the core $\left\{S_{1}, \ldots, S_{L}\right\}$ of \mathcal{B} forms a logic program.
Instead of the method presented above we can use methods of approximate reasoning, e.g., by means of deductions based on inference rules (see [2]), however, in this case the property (*) may not be satisfied.

3. Internal Uncertainty

In this section a method of reasoning on knowledges with internal uncertainty will be discussed. We limit ourself to consider knowledges given by rules of the form:

$$
<S_{1}, I_{1}>\wedge \cdots \wedge<S_{n}, I_{n}>\rightarrow\langle S, I>
$$

Let us given a knowledge base $\mathcal{B}=\left\{J_{j} \mid j=1, \ldots, M\right\}$, where J_{j} is the rule:

$$
\left.J_{j}=\left\langle A_{j 1}, I_{j 1}\right\rangle \wedge \cdots \wedge<A_{j m_{j}}, I_{j m_{j}}\right\rangle \rightarrow\left\langle A_{c_{j}}, I_{c_{j}}\right\rangle .
$$

Let Γ be a set of sentences containing all sentences occuring in rules $J_{j}(j=1 \ldots M)$ of \mathcal{B}. As above we denote by \mathcal{I} the set of mappnings I from Γ to $C[0,1]$.

For any $I_{1}, I_{2} \in \mathcal{I}$, we say that $I_{1} \leq I_{2}$ iff $I_{1}(P) \subseteq I_{2}(P)$ for every $P \in \Gamma$.
We say that the rule J_{j} is satisfied by the mappning $I \in \mathcal{I}$, iff $I\left(A_{j k}\right) \subseteq I_{j_{k}}$ for every $k=1, \ldots, m_{j}$. Note that if $m_{j}=0$ then J_{j} is satisfied by any mapping I.
Now we define an operator $t_{\mathcal{B}}$ from I into \mathcal{I}, which transforms any $I \in \mathcal{I}$ into a mapping $t_{\mathcal{B}}(I)$ such that for every $P \in \Gamma$:

$$
t_{\mathcal{B}}(I)(P)=I(P) \cap\left(\bigcap_{j \in E} I_{c_{j}}\right),
$$

where $E=\left\{j \mid A_{c_{j}}=P\right.$ and J_{j} is satisfied by $\left.I\right\}$. Here. for the cir \mid assume that $\bigcap_{j \in E} I_{c_{j}}=[0,1]$ whenever $E=\emptyset$.
We have the following proposition:

Proposition 1. For any mapping $l \in \mathcal{I}$ there exists always a natural number n such that $t_{\mathcal{B}}^{n+1}(I)=t_{\mathcal{B}}^{n}(I)$. In other orlds, the process of iteration of the oprrator $t_{\mathcal{B}}$ on any given $I \in \mathcal{I}$ always halts after a finite number of steps.
Proof. Suppose that $E_{0}, E_{1}, E_{2}, \ldots$ are the set of indexes of rules which are satisfied satisfied by $I, t_{\mathcal{B}}(I), t_{\mathcal{B}}^{2}(I), \ldots$, respectively.

Let $h_{i}=\left|E_{i}\right|(i=1,2, \ldots)$ be the number of elements of the set $E_{i}\left\{h_{i} / i=1,2, \ldots\right\}$ is then a sequence of integers such that

$$
0 \leq h_{0} \leq h_{1}, \ldots \leq h_{n} \leq \ldots \leq M
$$

Consider two cases
(i) There exists a number n such that $h_{n-1}=M$, i.e., J_{j} is satisfied by the mapping $t_{\mathcal{B}}^{n-1}(I)$ for every $J=1, \ldots, M$. In this case we have $t_{\mathcal{B}}^{n}(I)=t_{\mathcal{B}}^{n+1}(I)$.
(ii) There exists a number n such that $h_{n-1}=h_{n}<M$. In this case we have $E_{n-1}=$ E_{n}, and it is easy to see that

$$
t_{\mathcal{B}}^{n}(I)=t_{\mathcal{B}}^{n+1}(I)
$$

The proposition has been proved.
From this proposition we can define an operator $T_{\mathcal{B}}$ as follows: For any $I \in$ $\mathcal{I}, T_{\mathcal{B}}(I)=t_{\mathcal{B}}^{n}(I)$, where n is the least number such that $t_{\mathcal{B}}^{n}(I)=t_{\mathcal{B}}^{n+1}(I)$.

Let S be a sentence. We denote by Γ the set consisting of S and of all sentences occuring in rules J_{j} of \mathcal{B}. Let I be the mapping which assigns the interval $[0,1]$ for every sentence in Γ. Then $T_{\mathcal{B}}(I)(S)$ can be considered as the interval-value for the truth probability of the sentence S derived from the knowledge base \mathcal{B}.

4. A Method of Reasoning .

We consider now the knowledge bases consisting both types of knowledges with external and internal uncertainty. Let \mathcal{B} be such a knowledge base, we can write $\mathcal{B}=\mathcal{B}^{E} \cup \mathcal{B}^{I}$, where \mathcal{B}^{E} consists of knowledges with external uncertainty. Suppose that

$$
\begin{gathered}
\mathcal{B}^{E}=\left\{<S_{i}, I_{i}>\mid i=1, \ldots, L\right\} \\
\mathcal{B}^{I}=\left\{J_{j} \mid j=1, \ldots, M\right\}
\end{gathered}
$$

where

$$
J_{j}=<A_{j 1}, I_{j 1}>\wedge \cdots \wedge<A_{j m_{j}}, I_{j m_{j}}>\rightarrow<A_{c_{j}}, I_{c_{j}}>
$$

Let S be any (target) sentence. Our problem is to deduce from the knowledge base \mathcal{B} the interval value for the truth probability of the sentence S.

For this purpose we put Γ to be the set consisting of the sentence S and all distinct sentences occuring in \mathcal{B}^{E} and \mathcal{B}^{I}. Denote by \mathcal{I} the set of mappings from Γ to $C[0,1]$. Let I_{0} be the mapping defined by

$$
I_{0}(P)= \begin{cases}I_{i}, & \text { if } P=S_{i} \text { for some } i=1, \ldots, L \\ {[0,1],} & \text { otherrwise } .\end{cases}
$$

I_{0} is called the initial assignment (of interval-value to sentences in Γ).
Now we define a sequence of assignments $I_{n}(n=0,1, \ldots$,$) initiated by I_{0}$ and given recursively as follows:

$$
I_{n}= \begin{cases}\mathcal{R}\left(I_{n-1}\right), & \text { if } n \text { is odd } \\ \mathcal{T}\left(I_{n-1}\right), & \text { if } n \text { is positive even. }\end{cases}
$$

Here \mathcal{R} stands for $R_{\mathcal{B}^{E}}$, and \mathcal{T} stands for $T_{\mathcal{B}^{I}}$.
Proposition 2. Let \mathcal{B} be a knowledge base, and S be any given sentence, There exists a natural number n such that $I_{n+2}=I_{n+1}=I_{n}$.
Proof. From the definition of the sequence $\left\{I_{n}\right\}(i=0,1, \ldots)$ we can write

Let h_{i} be a number of rules J_{i} satisfied by $I_{i}(i=1,3,5, \ldots)$. Then, $\left\{h_{i}\right\}$ is a sequence of integers such that

$$
0 \leq h_{1} \leq h_{3} \leq \cdots \leq h_{n-2} \leq h_{n} \leq \cdots \leq M .
$$

Consider two cases
(i) There exists a number n such that $h_{n-2}=M$, i.e, J_{j} is satisficd by the mapping I_{n-2}, for every $j=1, \ldots, M$. Then, any rule $J_{j}(j=1, \ldots, M)$ is also satisfied by the mappings

$$
\begin{aligned}
I_{n-1} & =\mathcal{T}\left(I_{n-1}\right) \\
I_{n} & =\mathcal{R}\left(I_{n}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& I_{n+1}=\mathcal{T}\left(I_{n}\right)=I_{n} \\
& I_{n+2}=\mathcal{R}\left(I_{n+1}\right)=\mathcal{R}\left(I_{n}\right)=I_{n}
\end{aligned}
$$

or $I_{n}=I_{n+1}=I_{n+2}$.
(ii) There exists a number n such that $h_{n}=h_{n-2}<M$. Then the sets of rules satisfied by I_{n} and by I_{n-2} are the same. Therefore,

$$
\begin{aligned}
& I_{n+1}=\tau\left(I_{n}\right)=I_{n} \\
& I_{n+2}=\mathcal{R}\left(I_{n+1}\right)=I_{n+1}
\end{aligned}
$$

and we have again $I_{n}=I_{n+1}=I_{n+2}$.
This completes our proof.

Let n be the least number having the property sated in the proposition 2. We denote this I_{n} by I^{*}, and call it to be the resulting assignment deduced from \mathcal{B} to sentences in Γ.

The interval $I^{*}(S)$ is defined to be the interval value for the truth probability of the sentence S derived from the knowledge base \mathcal{B}. We write also:

$$
\mathcal{B} \vdash\left\langle S, I^{*}(S)\right\rangle
$$

5. Examples

This section presents two examples illustrating the method of reasoning in a knowledge base consisting of both types of knowledge with internal and external uncertainty.

Example 1.

Given a knowledge base $\mathcal{B}=\mathcal{B}^{E} \cup \mathcal{B}^{I}$ where \mathcal{B}^{E} is the set of sentences

$$
\begin{aligned}
B \rightarrow & A:[1,1] \\
A \rightarrow & C:[1.1] \\
& B:[.2, .6] \\
& C:[.6, .7]
\end{aligned}
$$

and \mathcal{B}^{I} is the set of rules

$$
\begin{array}{r}
J_{1}=C:[.5, .7] \longrightarrow B:[.3, .5] \\
J_{2}=B:[.2, .5] \wedge C:[.5, .7] \longrightarrow A:[.2, .5]
\end{array}
$$

Calculate the interval of truth probabilities of the sentence A.
Step 1. Applying the operator \mathcal{R}, we get

$$
\begin{aligned}
& A:[.2, .7] \\
& B:[.2, \cdot[] \\
& C:[.6, .7] .
\end{aligned}
$$

Step 2. Both rules J_{1} and J_{2} are satisfied, so applying the operator \mathcal{T} we oltain

$$
\begin{aligned}
& A:[.2, .5] \\
& B:[.3,5] \\
& C:[.6, .7] .
\end{aligned}
$$

Step 3. Iterate \mathcal{R}, where $B:[.2, .6]$ is now replaced by $B:[.3, .5]$, we get

$$
A:[.3, .5] .
$$

As both J_{1} and J_{2} are satisfied after $\$ t e p 1$, it is not necessary to repeat \mathcal{T} after step 3 and we get the finall result $A:[.3,5]$.
Note that \mathcal{B}^{E} is a type-A problem (see [2]); hence, we can apply the type-A rules to computing the intervals for A, B, C instead of solving linear programming problems.

Example 2. This example is more complex than the above; it illustrates the iteration of the operator \mathcal{T}. Suppose that we wish to derive the interval of truth probabilities of the sentence $A \wedge D$ from the knowledge base $\mathcal{B}=\mathcal{B}^{E} \cup \mathcal{B}^{I}$ where \mathcal{B}^{E} is the set defined as follows

$$
\begin{aligned}
& B \rightarrow A:[.9,1] \\
& D \rightarrow B:[.8, .9] \\
& A \rightarrow C:[.6, .8] \\
& D:[.8,1] \\
& C:[.2, .4]
\end{aligned}
$$

and \mathcal{B}^{I} is the set of the rules $J_{j}(j=1,2,3)$:

$$
\begin{array}{r}
J_{1}=C:[.1, .5] \longrightarrow B \wedge D:[.7,1] \\
J_{2}=C:[.2, .3] \wedge(B \wedge D):[.7, .9] \longrightarrow A \wedge D:[.4, .7] \\
J_{3}=A \wedge D:[.6, .9] \longrightarrow C:[.2, .3] .
\end{array}
$$

Step 1 Applying \mathcal{R}, we have

$$
\begin{array}{r}
A:[.2, .8] \\
B \wedge D:[.6, .9] \\
A \wedge D:[.5, .8] \\
\quad C:[.2, .4] \\
\quad D:[.8,1] .
\end{array}
$$

Step 2. Since only J_{1} is satisfied, we get

$$
B \wedge D:[.7, .9]
$$

and the interval values of $A, A \wedge D, C, D$ are not varied.
Step 3. Repeating \mathcal{R}, only the interval value of $A \wedge D$ is varied

$$
A \wedge D:[.6, .8]
$$

Step 4. Repeating τ, now J_{3} and J_{2} are satisfied, so we have

$$
\begin{aligned}
& C:[.2, .3] \\
& A \wedge D:[.6, .7] .
\end{aligned}
$$

Step 5. \mathcal{B}^{E} is now changed into \mathcal{B}^{\prime} which consists of:

$$
\begin{aligned}
B \rightarrow & A:[.9,1] \\
D \rightarrow & B:[.8, .9] \\
A \rightarrow & C:[.6, .8] \\
& D:[.8,1] \\
& C:[.2, .3] .
\end{aligned}
$$

\mathcal{R} is repeated and we have

$$
A \wedge D:[.6 . .7]
$$

By virtue of that all rules in \mathcal{B}^{I} are satisfied in step 4. the interval value for the truth probability of $A \wedge D$ is [.6,.7].

References

1. Baldwin J.F., Evidential support logic programming, Fuzzy Sets and Systems.v 24 (1987), p. 1-26.
2. Frisch A.M. \& Haddawy P., Anytime deduction for probabilistic logic, October 21, 1992 (Submitted for publication).
3. Genescreth M.R. \& Nilsson N.J., Logical foundations of Artificial Intelligencf Morgan Kaufman Publ. Inc. Los Altos, CA, 1987.
4. Nilsson N.J., Probabilistic logic, Artificial Intellig'nce 28(1986), p.71-78.
5. Phan D.D., Probabilistic logic for approximate reasoning, in I. Plander (ed.) Artificial Intelligence and Information Control System of Robots-89 (North Holland 1989), p. 107-112.
6. Phan D.D. On a theory of interval-valucd probabilistic logic, Research Report, NCSR Vietnam, Hanoi 1991.
7. Phan D.D. \& Phan H.G., Interval-valued probabilistic logic for logic programs, March 1993 (to appear).
8. Raymond Ng. \& Subrahmanian V.S., Probabilistic logic programming, Information and Computation v. 101 (1992), p. 150-201.
[^0]
[^0]: Abstract
 The paper presents a method of logical reasoning in knowledge bases with uncertainty; such a knowledge base is given by a set of "knowledges" of two following forms:
 (1) $\langle S, I\rangle$ where S is a sentence, and $I \subseteq[0,1]$ is an interval of the possible values for truth probability of S.
 (2) $<S_{1}, I_{1}>\wedge<S_{2}, I_{2}>\wedge \cdots \wedge<S_{n}, I_{n}>\rightarrow<S, I>$, where S_{1}, \ldots, S_{n}, S are sentences, and I_{1}, \ldots, I_{n}, I are the corresponding intervals of the ir truth probabilities.

 Let \mathcal{B} be a such knowledge base, and S be a goal sentence. The interval of truth probabilities of S derived from \mathcal{B} can be found by the proposed method.

