Reasoning in knowledge bases with extrenal and internal uncertainties

Phan Dinh Dieu & Tran Dinh Que Institute of Information Technology

I. Introduction

In the recent years, in A.I. a great deal of attention has been devoted to formalisms dealing with various aspects of reasoning with uncertain information, and a number of theories and methods for handling uncertainty of knowledge has been proposed, notably, the probability theory, the Dempster-Shafer theory, and the possibility theory. Among these theories, the propobality one is surely the most developed by its long history and elaborated foundations.

In this paper the uncertainty of a sentence will be given by an interval of possible values for its truth probability. Two types of knowledge with uncertainty will be investigated: external uncertainty and internal uncertainty The former is given in the form $\langle S, I \rangle$, in which S is a sentence, and I = [a,b] is a closed subinterval of the unit interval [0,1]; it means that the truth probability of the whole sentence S lies in the interval I. I is then called the interval of truth probabilities of S. In the later case, intervals of truth probabilities are given to subsentences of the given sentence S. For example,

$$\langle S_1, I_1 \rangle \land \langle S_2, I_2 \rangle \land \dots \land \langle S_n, I_n \rangle \rightarrow \langle S_{n+1}, I_{n+1} \rangle$$

is a knowledge with internal uncertainty.

Let \mathcal{B} be a knowledge base with these types of uncertainty and S be a any sentence. A semantics, which underlies a method of deducing the interval of truth probabilities of S from \mathcal{B} , will be given. The paper is structured as follows: In Section 2 we shall review the probabilistic logic by N.J. Nilsson, and its extention to probabilistic logic with interval values. In Section 3, we shall discuss a method of reasoning from a set of knowledges with internal uncertainty. Section 4 is devoted to a method of reasoning from a knowledge base containing both external and internal uncertainties. Some illustrative examples will be given in Section 5.

2. External Uncertainty

We shall use methods of the interval-valued probabilistic logic for reasoning in knowledge bases with external uncertainty. This logic is based on the semantics given by N.J. Nilsson [4], and is presented in details, e.g., in [6].

Let us give a knowledge base

$$\mathcal{B} = \{\langle S_i, I_i \rangle | i = 1, ..., L\},\$$

and let S be a target sentence. We put $\sum = \{S_1, ..., S_L, S\}$, and suppose that $W_1, ..., W_k$ are all \sum - classes of possible worlds. Every class W_j is characterized by a consistent vector $(u_{1j}, ..., u_{Lj}, u_j)$ of truth values of sentences $S_1, ..., S_L, S$.

Given a probability distribution $(p_{1p}...p_K)$ over the classes $W_1,...,W_K$, the truth probability of sentence S_i is defined to be the sum of probabilities of classes of worlds in which S_i is true, i.e., $\pi(S_i) = u_{i1}p_1 + \cdots + u_{iK}p_K$. From this semantics it follows that, given the knowledge base \mathcal{B} , the derived interval-value $[\alpha,\beta]$ for the truth probability of the sentence S is defined by

$$\alpha = \min \pi(S), \ \beta = \max \pi(S),$$

where

$$\pi(S_i) = u_1 p_1 + \cdots + u_K p_K,$$

subject to the constraints

1

$$\begin{cases} \pi_i = u_{i1}p_1 + \dots + u_{iK}p_K \in I_i \ (i = 1, \dots, L) \\ \sum_{j=1}^{K} p_j = 1, \ p_j \ge 0 (j = 1, \dots, K). \end{cases}$$

We denote the interval $[\alpha, \beta]$ by $F(S, \mathcal{B})$, and write $\mathcal{B} \vdash \langle S, F(S, \mathcal{B}) \rangle$.

Now, let us give a set of sentence Γ . We define \mathcal{I} to be the set of all mappings from Γ into C[0,1] - the set of closed subintervals of [0,1]. A such mapping I assigns to each sentence $P \in \Gamma$ an interval $I(P) \in C[0,1]$.

The given knowledge base \mathcal{B} defines an operator $R_{\mathcal{B}}$ from \mathcal{I} into \mathcal{I} as follows: For every $I \in \mathcal{I}$, we establish a new knowledge base

$$\mathcal{B}' = \mathcal{B} \cup \{ < P, I(P) > | P \in \Gamma \}.$$

and then we take for every $P \in \Gamma$ the interval $I'(P) = F(P, \mathcal{B}')$. The mapping I' is $R_{\mathcal{B}}(I)$ defined to be the image of I by the operator $R_{\mathcal{B}}: R_{\mathcal{B}}(I) = I'$.

It is easy to see that if $R_{\mathcal{B}}(I) = I'$ then $R_{\mathcal{B}}(I') = I'$; therefore

$$R^{n}_{\mathcal{B}}(I) = R^{\circ}_{\mathcal{B}}(I) \quad \text{for any } n \ge 1.$$
(*)

The calculation of the operator $R_{\mathcal{B}}$ is reduced to the solution of linear programming problems which has to face up a very large computational complexity whenever the sizes of \mathcal{B} and Γ are large. Some attempts to reducing the size of linear programming problems have been investigated, e.g., a method of reduction is given in [7] for the cases when the core $\{S_1, \ldots, S_L\}$ of \mathcal{B} forms a logic program.

Instead of the method presented above we can use methods of approximate reasoning, e.g., by means of deductions based on inference rules (see [2]), however, in this case the property (*) may not be satisfied.

3. Internal Uncertainty

In this section a method of reasoning on knowledges with internal uncertainty will be discussed. We limit ourself to consider knowledges given by rules of the form:

$$\langle S_1, I_1 \rangle \land \cdots \land \langle S_n, I_n \rangle \rightarrow \langle S, I \rangle$$

Let us given a knowledge base $\mathcal{B} = \{J_j | j = 1, ..., M\}$, where J_j is the rule:

$$J_j = \langle A_{j1}, I_{j1} \rangle \land \dots \land \langle A_{jm_j}, I_{jm_j} \rangle \rightarrow \langle A_{c_j}, I_{c_j} \rangle$$

Let Γ be a set of sentences containing all sentences occuring in rules $J_j(j = 1...M)$ of \mathcal{B} . As above we denote by \mathcal{I} the set of mappings I from Γ to C[0,1].

For any $I_1, I_2 \in \mathcal{I}$, we say that $I_1 \leq I_2$ iff $I_1(P) \subseteq I_2(P)$ for every $P \in \Gamma$.

We say that the rule J_j is satisfied by the mapping $I \in \mathcal{I}$, iff $I(A_{jk}) \subseteq I_{jk}$ for every $k = 1, \ldots, m_j$. Note that if $m_j = 0$ then J_j is satisfied by any mapping I.

Now we define an operator $t_{\mathcal{B}}$ from I into \mathcal{I} , which transforms any $I \in \mathcal{I}$ into a mapping $t_{\mathcal{B}}(I)$ such that for every $P \in \Gamma$:

$$t_{\mathcal{B}}(I)(P) = I(P) \cap (\bigcap_{j \in E} I_{c_j}),$$

where $E = \{j | A_{c_j} = P \text{ and } J_j \text{ is satisfied by } I\}$. Here, for the sal assume that $\bigcap_{i \in E} I_{c_j} = [0,1]$ whenever $E = \emptyset$.

We have the following proposition:

Proposition 1. For any mapping $I \in \mathcal{I}$ there exists always a natural number n such that $t_{\mathcal{B}}^{n+1}(I) = t_{\mathcal{B}}^{n}(I)$. In other orlds, the process of iteration of the operator $t_{\mathcal{B}}$ on any given $I \in \mathcal{I}$ always halts after a finite number of steps.

Proof. Suppose that E_0, E_1, E_2, \ldots are the set of indexes of rules which are satisfied satisfied by $I, t_{\mathcal{B}}(I), t_{\mathcal{B}}^2(I), \ldots$, respectively.

Let $h_i = |E_i|$ (i = 1, 2, ...) be the number of elements of the set E_i $\{h_i/i = 1, 2, ...\}$ is then a sequence of integers such that

$$0 \le h_0 \le h_1, \dots \le h_n \le \dots \le M.$$

Consider two cases

(i) There exists a number *n* such that $h_{n-1} = M$, i.e., J_j is satisfied by the mapping $t_{\mathcal{B}}^{n-1}(I)$ for every $J = 1, \ldots, M$. In this case we have $t_{\mathcal{B}}^n(I) = t_{\mathcal{B}}^{n+1}(I)$.

(ii) There exists a number n such that $h_{n-1} = h_n < M$. In this case we have $E_{n-1} = E_n$, and it is easy to see that

$$t^n_{\mathcal{B}}(I) = t^{n+1}_{\mathcal{B}}(I).$$

The proposition has been proved.

From this proposition we can define an operator $T_{\mathcal{B}}$ as follows: For any $I \in \mathcal{I}$, $T_{\mathcal{B}}(I) = t^n_{\mathcal{B}}(I)$, where n is the least number such that $t^n_{\mathcal{B}}(I) = t^{n+1}_{\mathcal{B}}(I)$.

Let S be a sentence. We denote by Γ the set consisting of S and of all sentences occuring in rules J_j of \mathcal{B} . Let I be the mapping which assigns the interval [0,1] for every sentence in Γ . Then $T_{\mathcal{B}}(I)(S)$ can be considered as the interval-value for the truth probability of the sentence S derived from the knowledge base \mathcal{B} .

4. A Method of Reasoning

We consider now the knowledge bases consisting both types of knowledges with external and internal uncertainty. Let \mathcal{B} be such a knowledge base, we can write $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$, where \mathcal{B}^E consists of knowledges with external uncertainty. Suppose that

$$\mathcal{B}^{E} = \{ \langle S_{i}, I_{i} \rangle | i = 1, \dots, L \},\$$
$$\mathcal{B}^{I} = \{ J_{j} | j = 1, \dots, M \},\$$

where

$$J_j = \langle A_{j1}, I_{j1} \rangle \land \cdots \land \langle A_{jm_j}, I_{jm_j} \rangle \rightarrow \langle A_{c_j}, I_{c_j} \rangle$$

Let S be any (target) sentence. Our problem is to deduce from the knowledge base \mathcal{B} the interval value for the truth probability of the sentence S.

For this purpose we put Γ to be the set consisting of the sentence S and all distinct sentences occuring in \mathcal{B}^E and \mathcal{B}^I . Denote by \mathcal{I} the set of mappings from Γ to C[0,1]. Let I_0 be the mapping defined by

$$I_0(P) = \begin{cases} I_i, & \text{if } P = S_i \text{ for some } i = 1, \dots, L\\ [0,1], & \text{otherwise.} \end{cases}$$

 I_0 is called the initial assignment (of interval-value to sentences in Γ).

Now we define a sequence of assignments I_n (n = 0, 1, ...,) initiated by I_0 and given recursively as follows:

$$I_n = \begin{cases} \mathcal{R}(I_{n-1}), & \text{if } n \text{ is odd} \\ \mathcal{T}(I_{n-1}), & \text{if } n \text{ is positive even.} \end{cases}$$

Here \mathcal{R} stands for $R_{\mathcal{B}^{\mathcal{E}}}$, and \mathcal{T} stands for $T_{\mathcal{B}^{\mathcal{I}}}$.

Proposition 2. Let B be a knowledge base, and S be any given sentence. There exists a natural number n such that $I_{n+2} = I_{n+1} = I_n$.

Proof. From the definition of the sequence $\{I_n\}$ (i = 0, 1, ...) we can write

 $I_0 \stackrel{\mathcal{R}}{\mapsto} I_1 \stackrel{\mathcal{T}}{\mapsto} I_2 \stackrel{\mathcal{R}}{\mapsto} \dots \stackrel{\mathcal{R}}{\mapsto} I_{n-2} \stackrel{\mathcal{T}}{\mapsto} I_{n-1} \stackrel{\mathcal{R}}{\mapsto} I_n \stackrel{\mathcal{T}}{\mapsto} I_{n+1} \stackrel{\mathcal{R}}{\mapsto} \dots$

Let h_i be a number of rules J_i satisfied by $I_i(i = 1, 3, 5, ...)$. Then, $\{h_i\}$ is a sequence of integers such that

$$0 \leq h_1 \leq h_3 \leq \cdots \leq h_{n-2} \leq h_n \leq \cdots \leq M.$$

Consider two cases

(i) There exists a number n such that $h_{n-2} = M$, i.e., J_j is satisfied by the mapping I_{n-2} , for every j = 1, ..., M. Then, any rule $J_j(j = 1, ..., M)$ is also satisfied by the mappings

$$I_{n-1} = \mathcal{T}(I_{n-1})$$
$$I_n = \mathcal{R}(I_n)$$

Thus

$$I_{n+1} = \mathcal{T}(I_n) = I_n$$

$$I_{n+2} = \mathcal{R}(I_{n+1}) = \mathcal{R}(I_n) = I_n$$

or $I_n = I_{n+1} = I_{n+2}$.

(ii) There exists a number n such that $h_n = h_{n-2} < M$. Then the sets of rules satisfied by I_n and by I_{n-2} are the same. Therefore,

$$I_{n+1} = T(I_n) = I_n$$

 $I_{n+2} = \mathcal{R}(I_{n+1}) = I_{n+1}$

and we have again $I_n = I_{n+1} = I_{n+2}$.

This completes our proof.

1.12

Let n be the least number having the property sated in the proposition 2. We denote this I_n by I^* , and call it to be the resulting assignment deduced from \mathcal{B} to sentences in Γ .

The interval $I^*(S)$ is defined to be the interval value for the truth probability of the sentence S derived from the knowledge base B. We write also:

 $\mathcal{B} \vdash < S, I^*(S) > \dots$

la ≚ bas

5. Examples

This section presents two examples illustrating the method of reasoning in a knowledge base consisting of both types of knowledge with internal and external uncertainty.

Example 1.

Given a knowledge base $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$ where \mathcal{B}^E is the set of sentences

$$B \to A : [1,1]$$

 $A \to C : [1,1]$
 $B : [.2,.6]$
 $C : [.6,.7]$

and \mathcal{B}^{I} is the set of rules

$$J_1 = C : [.5,.7] \longrightarrow B : [.3,.5]$$
$$J_2 = B : [.2,.5] \land C : [.5,.7] \longrightarrow A : [.2,.5]^\top$$

Calculate the interval of truth probabilities of the sentence A. Step 1. Applying the operator \mathcal{R} , we get

$$A : [.2,.7]$$

 $B : [.2,.6]$
 $C : [.6,.7].$

Step 2. Both rules J_1 and J_2 are satisfied, so applying the operator \mathcal{T} we obtain

$$A : [.2,.5]$$

 $B : [.3,.5]$
 $C : [.6,.7].$

Step 3. Iterate \mathcal{R} , where B : [.2,.6] is now replaced by B: [.3,.5], we get

As both J_1 and J_2 are satisfied after step 1, it is not necessary to repeat \mathcal{T} after step 3 and we get the finall result A : [.3,.5].

Note that \mathcal{B}^E is a type-A problem (see [2]); hence, we can apply the type-A rules to computing the intervals for A, B, C instead of solving linear programming problems.

Example 2. This example is more complex than the above; it illustrates the iteration of the operator \mathcal{T} . Suppose that we wish to derive the interval of truth probabilities of the sentence $A \wedge D$ from the knowledge base $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$ where \mathcal{B}^E is the set defined as follows

```
B \to A : [.9,1]

D \to B : [.8,.9]

A \to C : [.6,.8]

D : [.8,1]

C : [.2,.4]
```

and \mathcal{B}^{I} is the set of the rules $J_{j}(j = 1, 2, 3)$:

$$J_1 = C : [.1,.5] \longrightarrow B \land D : [.7,1]$$
$$J_2 = C : [.2,.3] \land (B \land D) : [.7,.9] \longrightarrow A \land D : [.4,.7]$$
$$J_3 = A \land D : [.6,.9] \longrightarrow C : [.2,.3]$$

Step 1 Applying \mathcal{R} , we have

```
A : [.2,.8]

B \land D : [.6,.9]

A \land D : [.5,.8]

C : [.2,.4]

D : [.8,1].
```

Step 2. Since only J_1 is satisfied, we get

 $B \wedge D$: [.7,.9]

and the interval values of $A, A \wedge D, C, D$ are not varied. Step 3. Repeating \mathcal{R} , only the interval value of $A \wedge D$ is varied

 $A \land D : [.6,.8]$

Step 4. Repeating \mathcal{T} , now J_3 and J_2 are satisfied, so we have

$$C : [.2,.3]$$

 $A \land D : [.6,.7].$

Step 5. \mathcal{B}^E is now changed into \mathcal{B}' which consists of:

$$B \to A : [.9,1]$$

$$D \to B : [.8,.9]$$

$$A \to C : [.6,.8]$$

$$D : [.8,1]$$

$$C : [.2,.3].$$

 \mathcal{R} is repeated and we have

 $A \wedge D : [.6..7].$

By virtue of that all rules in \mathcal{B}^I are satisfied in *step 4*, the interval value for the truth probability of $A \wedge D$ is [.6,.7].

References

- 1. Baldwin J.F., *Evidential support logic programming*, Fuzzy Sets and Systems, v 24 (1987), p. 1-26.
- 2. Frisch A.M. & Haddawy P., Anytime deduction for probabilistic logic, October 21, 1992 (Submitted for publication).
- 3. Genesereth M.R. & Nilsson N.J., Logical foundations of Artificial Intelligence. Morgan Kaufman Publ. Inc. Los Altos, CA, 1987.
- 4. Nilsson N.J., Probabilistic logic, Artificial Intelligence 28(1986), p.71-78.
- 5. Phan D.D., *Probabilistic logic for approximate reasoning*, in I. Plander (ed.) Artificial Intelligence and Information Control System of Robots-89 (North Holland 1989), p. 107-112.
- 6. Phan D.D. On a theory of interval-valued probabilistic logic, Research Report, NCSR Vietnam, Hanoi 1991.
- 7. Phan D.D. & Phan H.G., Interval-valued probabilistic logic for logic programs, March 1993 (to appear).
- 8. Raymond Ng. & Subrahmanian V.S., Probabilistic logic programming, Information and Computation v. 101 (1992), p. 150-201.

Abstract

The paper presents a method of logical reasoning in knowledge bases with uncertainty; such a knowledge base is given by a set of "knowledges" of two following forms:

(1) < S, I > where S is a sentence, and $I \subseteq [0,1]$ is an interval of the possible values for truth probability of S.

(2) $< S_1, I_1 > \land < S_2, I_2 > \land \dots \land < S_n, I_n > \rightarrow < S, I >$, where S_1, \dots, S_n, S are sentences, and I_1, \dots, I_n, I are the corresponding intervals of their truth probabilities.

Let \mathcal{B} be a such knowledge base, and S be a goal sentence. The interval of truth probabilities of S derived from \mathcal{B} can be found by the proposed method.