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SOME PROBLEMS RELATED TO PRIMITIVE
MAXIMAL DEPENDENCIES
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Institute of Information Technology

Summary. This paper gives some results about primitive maximal dependencies. Some computational
problems related to primitive maximal dependencies and antikeys are investigated.

I INTRODUCTION

A full family of functional dependencies (FDs) was introduced by E.F. Codd. The
primitive maximal dependencies (PMDs) are introduced in [4]. It is known [6] that a full
family of FDs can be uniquely determined by its primitive maximal dependencies ( recall
that a FD A — {a} is PMD if a ¢ A and A’ c A. A’ — {a} imply A’ = A).

It is shown [9] that from a set of PMDs of a given relation schemes we can effectively
construct an Armstrong relation of s. In this paper we prove the following problem is

NP-complete:

Given a relation scheme s and two attributes a, b decide whether there exits a PMD
A — {a} such that b € A.

This paper gives an algorithm finding all PMDs for a given relation scheme. We
show that in many cases the time complexity of this algorithm is polynomial.

It is known [12] that the problem of finding all antikeys (maximal nonkeys) of an
arbitrary relation is solved by polynomial time algorithm. We prove that the time com-
plexity of the problem to find a set of antikeys for relation scheme is exponential in the
number of attributes.

Some necessary definitions and results that are used in next section are in [21].

Definition 1.1. Let s =, R, F > be a relation scheme. AFD: A — {a} € F* is called the
primitive maximal dependency of s if a ¢ A and for all A' C A: A’ — {a} € F* implies
A=A

It is known [6] that an arbitrary full family of FDs can be uniquely determined by
its primitive maximal dependencies.

Denote T, = {A: A — {a} is a PMD of s}. It can be seen that {a},R € T,.
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II. RESULTS

First we present some computational problems related to PMDs.

We introduce following problem.

Theorem 2.1. The following problem is NP-complete:
Given a relation scheme s and two attributes a, b, decide whether there exits a PMD A — {a}

such that b € A. 1

Proof. For b we nondeterministically choose a subset A of R such that b € A. By an
algorithm finding the closure of A (see [2]) and based on Definition 1.1 we decide whether
A € T,. It is obvious that this algorimth is nondeterministic polynomial. Thus, our problem
lies in NP.

Now we shall show that our problem is NP-hard.*It is known [11] that the prime
attribute problem for relation scheme is N P-complete. Now we prove that this problem
is polynomially reducible to our problem.

Let s’ =< P, F' > be a relation scheme over P. Without loss of generality we assume
that P is not a minimal key of &', i.e. if A € K, then A C P. By a polynomial time
algorothm finding minimal key.of relation scheme (see [11]) we can find a minimal key C
of s’ from P and F'. Now we construct the relation scheme s =< R, F > as follows:

R=PUa,wherea¢ Pand F=F UC — {a}.

It is obvious that s is constructed in polynomial time in the sizes of P and F’. Clearly,
C € K, holds. Based on construction of s and definition of minimal key we can see that
if A€ K, then A € K,. Conversely, if B i1s a minimal key of s, then by C — {a} € F we
have a € B. On the other hand, by definition of minimal key B € K,.. Thus, K, = K,
holds. By C € K, and a ¢ R, if B — {a} is a PMD of s, then B € K,. It can be seen
that if A € K,s, then a — {a} € F*. According to Definition 1.1 A — {a} is a PMD of s.
Consequently, an attribute b is prime of s’ if and only if there exits a PMD A — {a} of s
such that b € A. The theorem is proved.

We present an algorithm finding all PMDs for a given relation scheme.

Definition 2.2. Let s =< R, F > be a relation scheme,a € R. Set K, ={ACR: A— {a}, /
3dB: (B — {a}) (B ¢ A)}. K, is called the family of minimal sets of the attribute a.

Clearly, R ¢ K,, {a} € K, and K, i1s a Sperner system over R. It is easy to see that
K, — {a} = T, (see Definition 1.1).

Algorithms 2.3. ( Finding a minimal sets of the attribute a)
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Input: Let s =< R, F > be a relation scheme, 4 = {a,,...a;} — {a}.
Output: A' € K,.

Step 0: We set L(0) = A.

Step i + 1: Set

L(z) — aiy1, if L(2) — aiyy — {a}
L(z), otherwise.

Liz+1)= {
Then we set A" = L(t).

Lemma 2.4. L(t) € K,.

Proof. By the induction it can be seen that L(t) — {a}, and L(t) C ... C L(0) (1). If
L(t) = a, then by the definition of the minimal set of attribute a we obtain L(t) € K,. Now
we suppose that there is a B such that B ¢ L(t) anb B # 0. Thus, there exits a; such
that a; € B, a; € L(t). According to the constructiuon of algorithm we have L(j — 1) — a;
— {a}. It is obvious that by (1) we obtain L(t) — a; C L(j — 1) ~ aj (2). It is clear that
B C L(t) — aj. From (1), (2) we have B — {a}. The lemma is proved.

Clearly, by the linear-time membership algorithm in [3] the time complexity of algo-
rithm 2.3 is O(|R|?| F|).

Lemma 2.5. Let s =< R, F > be a relation scheme, a € R, K, be a family of minimal sets
of a, L(K,,{a} € L. Then L C K, if and only if there are C, A — B such that C € L and
A—-BeFandVEecL=>EZAU(C - B).

Proof. — We assume that L c K,. Consequently, there exits D € K, — L. By {a} € L and
K, is a Sperner system over R, we can construct a maximal set Q such that DC Q C R
and LUQ is a Sperner system. ¥rom the definition of K, we obtain Q — {a} (1) and a € Q
(2). If A— B € F implies (AC Q, BC Q) or A C Q then Q* = Q. By (2) Q — {a}. This
conflicts with (1). Consequently, there is a FD A — B such that AC Q and B ¢ Q. From
the construction of Q there is C such that C € L, AC Q, C - B C Q. It is obvious that
AU(C~B)C Q.Clearly, EZ Au(C - B) for all E € L.

< We assume that there are C, and A — B such that C € L. A — B € F and
E € A((C — B) for all E € L (3). By the definition of L we obtain AU (C — B) — {a}. By
{a} € L there is D such that D € K,, a¢ D and D C AU(C - B). By (3) D€ K, ~ L. Our

proof is complete.

Based on this lemma and algorithm 2.3 we construct the following algorithm by

induction
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Algorithm 2.6. (Finding a family of minimal sets of attributes a).

Input: Let s =< R, F > be a relation scheme, a € R.

Output: K,.

Step 1: Set L(1) = E; = {a}.

Step i+1: If there are C and A — B such that C€ L({), A—-Be F, VEe€ L(:)=> E ¢
AU(C — B), then by algorithm 2.3 construct an E;;, where E;;, C AU(C-B), E;}, € K,,.
We set L(¢ + 1) = L(3) U E41. In the converse case we set K, = L(z).

By Lemma 2.5 there exits a natural number n such that K, = L(n).

It can be seen that the worst-case time complexity of algorithm is O(|R||F||K,|(|R| +
|Ka])). Thus, the time complexity of this algorithm is polynomial in |R|, |F|, and |K,|.
Clearly, if the number of element of K, for a relation scheme s =< R, F > is polynomial in
the size of s, then this algorithm is effective. Especially,"when |K,| is small. It is obvious
that if for each A — B € F implies a € A or a € B, then K, = {a}.

Based on algorithm 2.6 we construct an algorithm finding a set of all PMDs from a

given relation scheme, as follows:

Algorithm 2.7. (Finding all PMDs)
Input: Let s =< R, F > be a relation scheme.
Output: P={A — {a}: A — {a} is a PMD of 5, a € R}.
~ Step 1: For each a € R by algorithm 2.6 compute K,.
Step 2: Set P={A — {a}: A€ K, — {a}, a € R}.

It can be seen that s’ =< R, P > is a cover of s, 1.e. Ft+ = P*. Clearly, P is a set of all
PMDs of s and the worst-case time complexity of algorithm 2.7 is O(|R|| F||K.|(|R|+|Kal)))-

It is obvious that the time complexity of algorithm 2.7 is polynomial in |r|, |F|, and
|Kl. "

Remark 2.8. Let s =< R, F > be a relation scheme. Set s' =< Ru {a}, F' >, where a ¢ R
and Fr= FUR — {a}.

It can be seen that a € K, holds iff A — {a} is a PMD of s’. Consequently, for finding
a set of all minimal keys of a given relation scheme s, we can compute K, of s'. It is

obvious that K, = K, — {a}. Thus, usi_ng algorithm 2.6 we obtain K,.

Now we prove that the time complexity of finding a set of antikeys for relation scheme

is exponential in the number of attributes. .

fall

It is
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Let s =< R, F > be arelation scheme over R. From s we construct Z(s) and compute

the minimal generator N, of Z(s). We put
T,={A€N,: B AN,: AC B}.

It is known [1] that for a given relation scheme s there is a relation r such that r is an
Armstrong relation of s. On the other hand, by Corollary 1.2 and Theorem 1.3 in [21] the

following proposition is clear.
Proposition 2.9. Let s =< R, F > be a relation scheme over R. Then
K '=T,.

It is shown (8] that the problem of finding all antikeys of a relation is soved by polynomial

time algorithm. For a relation scheme we have the following theorem. .

Theorem 2.10. The time complexity of finding a set of all antikeys of a given relation scheme is

exponential in the number of attributes.

Proof. We have to prove that:

(1) There is an algorithm which finds a sets of all antikeys of a given relation scheme
in exponential time in the number of attributes.

(2) There exits a relation scheme s =< R, F > such that the number of elements of
K,_, is exponential in the number of attributes (in our example |Ks — 1] is exponential
not only in the number of attributes, but also in the number of elements of F).

For (1): We construct a following algorithm.

Let s =< R, F > be a relation scheme over R.

Step 1: For every A C R compute A%, and set Z(s) = {At: A C R}.
Step 2: Construct the minimal generator N, of Z(s).

Step 3: Compute the set T, from N,.

According to Proposition 2.9 we have T, = K,.

1
Clearly, the time complexity of this algorithm is exponential in |R].
As to (2): Let R = {ai,...,asm}-
We take a partition R = X; U...U X,,,, where |X;| =3 (1 <i < m).
Set

K ={B: |B|=2, B C X; for some 1}.
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It is easy to see that

K '={A: |A|nX;| =1, Vi}.

It is clear that |K|=3m, |K —1|= 3.

R,...

Thus, if denote the element of K bS' Ky, ..., K, then set s =< R, F >, where F = {K1 —

,K; — R). By Theorem 1.5 in [21] K~ is the set of all antikeys of s. Consequently,

we can construct a relation scheme s =< R, F > such that |F| = |R| = n, but the number

of antikeys of s is 3n/3. The Theorem is proved.

10.

11.
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