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ON MONOTONE ILL-POSED PROBLEMS IN
HILBERT SPACES

NGUYEN BUONG

Summary. The main aim of this paper is to study convergence rates for an operator method of regularization
to solve nonlinear ill-posed problems involving monotone operators in infinite-dimensional Hilbert space
without needing closeness conditions. Then these results are presented in form of combination with finite-
dimensional approximations of the space. An iterative method for solving regularized equation is given and
an example in the theory of singular integral equations is considered for illustration.

I. INTRODUCTION

-
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Let H be a real Hilbert space with norm and scalar product denoted by |.|| and (.,.),
respectively. Let A be a nonlinear operator in H with domain of definition D(A) = H and
range R(A) C H, and f, be an element of R(A4).
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Consider the nonlinear ill-posed problem

A(I) = fo.

R

By this we mean that solu ons of (1.1) do not depend continuously on the data f,. Various
aspects about regularization of (1.1) were studied in detail when A is compact (see, for
instance, [6], [13]-[15], [18], [19] and their bibliographies). Here to study convergence rates

of variational method of Tikhonov regularization minimizing the functional
Fi(z) = [A(z) = fsll® + alz])?, (1.2)

where a > 0 is the parameter of regularization and f; are the approximations of f, with

‘the wellknown informations

”f&'—fOH < 6’ 5_’01

one needs to have the following conditions (see [6]): (i) A is Fréchet differentiable, (ii)
there exists a constant L > 0 such that ||A'(z) — A'(y)|| < L|z — y||, =, y € D(A) (iii) there
exists an element w € H such that A" (zo)w = zy, where A" (z,) denotes the adjoint of
derivative of A at zo and zo is a norm-minimal solution of (1.1), and (iv) L|w| < e
(= 1) which is called the closeness condition. In [15] A. Neubauer estimated e < 1 for a
modification of (1.2).
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In [5], when A is a monotone operator, the author obtained e=2 for the operator

version of Tikhonov regularization

Alz) +az = fs, (1.3)

but convergence rates are a bit weaker. It is clear that the equation in condition (iii)
is not defined explicitly because the operator A’*(zo) and the right-hand side zo are not
known. Therefore, the verification of (iv) is almost too difficult to realize. So, it is natural
to propose the question if there exists a some way excepting condition (iv). In [13] A.
Neubauer developed an approach of [11] in the linear case for problems involving compact
operators. A big advantage of this approach is that rates are obtained by merely requiring
smoothness conditions for the exact solution as in the linear case. In this paper, we shall

show that by using a modification of (1.3) that is the regularized equation (see [18])

A(z) + adp(z) = fs, (1.4)

where d¢ is the subdifferential of the uniformly convex functional ¢ on H, and replacing
the smoothness condition (iii) by another one we can exclude condition (iv). Main résults
about convergence rates are presented in Section 2. An iterative process for (1.4) is given

in Section 3 and an numerical example is considered in Section 4 for illustration.

II. MAIN RESULTS

Consider the uniformly convex functional p(z) = ||z||#, 2 < g < 3. Then (see [7],

Lemma 2)

<agp(z) —lago(y),a: - y) > 22_"":: - yl|#, Vz, y€ H.

Since ||z — y|| > [|z]| — |||l it is wellknown in [18] that Eq. (1.4) has a unique solution z,s
for every fixed a > 0 and f; € H and the sequence {z,s} converges in norm of H to z, if

§/a and a tend to zero, where
(ago(zo), z— z0> >0, Vz € Sy, ;" .

Sp is the set of sulutions of (1.1).
We shall prove the following result.

Theorem 2.1. Let the following conditions hold:

(i) A is twice-Fréchet differentiable in some neighbourhood of zo,
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(ii) there exists a constant L > 0 such that
|4"(z) — A"(2)|| < Ll|z — 2|

for z, z € S(zo,r), where S(zo,r) is a ball with center zo and radius r, and
(iii) the equation
(A% (m0) — 34" (m0)y) = Bp(o)
has a bounded solution w(y), y € S(zo,r).
Then for the choice o= 0(67), 0 < p < 1 we obtain

lzas — zoll = 0(67), ¢ = min ((1-p)/(s— 1),p/u).
Proof. By virtue of Eqs (1.1) and (1.4) and the monotone property of A we have
@22 |25 — zo||* < 6||Zas — zol| — a(c’?go(zo), Tos — zo).

From this inequality and condition (iii) of the theorem Tt follows

@227 H|| 245 — zol|* < 6||Zas — zol| + a(w(y), (4'(z0) — ';‘A"(xo)y)(fﬂo ~ Zas)), Y € S(z0,7).
Using Taylor expression (see [20]) and taking y = z,s We can write

A'(z0)(z0 — Zas) — %A"(zo)(’w"o — Za5)” = A(0) — A(Zas) + ras, |I7asl| < Li|zas — zol|*/6.
Therefore, i

2 ¥ z05 = 20l < 6las = 20l + alo(zas — a0} (8 + alzas] + Llzas — 2o/0) . (2.1

Hence

_ L _
(22 ¥ = Zlw(zas = zo)lllzas — 2o ) las = zoll* < [(6 + @[ (Zas ~ 20)[))/alllzas — 2o

+llozas = 20)| (5 + alzol ).
Since z,5 — 7o and p < 3, for sufficiently small a and §, we have
lzas — zo|* < (6/a + allw(zas — 20)|) + llw(zas — 20)[[{8 + allzoll))-
Using the relation in [12]:
a, b,c >0 p>4q a?< ba"+c=>a”=0(bp/(p_")+0)
we obtain
zas — zoll = O(6%), ¢ = min ({1~ p)/(s—1),p/n) ®

Remark 1. If A”(z) = 0 condition (iii) of Theorem will be written in the common form
(111) in Introduction with the righ-hand side 8¢(zo). We shall see this in an example in

Section 4.
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For numerical approximations one has to approximate the infinite dimensional Hilbert

space H by a sequence of finite-dimensional subspaces H,:
H, cH, ¢ ..cH,..Cc H P,z —z, n— +oo, Vz € H,

where P, denotes the orthogonal projections from H onto H,. Now, in place of (1.4),

consider the finite-dimensional problems
An(z) +adp,(z) = f, z€ H, (2.2)

where A, = P,AP,, 3¢, = P,0pP, and f}! = P;fs;. It is easy to verify that A, and 8¢,
are monotone and continuous in H,. Hence Eq. (2.2) has a unique solution z; for a > 0

and, for arbitrary o > 0 and fs € H, the sequence {z%;} converges to zqs, as n — oo (see

[17).

Theorem 2.2. Let the following conditions hold: =

(i) A is twice-Fréchet differentiable at some neighbourhood Ug of S,
(ii) there exists a constant L > O such that

4"(z) = A"(y) < Ll|lz = yll, =, y € Uo,

and

(iii} o = a(n,§) is such that o,6/a — 0 and

(@ = P)al+ LI(T = R)I*/6) fa 0, Vo € 5o
as n — oo, where v,(z) is denoted- by

wn(z) = max{||A'()({ = Pa)|l, | A" (=) (1 = Pa)|lll=]l},

I is the identity operator in H. Then the sequence {z%;} converges to zo.

Proof. From (2.2) we have

X

<An(z:6) — An(z") + a(dp, (z55) — Fpn(z")), 255 — 1") = (f&" —’A,,(:c”),xf;,,- - 93">

+ a{8p, (z"),2" — zs), 2" = Poz, z € So. (2.3)

As

A(Paz) = Ax) + A'(2) (Paz — 2) + %A”(z)(Pnz — 22+ 9", ||©| < LI(I - Pa)2)|2/6, z € So,
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from (2.3) it implies
227 #|2%s — 2" | < (6 + 159 (2)I(1 = Pa)zll + LI = Po)zl/6)l|255 — 2|/ (2.4)

+(9p(a"), 2" — 255).

Consequently, the sequence {z%,} is bounded. Let z7%; — z;, as a, §/a — 0 and n — co.

Then An(z75) — fo follows from (2.2). We write the monotone property for 4,:
x
(An(z25) — An(z™),20s —2") 20, Vz € H, 2" = P,z.

Therefore,
(4n(z35) — Alz"), 255 — ") 2 0.

From the last inequality and the continuity of 4 it fellows
(fo— A(z),z1—z) > 0,Vz€E H,

ie. z; € Sp. Replacing z" by z? (= P,z;) in (2.4) we can conclude that the sequence

{z%5} converges strongly to z; and
227 Hlzhs — 2|* < (5 + 1.5y ()| (T = Po)z|l + LY(1 - Pu)xlls/ﬁ) 255 — 2™ |/e

+(3p(z"),z" — z25).

After passing @, § — 0 and n — oo in the last inequality we obtain

-

(3p(z), z ~ z1) 2 0, Vz € So.

The last variational inequality is equivalent to (dp(z1),z — z1) > 0, ¥z € So. Then z; = z

and the entire sequence {z%;} converges strongly to z. .

Remark 2. From the above froof we can see that Theorem is still true if condition (ii1) is
replaced by

m(z)/a = 0, 7a(z) = (I - Pa)2)|l, z € So. = (i)
We prove the following theorem in this case.

Theorem 2.3. Assume that the following conditions hold:

(i) conditions (i) - (iii) of Theorem 2.1 with w(y) = wy, Vy € S(zo,r) and (i13*)
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(ii) there exist two constants L' > 0, 4" > 0 such that
(8e(y) =~ Bp(z0),2) < L'lly = mol" |lzll, Yy, 2 € 8(z0,7).

If we choose a = 0((6 + '7,1‘)"), 0 < p < 1, and denote

T = max{||(I'= P)zoll, |(F = Pa)wnll, | (1 = Pa) fol1}-

Then

225 — zoll = o(sq* + (73.)‘"), a1 = min{(1 - p)/ (s — 1),p/u} and gz = min{~/ /(1 — 1), q1}.
Proof. From (2.3) (with z = z,),

| A(Pnzo) = fsll < 6 + 155 [|(I = Pa)zol| + LY (1 — Pn)zoll*/6

where

Yo = max {||A’(zo) |, | A" (o)1}, B

and the monotonicity of A,, it follows
a2zl — zpl* < a(Bp(25), 25 — zas) + | fo — AlaD)ll|=hs — =5 I

< (6 +Foh + (13)°) 225 ~ 21| + a(dplao), 2 — 22s) + a(Bp(ad) ~ dp(z0), 7§ — 225)
< (5 + Fomh + (42)° + L' ()7 Moy — 2B+ (o, Alzo) = A(z25)) + allorllirisll

where

1
ras = A(z4s) — A(zo) + A'(20) (20 — 255) — 54" (20) (=55 — 20)°,
lIraall < Lllzls = =oll’/6 < Lilzgs ~ 5511°/6 + O(v,)

and

(w1, A(zo) ~ A(z)) < Mlwill(6 +vn + 117 = An(z8o) ) + ((Pn — D, A(z5,))-

Because of locally bounded property of every hemicontinuous and monotone operator (see

[20])

<w1,A(:r0) - A($Z6)> S ||w1||(5 + ’1,1, + Cla + Cg”(I - Pn)w1||, Cl, Cg > 0.
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Consequently
— Lijw n ny3— n n ~ !
a (22 = ey, — agpeor ) hat - sl < (54 Sk + () + o))
o2 = a5l + ool (@1 + Calot + 6+ Cia ).
Using, again, the relation in [12] we have
i
llzas — 26l = O(6* + (v2)®)
and
245 — zoll = O(67 + (73)®) ®
III. ITERATIVE METHOD
Now consider an iterative method to solve the equation
F(z) = A(z) + 3p(z) = f, f € R(A+ 3¢p), (3.1)

where A and d¢p are defined as above. In the case dp = I, the unique solution % of (3.1)
can be found by iterative methods in [2], {3] and [4] since in this cases u = 2.

e

. Let 2! be an arbitrary element of H. The sequence of iterations z* is constructed by
the formula

2kt = 2k — B (F(a*) - £)/IF(s*) - £l (3:2)

Theorem 3.1. If the real numbers fi satisfy the conditions
[+ o0
1>6,>0, fa O, D fn = +00, ) B2 < +oo,
n=1 n=1

then the sequence {z*} converges to %, as k — +oo.

Proof. Put
A= ||2F - ]2

It is easy to see that

Ak““s Ak + 2<zk+1 —zF, ¢ — :E) + Ilzk'H — x'f"z.
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From this inequality, the uniformly monotone property of F (that is caused by that one
of 8p) and (3.2) we get

Mgt < Ak — 227#B M2 | F (%) — £ + B2 (3.3)

Therefore, the sequence {);} is bounded. Consequently, the sequences {z*} and {F(z*)}

are bounded, too. Hence there exist constants G;, G; > 0 such that
A <Gy and |F(z*) - f|| < Ga.

We can write (3.3) in the form

- 2-1
23-ugt/

BDiryy S Ak — G
2

BAM? 4 821Gy, Dk = /G

Repeating the proof of Lemma 3 in [17] to the last inequality with s, = a APt
akA;:/z_l we can conclude that the sequence {A,} tends to zero, as k — +oco. Theorem is

proved.

IV. APPLICATION -

We now apply the obtained results of the previous sections to study the singular

integral equation in form (see [8])

/: |s —t| " z(s)ds + F(z(t)) = folt), 0< A <1, (4.1)

where fo(t) € L2([0,1]) and F(t) satisfies the following conditions:
(i) F(t) is a differentiable function,
() [F(8)] < co + calthei > 0; F(t) < F(ta), t1 < ta.

Let the operators K and F define by

Ky(t) = / k(t, 9)z(s)ds, (Fa)(t) = F(z(2),

where k(t,s) = 0if ¢t > s and k(t,s) = (¢t —s)~* if s < t. Then K and F are the monotone
operators in H = L,([0,1]). In addition, suppose F is compact, therefore (4.1) is an ill-
posed problem, because K also is compact (see [10]). It is easy to see that A = K + F
is monotone and Fréchet differentiable. In this case the condition (iii) of Theorem 2.1 is
described by

(K* + " (z0) - %F"‘(zg)y)w = dp(0) (4.2)
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and if F" is Lipschitz continuous A" also is Lipschitz continuous. If F"(zo) = 0, for istance,

F is linear on the set of solutions of (4.1) , then (4.2) has a simple form
(K* + F*(20)) = Bp(zo0).

And, in particular, if F'(zo) = 0 that condition has a very simple form K*w = 8¢(z0).

Consider a concrete example, when

4

¢ t <0,
F(t) = <0, 0<t<1, (4.3)
2(t-1), t>1,

with zo(t) = &t?, B >0, where & is a constant satisfying the condition

”"IOII,I‘J;-(IIO,II)EO(ﬂ + 3/2)k= 1.

Then :
fol(t) = Co/ |t — s|"2sP+12ds, dp(zo)(t) = tP+1/2.
0

In this case, w(t) = T'(8 + 3/2)t? /T(8 + 1) (see [7]).

Without loss of generality, consider Zo(t) = zo(t)/é and fo(t) = fo(t)/é with A= g =
0.5 and u=2.5.

The values of f;(t) are chosen as perturbations of the values f,(t) according to
Sl £5(t) = folt) + 6.

We compute the regularized solution z?, for this problem using the iterative method (3.2)
with error estimate 0.001 and approximating the Hilbert space L;[0,1] by the sequence of

linear subspaces H,,, where
Hn = L{¢’1)¢2" .. )'l)n})
1, te [tj._l, t_.,'],
Y= .
0, t&[tj—1,tj], 7=1,..n.
It is wellknow that

n

I~ Pajsoll = O(n™2), where Pay = 37 y(t:)¥5(0)-

i=1

Now we apply Theorem 2.3 for a(n) = O(n™!) and § = O(n~2). We should obtain the

convergence rates e" = ||, — z7]|.
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All numerical results are obtained with FORTRAN programs on an IBM 3031.

l n l Calc.Results |
points a(n) e
15 0.007143 0.115264
21 0.005000 0.097654
33 0.003125 0.083582
65 0.001563 0.067732
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