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Sum m ary. In th i l  p ap er we in troduce a  no tion  of knowledge base consisting of s ta tm en ts  w ith  t r u th  degree 
in which every s ta tm en t m ay have several t r u th  degrees. A set of rules of inference handling  th is k ind of 
s ta tm e n ts , a  deductive  reasoning m ethod  based on these rules will be considered. T he consistency of th e  
knowledge base will be also investigated.

I. INTRO DU CTIO N

In [2] and [7] we gave an algebraic approach to  fuzzy logic by axiom atizing linguistic 

dom ains of linguistic variables, especially, of the linguistic tru th  variable, based on par­

tially ordered linguistic meaning structu re  of vague concepts. This means th a t linguistic 

dom ains can be considered as algebras in the category of universal algebras and called 

Extended Hedge Algebras, briefly, EHGs. They are so rish algebras, th a t the operations 

corresponding to  logical connectives are definable in these stuctures. In o ther words, the 

considered dom ains of linguistic values are closed w .r.t. logical connectives. This suggests 

us to  investigate in th is paper fuzzy logic based on EHGs and establish a deductive system  

for linguistic reasoning, analogously as in classical and non-classical logics.

There will be some foundations for building up th is deductive system  for linguistic 

reasoning. F irst, it  is able to  introduce a fuzzy logic, which is axiom atized, based on 

properties of EHAs - a class of universal algebras. It may be im portan t in constructing 

inference rules for linguistic reasoning. Remember th a t every deductive system  in classical 

or non-classical logics always determ ines an algebra in a certain class of universal algebras 

(see [1], [4] and [15]). Second, analogously as in the case of classical or non-classical logics 

(see [l], [10], [14]), m any inference rules for linguistic reasoning can be justified by tru th  

valuations, based on the stuctures of dom ains of the linguistic tru th  variable. The other 

rules will be seen emperically reasonable and it will be shown th a t the results obtained by 

this way are not worse than  th a t  based on fuzzy sets reasoning.

It is w irth  to  mention th a t  our rules of inference allow to  m anipulate im m ediately 

vague concepts and the results are given in a form of na tu ra l language.



Finally, we could introduce a notion of derivation from a given set of fuzzy sentences, 

called assumptions, which can be considered as a knowledge base. Then we have a m ethod 

in linguistic reasoning to  deduce step by step a conclusion form ulated in n a tu ra l language. 

For example, in the sequel we shall see th a t from the following inform ation: ’the  more 

healthy a peson is, the more efficiently he or she does his or her job” is of tru th  degree 

’rather tru e ’ and ’R obert is very healthy’ is of tru th  degree ’possibly tru e ’, we can derive 

by means of our inference rules a conclusion th a t  ’Robert does his job  very efficiently’ is 

of tru th  degree ’ra ther possibly tru e ’.

It will be seen th a t this m ethod seems to  be ra ther simple and applicable.

The paper is continued th a t published in [6] and some results of the paper can be 

find also in it w ithout proof.

II. FUZZY PROPO SITIO NS AN D LINGUISTIC VALUATION

It is known th a t people are thinking and reasoning by languages, whose fundam etal 

elements are sentences normally containing vague concepts. Sentences in hum an reasoning 

have implicitly or explicitly, a tru th  degree which is often expressed also by vague concepts 

such as ” true” , "false” , ’’possibly true” and so on. For example, the sentence ’John is h igh’ 

in a certain context may be assigned to a tru th  degree ’’very true” .

"  So, in many situations we are dealing w ith sentences containing value concepts as­

sociated w ith a linguistic tru th  degree. This leads to  a consideration of the set of fuzzy 

sentences and a notion of linguistic tru th  valuation, which assigns to  certain  fuzzy sen­

tences linguistic tru th  values.

A simple form of fuzzy sentences are those which can be called fuzzy predicates. 

Examples of such sentences are the following: ’Robert is very old’, ’The gas gauge reads 

normal’, ’P art X  of the engine depends on part Y  s trongly’ and the m otor tu rn s well’. 

Because we w ant to  deal w ith vague concepts, they will be divoiced from the other and 

therefore fuzzy predicates will be devided into two parts. The first one is those which build 

the main meaning of such sentences, i.e. it consists of all words excepts vague concepts 

occuring in the sentences. They can be considered as ordinary predicates and called the 

substance part. Exam ples are ’(the age of) Robert is in the first sentence above, ’The gas 

guage reads’ in the second, ’P art X  of the engine depends on p a rt Y ’ in the th ird  and ’The 

motor tu rn s’.

The second p a rt of fuzzy predicate consists of the remaining words - the vague con­

cepts. It is called the value p art. In the above sentences they are ’very o ld’, ’norm al’,



’strong ly’ and ’w eir. It can be seen th a t the substance part determ ines the possible vague 

concepts which are in terpreted as its values. Therefore, the substance p a rt plays a role sim­

ilarly as th a t  of linguistic variables. Hence, fuzzy predicates can be denoted by a pair (p,u), 

where p is a predicate of n argum ents and u is a vague concept. By th is no tation , the above 

examples can be expressed by {AGE(Robert), veryold), {READ(gasgauge), normally), (DEPE-  

N D {X ,Y ) ,  strongly)and(TURN(motor), well), respectively. In the sequel, we shall see th a t 

this form alization will be very convernient for m anipulation of vague concepts in our 

m ethod.

The simple fuzzy sentences of the forms considered above are called elem entary fuzzy 

propositions.

The composed fuzzy propositions are formed from elem entary ones by m eans of 

logical connectives such as ’and ’, ’o r’, ’if... th en ...’ and ’n o t’, which are denoted corre­

spondingly by , —► and - 1  and đalled conjunction, disjunction, im plication and negation. 

An example for composed fuzzy propositions is ’if a person is old then  he or she does not 

run quickly’ and th is sentence can be expessed by (AGE[x),old) —► -i[RUN{x), quickly).

Now we shall give a form alization to  describe the set of fuzzy propositions.

(i) Linguistic dom ains as sets of term s: Every predicate p will be associated with 

a linguistic dom ain D{p), which is embeded in an extended hedge algebra (EHA). For 

exam ple, predicate AGE{x)  is associated with an EHA generated by the prim ary term s 

'old.' and 'youngf7, predicate READ{x)  is associated w ith the one generated by 'normally' 

and ’unnormally'  and so on.

In the paper, we shall consider only linguistic domains generated by two generators 

and, then , they are sym m etrical EHGs (see [CW91]), in which there is operation -, where 

for every elem ent u, - u  is^the contradictory element of u. So, every linguistic dom ain 

D(p) can be represented by {D(p), c ,  H{p) ,- ) ,  where H{p) is the set of hedges and c  is the 

set of the prim ary vague concepts associated with p and regarded as the zero-argum ent 

operations.

Let us consider a set S Y M  of symbols which consists of the elements of c ,  H{p) and 

of the symbol We denote by T S  the set of all strings of symbols in S Y M .

The set of term s corresponding to  domain D[p) is defined as the sm allest subset

TER(p)  of T S  satisfying the following conditions:

(tl) c  Ç TER{p)] .

(t2) For any h in H(p),  and u in TER{p), hu is in TER{p)\

(t3) For any u in TERịp) ,  - u  is in TER(p).

(ii) The set FP  of fuzzy Propositions:



Let us denote by Var  and Con the sets of individuals and constants, respectively and 

considéré a finite set P R  of predicates. Elements in PR  will be denoted by small letters 

p, q, r, ... w ith indeces if necessary. To every element p of p  it will be associated w ith 

linguistic dom ain D{p). The logical connectives are A ,v ,-+ , and The auxiliary symbols 

are brackets ( , ), and comma Denote by TF  the set of all strings of elements in S Y M  

and in PR  and of logical connectives.

FP  is the sm ajlest subset of TF  satisfying the following conditions:

(p i) For every p in P R  and u in TER(p), (p ,u)  is in FP,  i.e. F P  consists of all

elementary fuzzy propositions. For convenience, for (p,tt) 6 F P  and a hedge h, some times

we shall w rite h.(p,u) instead of (p,hu).

(p2) For p, Q in FP, p  V  Q is in FP\

(p3) For p, Q in FP, p  A  Q is in FP\  i

(p4) For p, Q in FP, p  —> Q is in FP\

(p5) For p  in FP, ->p is in FP.

Now we difine a linguistic tru th  valuation V.

Let us considered a sym m etrical hedge algebra T  =  (T, c ,  H, —, u, n, =>-, <) of the 

linguistic tru th  variable, where c  =  {True, False}.

We assume th a t  all sets H(p) w ith p in PR  and H  are isomorphic in the category of 

the partially  ordered sets and hence, they are assumed to  be the same.

By linguistic tru th  valuation, we mean an arb itrary  partia l m apping v: F P  —► T  

satisfying the following conditions:

-, (v l)  For any elem entary fuzzy proposition p  in FP,  if p  has no individual variables 

then v(p)  is defined;

(v2) For F = hP,v{P)  is defined and equals to  ơha, where a 6 c ,  iff v[hP) is defined 

and equals to  ơa.

(v3) v(-iP) = —v(P), if t)(F) is defined;

(v4) v{p  V Q) = v(p)  u  v(Q) , if v(P) and v(Q) are defined;

(v5) v (p  A Q) = f(P ) n  v(Q), if v(p)  and u(Q) are defined;

(v6) v(P —> Q) = v(P) => v(Q), if v{P) and v{Q) are defined;

III. ASSERTIONS A N D KNOW LEDGE

The main purpose of the paper is to  model hum an reasoning based on its knowledge 

and the author thinks th a t every person’s knowledge contains sentences w ith a certain  

tru th  degree, which normally is also a linguistic concept. They will be called in our study



assertions. So, every assertion is a pair (F,t),  where F  is a fuzzy proposition and t is a 

linguistic tru th  value being interpreted as a tru th  degree. The hum an being has an ability 

to  deduce some new assertions from a given set of o ther ones. We shall introduce an 

approach to  a hum an reasoning process th a t are based on rules of inference allowing to  

handle directly linguistic concepts.

In the incom plete information phenomena it can be seen th a t (i) one has no definitive 

way to  deduce exactly one conclusion in fuzzy phenomena, (ii) There exist m any basises 

to  justify  the reason why one assigns one or o ther tru th  degree to  a given s ta tm en t and, 

hence, every s ta tm en t may have several tru th  degrees. This suggests us to  define a formal 

knowledge as a set of assertions as follows.

Let F P  be the set of fuzzy proposition considered in the previous section. Let ~ >  be 

an additional logical connective which is called proportional implication, the sem antics of 

which will be examined later. The set A of assertions is the least set of strings of symbols 

satisfying the following conditions -  .

(A l) For every P  e  F P  and t €  T,(P, t)  €  A

(A2) For any P , Q e F P , t e  T, (P ~ >  Q, t) e  A. .

The assertion (P  ~ >  Q,t)  can be considered as an abréviation of the set assertions 

{<jP  —► aQ : (7 is an ab itrang  string of hedges }.

Let i i  be a subset of A, we denote by FP(K)  the set {P : (P, t) e  K }  and Tk (P) —

{ t : ( P , t ) e K } .

A subset K  of A is said to  be a formal knowledge provided, for every P  e  (F P ( K ),

either Tk (P) > W  or Tk (P) < W,  where W  is the neutral in T.

In terp re ta tion  of formal knowledge: The m ain aim  of reasoning m ethods is to  model 

hum an reasoning. Thus, one'of the m ain subjects of the study is hum an being knowledge.

A hum an being knowledge may be of one person or of a collective of persons such as 

a group of experts. As we discussed previously, a hum an knowledge is a set of pair (P, t) 

where P  is a fact in the real world RW  and t is a belief degree which is represented in 

the study by a linguistic tru th  value. We shall take hum an knowledges as models of our 

form al knowledge. ÿ"

To explain this, let us consider Q as a set of objects in the real world and. I is an 

in terp reta tion  which

(10) in terpret every variable as an object in Cl.

(11) in terpret every constants as a certain object in Q.

(12) in terpret individual variables as variables over SI.

(13) in terpret every predicate p as a relation Rp over SI.



(14) interpret prim ary term s and hedges of a predicate p as the prim ary term s and 

hedges of associated w ith relation Rp.

(15) interpret connetives -i, V,A,—  > correspondingly as -, U ,n and =>,

A model for a formal knowledge is a s tructu re  M  =  (fi, {RP,H ( R P) : p €  P} ,r0,Val ,T) ,  

where:

i] is a set of objects, r0 is a m apping which assigns to  every constan c an object Oc 

in fi Rp is a re la tio ^o v er Q. H(RP) is the set of hedges of Rp which is assumed to  be is 

ormorphic to  H{T). Val  is a set of partial valuations, which for every Rp and for some 

objects 01,..., On and a prim ary term  u of P,  assign to  (Pj(01 , ..., On), u) a tru th  value in 

T.

For a form ula F, VC(F)  denotes the set of all individual variables and individual 

constants occuring in F, and F  denote the expression obtained from F  by replacing every 

predicate p by P[. Let us denote by T,  an extension of r0 over the set of all individual 

variables. As a convention, for F  =  PoQ if v(P) and v(Q) are defined then v(F) is defined 

and v(F) = v(P) o v(Q) and V(.Ft(...)) € Tk {F) means th a t  if v(irz(...)) is defined then it 

belongs to  TK (F). For the form ular of the form F  =  P  ~ >  Q, where P,Q e  FP,  the equality 

v(P ~>  Q) =  t means th a t, for every string of hedges a, v(aP —» aQ) =  t.

A formal knowledge K  of (F, Tk {F)) is said to  be satisfied in M  if for every v e  V  of 

M, v is defined on FP(K)  and v(P) €  F(F)  for every F  €  FP(K) .  Two form ulars P  and 

Q in FP  are said to  be equivalent provided for every evaluation v, if v(P) and v(Q) are

defined then v(P) =  v(Q). In this case we shall w rite P  =  Q. It can easily be seen th a t  the

following statem ents hold:

Theorem 3.1. For any formulars F, P, Q and any predicate p, hedge h, the following statement 

hold.

(0 -'(P>u) =  (P’-u) and (p,-hu) = (p,h-u):
(ii) P = P and ^  P = P:

(iii) P  A  Q =  Q A  P and P  V  Q =  Q  V  P;

(iv) F A  (P A  Q) =  (F A  P) A  Q and F  V  (P A  Q) =  {F V  P) V  Q;

(v) F A  F  =  F and F  A  F = F;

(vi) F V  (F A  P) =  F and F  A  ( F  V  P) = F;

(vii) F v ( P a Q )  = ( F V P ) A ( F V Q )  and

F A ( P V Q )  =  ( F A P ) A ( F Q ) ;

(viiiJ ~'(F A  P)->F->P and ~^{F V  P) =  —>F A ~^P;

(ix) F —> -  > P ^ F  V P.

(x) If P = Q andF(P) means F contains P as its subformular, then F(P) = F(Q/P),  where



F(Q, p)  denotes the formula obtained from F by replacing p  with Q.

IV. RULES OF INFERENCE IN LINGUISTICREASONING

In th is section we shall establish some rules for linguistic reasoning, w ith which we 

can m anipulate vague concepts in an easy way in comparison w ith other m ethods (see

[12], [13], [15] and [16]).

Rules are schema allowing to  deduce a conclusion from  a given set of assertions. 

Formaly, a rule of inference is a scheme of the following form:

^RỊJƯÍ
(Ọl> s l)> •••) (Qmi sm)

where (Pi,U), U > W, i = 1 ,...,n  are called antecedents or assum ptions and Sy >

vy, j  =  1,..., m, are called* conclusions. A rule (RUL) is said to  be sound provided for 

every valuation v, if (P{) is defined and v(Pi) = t,, t =  l , ...,n , then v(Qj) is defined and

v(Qj) = si> f ° r  J = l > • • • > " » •

4.1. Rule for hedge transfer for simple fuzzy propositions.

In reasoning some tim e we need to  change an assertion to  anather one, which in a 

definitive sense is equivalent to  the former one. E.g. we w ant to  change the assertions 

( ’M ary is a ttrac tiove’ very True), ( ’John is More or less young’, possibly True) and (’John 

is very strong’, M ore or Less False) into the form for example ( ’John is strong’, t) , for 

a suitable linguistic tru th  value t. The following rule of inference describes how we can 

realize th is and determ ine the linguistic tru th  value t.

((P,hu),sT)
( (* « ) , .AT) ( i m )

fRT2)
((P,hn)tsT) ( >

where T  is a prim ary term  of the linguistic tru th  variable, i.e. T  is either ’True” or ’False’, 

s is a string of hedges and h is an arb itrary  hedge.

By these rules, the above examples of assertions can be trasfered into the following 

ones: ’M ary is very a ttrac tiv e ’ is ’True’, ’John is strong’ is ’More or Less Very False’ or 

’John  is more or less very strong’ is ’False’, ’John is young’ is ’Possibly More or Less T rue’

or ’John is possibly more or less young’ is ’True’, more or less young’ is ’True’.



At first glance, it can be seen th a t the rules (RT) may be reasonable, intuitively. 

However, someone may doubt its reliability. Therefore, we w ant to  show here th a t rea­

soning based on these rules is not worse than  th a t based on fuzzy sets theory (see [8], [9], 

[15] and [16]).

As we know, a rule which is analogous to  (RT) in approxim ate reasoning based on 

fuzzy set theory is the following:

' 'u is A' is t , __ .
------—5— . {ST)u is B

where A is a fuzzy set, t is a fuzzy set of linguistic tru th  variable and B  is the fuzzy set 

computed by B = to A.

For uniformity, the proposition ’u is £ ’ in the co n tu sio n  of Rule (ST) needs be 

understood as the assertion ’u is B ’ is ’True’, where True is assumed to  be the label of 

the fuzzy set /¿True(u) =, for v 6  [0,1]. Now, we give an example to  show th a t  when vague 

concepts can be represented by fuzzy sets, Rules (RT) have the same effect as Rule (ST). 

Let us consider the following proposition ’Robert is young’ is ’Very T rue’. It can be verified 

that /¿VeryTrue^t/oungl^) — eryYoung{^) ̂  the fuZZy Set On the left Side, On aCCOUnt

of the rule (ST), represents the sentence ” ’Robert is young’ is ’Very T rue’” and the fuzzy 

set on the right side, again by the rule (ST), represents the sentence " ’Robert is very 

young’ is ’True’” , which is ju st w hat is deduced from the given sentence by the rule (RT). 

However, (RT) is more advantageous in m anipulating vagueness, especially, for the case 

where vague concepts are difficult to  be represented by fuzzy sets, e.g. vague concepts of 

beauty as ’a ttrac tive’,.... For example, from the given assertion ’M ary is very a ttrac tiv e ’ 

is ’Possibly True’ it can be deduced th a t ’M ary is possibly very a ttrac tiv e ’ is ’T rue’ or 

’Mary is a ttrac tive’ is ’Possibly Very True’. It is worth to  mention th a t by Rule (ST) we 

are not able to  infer these assertions.

By the definition of the valuation, we have

Proposition 3.1. Rules (RT1) and (RT2) are sound.

Proof. By (V2) of the definition of valuation.

4.2. Rules of hedge trasfer for implication.

First, we introduce a notation. Let v be a given linguistic tru th  valuation. Denote by 

dom(v) the set of all fuzzy propositions P,  where v(P) is defined. We shall define expression 

of the form hP  w ith respect to  t; and h is a hedge, by induction as follows:



For the prim ary propositions P = P(x,hu)  we shall w rite P  =  hP(x,u).  In th is case 

we have always the fact th a t if vP(x, hu) = sT,  where a is a string of hedges and T  e. C  is 

a tru th  constant, then v(P(x,u)) = shT, by the definition of valuation.

For P = -'hQ, if v(-ihQ) — a T  implies th a t v(-iQ) = ahT,  then we shall w rite P = h->Q;

For P = hQohQ', where o is a two argum ent logical connective, if v(P) =  aT  implies

th a t  (QoQ') =  ahT,  then we shall w rite P  =  h(QoQ').

It is w orth to  m ention th a t the notation hP  means th a t the hedge h can be trasfered 

as in the case of Rules (R T l) and (RT2). As a convention, if hP  occurs in an expression, 

we m ean h can be transfered.

Note th a t  h can not be always transfered. B ut we have the following statem ents. To 

form ulate these, we need a notion. P  and Q are said to  be consistent w .r.t. v if v(P) > W  

and v(Q) > W , and inconsistent if one of v(P) and v(Q) is greater th an  W  and the o ther is 

less than  W .

From  now on, when we w rite hP,  it means th a t h can be transfered w .r.t. the.set of 

valuations v, which are definitively determ ined.

Lem m a 4.2. Let v be given. Then

(i) - hP = h->P\

(ii) hP  V  hQ =  h(P V  Q) , if P  and Q are inconsistent w.r.t. v;

(Hi) hP  A  hQ =  h.(P A  Q) , if P and Q are inconsistent w.r.t. v;

(iv) hP  —» hQ =  h(P —* Q) , if  P and Q are consistent w.r.t. v.

Proof: (i) Let v(-^hP) — aT. By the property of v,v(h.P) = - a T  =  a — T, which implies, by 

definition of the form ular hP,  th a t v(P) =  ah — T  = —ahT  (see [7]). Again by property of 

v, v(-iP) =  ahT. Thus, the^Validity of (i) has been proved.

(ii) Suppose th a t v(hP V  hQ) =  aT, v{hP) = a\Ti  and v(hQ) = a2T2, where a, ai 

ar strings of hedges and T, T{ are prim ary term s ’True’ or ’False’. Since P  and Q 

are inconsistent w .r.t. v, it follows th a t  either Tj =  ’True’ and T2=  ’False’ or T1 =  

’False’ and T2 =  ’T rue’. Assuming th a t Ti =  ’False’, we have v(hP) < v[hQ) and so 

v(hP  V  hQ) = v{hP) V  v(hQ) =  a2T2 =  aT. The last equality shows th a t  a2 =  a and T2 =  T. 

By the definition, v(hP) = ayTx and v(hQ) =  a2T2 imply th a t v(P) = a^hTi  and v(Q) =  

a2hT2. Since 7\ =  ’False’ and T2 = ’True’, it is obvious th a t axhTi < a2hT2 and hence 

v(P  V  Q) = v(P)  V  v(Q) = v(Q) = a2hT2 = ahT,  which proves the validity of (ii).

(iii) is pvoved by duality and (iv) follows from (ii), since v(hP —* hQ) = v(-i/iP)Uu(/iQ).

Remark: By the definition, the notation  hP  means th a t h may be transfered. On

account of Lemma 3.2, it is obvious th a t  the condition for hedge transfer is determ ined



by the tru th  values of P  and Q, bu t does not depend on hedges. Therefore, instead of 

writting hP  to  denote the fact th a t  h can be transfered, we can also say th a t  P  allows to  

transfer hedges. In addition, by the definition of the form ular of the form  hF,  it forllows 

that Rule (RT) for prim ary propositions is also correct for the proposition allowing to  

transfer hedges. Hence, Rule (RT) can be form ulated as follows:

{hP' sT)
[ P ^ h T ) '  {RT  1}
(P, shT)
(hP, sT)

4.3. Rules of hedge transfer for implication, Modus ponens and Modus tolens 

Rules of hedge transfer: *

(hP —̂ hQ,crTrue), (hP, aTrue)
(P —► Q, ahTrue)

(P  —► Q, crhTrue), (P, shTrue)
(hP —» hQ, aTrue)

where a and a are strings of hedges.

Rule of M odus ponens:

Rule of m odus tolens:

(P  —► Q,aTrue),  (P, True) 
(Q, crTrue)

(P —> Q, aTrue), (- 1Q,True) 
(- 1P, aTrue)

( R T  2)

( R T I 1) 

(RTI2)

(RMP)

(RMT)

The reasonableness of these rules is based on the following statem ent:

Proposition  4.3. Rules (RTI1), (RTI2), (RMP) and (RMT) are sound.

The proof of this proposition is based on Lemma 3.2 w ith a notice th a t  P  and Q or 

hP and hQ are consistent (w .r.t. the valuations to  be considered).

4.4. Rule of proportion implication

Now we introduce a special rule to  in terpret a feature of linguistic im plication th a t 

may be adopted in several phenomena. To justify th is rule we study some examples.

Let us consider the following assertion: ’if som ething is rare then it is expensive’ is 

’rather true’. We can observe th a t  there exists a proportion between the m eanings of the 

vague concepts in the two parts of the sentence ’if..., th en ...’. This m eans th a t ’if w hat is



rarer, then  it is more expensive’ and ’if w hat is less rare, then it is less expensive’. These 

sentences can be understood to  have the same tru th  degree as the given one does. This 

leads to  the following assertions:’If a thing is very rare, then it is very expensive’ is ’ra ther 

tru e ’ or ’If a th ing is more or less rare then it is more or less expensive’ is ’ra ther tru e ’.

We may give many other examples which describe the analogous situation , e.g. ’If 

somebody is healthy, then  he is able to  work hard ly ’.

It is w irth  to  quote here, as examples, statem ents about experiences of some asian 

nationalities: ’If the farm er has enough w arter resourse and enough fertilizer, then the rice 

will be good’; ’If the parents take care their children carefully, then they will be a good 

boy’; ’If a boy learns actively, then  his results should be good’ and so on. It can be seen 

th a t  these sta tem ents have the same property described above, i.e. the premises and the 

conclusions of these ’if..., th en ...’ sentences involve a proportion meaning relationships. 

Therefore, we shall call th is kind of sentences proportion implications. This implication 

can be viewed as a family of the  im plications of the form a P  —► aQ,  where a is an arb itrary  

string of hedges.

Let proportion im plication be denoted by ~ > . The above observation can be for­

m alized by the following rules of inference.

Rule of proportion im pplication is, then, sta ted  as follows:

(P(x,u) ~ >  Q(x,v),aTrue) (RPI)
(aP(x,  u) —► aQ(x, v),aTrue)

where a and a are strings of hedges, P  and Q are form ulars allowing to  transfer hedges. 

Rule of substitu tion  of individual constant for individual variable

*  1 ^ 4  (RSUB)P(a,u) y ’

where a is an individual constant For convernience in the sequel, we introduce the following 

rule. Rule of equivalence:

P~Q,(F{P),«T)

T m w i  v  {RE)

where F(X)  is a form ular containing X  as a subformular.

V. LINGUISTIC REASONING

The m ain problem  of hum an reasoning is th a t: given a set K  of assertions, which 

facts can be deduced from  if?  This problem  often arises in expert system s or in decision



support systems, where knowledge is represented by rules. We assum e th a t  assertions in 

K  have tru th  degrees expressed by linguistic concepts of ’TVuth’, i.e. of the form  sTrue, 

and they will be called assum ptions.

Now we define a notion of a derivation from K  by means of the rules of inference 

considered in Section 4.

A derivation from if  is a finite sequence of assertions (P i, i l ) , ..., (Pn, tn) such th a t, 

for every * = 1, ...,n, either (Pi, ti) belongs to  K  or (Pi, ti) is obtained from (P I, t l ) , ..., (Pi  —

1,ti — 1) by one of the rules (RT), (RTI1), (RTI2), (R M P), (RM T), (R PI), (RSUB) and 

(RE), i.e. (Pi, ti) is a conclusion of an inference rule, whose antecedents are some of the 

assertions (P i, t l ) , ..., (Pi — 1 , t i  — 1) In this case, (Pn, tn)  is called a consequence of K  and 

denoted by the notation  K b (Pn,tn).

Given K,  we shall denote by C(K)  the set of all consequences of K,  i.e. C(K)  = 

{ ( P , t ) : K h ( P , t ) } .

K  is said to be consistent if there is a valuation v : F P  —* {0,1} such th a t  for every 

(P , t ) e K ,v (P )  = l iff t > W. Such a valuation v is called two-valued if-valuation.

We shall show th a t the definition of consistency of K  is natu ral. Since we allow every 

formular may have several linguistic tru th  values, bu t they all are either greater than  W  

or less than W,  both assertions (P, t) and (P, s), where t ^  s and t > W  and s > W , m ay be 

contained in the same knowledge K.  However if, for example t > W  and s < W , we get an 

absurd. Now, we establish an equivalence relation ~  on the set F P  by induction on the 

length of formulas, which satisfies the following:

(FR1) p(x,hu)  ~  P(x,u)  for any predicate p, hedge h and any term  u.

(FR2) if P  ~  P ' then ->P ~  ^ P '

(FR3) if F  ~  F' ,Q  ~  Q' then PoQ ~  P'oQ', for any two argum ent connectives 

o e  {v , A , — ~> }. Especcially, P  —* Q ~  P ' —* Q'.

Denote by |P | ~  the equivalence class containing P  and by FP^ the set { |P |~  : P  G 

FP}.  Moreover, we have |P |^  =  |->P|~, |P |~ |Q |~  =  |PQ| ~  and |P |^  —► |Q|_ =  |P  -+ Q\„ or 

|P |^  —► |<21~ = |P  ~ >  Q|~. Notice th a t for every P  e  FP, |P | is a form ular of a first order 

predicate language. So, we can regard F P /  ~  as the set of open formulas of a language of 

a classical first order logic.

For t ,s  6 T, we shall write t «  s if either t =  s or t > W  and s > W  or t < W  and 

s < W . Evidently, «  is an equivalence relation and the set of equivalence classes over T  

consists of {|1 |f3 , |W |„, |0 |„ } .

For any two assertions A = (P,t) and A' — (P',t'). A and A' are said to  be equivalent 

if P  ~  P ' and t «  t' and we shall w rite A = A ' .



T he class of all assertions which are equivalent to  A  is denoted by |A|.

Given if ,  denote by i f /  =  the set {|A|W : A e  if}. Note th a t  if i f  is a knowledge, 

then  (P, t) and (P',t ')  €  if, implies t «  Thus if (P, t) G if  then |P | ~  has a unique tru th  

value |i| « ,  if i f  is a kernel of a knowledge, then for |i4|ra €  if» , |A|r, =  111«)-

By i f /  = b c |j4| we understand th a t can be deduced from i f /  =  by m eans of rules 

of inference (RSUB) and (RM P).

T heorem  5.1. K  b A implies that i f /  =b |A| and i f  is consistent iff i f /  =  is consistent.

Proof Let A i , . . , A n be a derivation from if  for A.

If A,  derived from Ai, i < j ,  by one of the rules (R T l) or (RT2), (RT1’) and (RT2’), 

then  it is obvious from the definition of =  th a t \Aj\ — |Ai|.
If Aj  is deduced from  Ai, At, i and I < j ,  by rules (RTI1) or (RTI2) and assume th a t 

Ai is the first antecedent of (R T Il) or (RTI2) then it can be seen th a t  \Aj\ =  |A,|, since 

\hP V h Q =  \PQ\~ and |q/i true 1« =  |aTrue|fc,.

If Aj  is deduced from  A iy where t < j, by rules (R PT ) then evidently \Aj\ = 

(laP fx .u) — aQ(x,  u)|, |l|ca) =  |A*|.

If Aj  is deduced from A^ and Ai, where i , l  < j, by rules (RM P) or (RM T), then it 

can be seen th a t \Aj\ can be deduced from |A;|, \Aj\ by rules modus ponens and modus to 

lens.

Since P  Q, |P | and |Q| are equivalent in the sense of classical firt ordered logic. It 

follows th a t  ( |P |~  -+ |<3|~) A  (|<?|~ —► |P\~) and hence if Ai is derived from Aj , Ai by rule 

(RF) then it can be verified th a t |A*|, |Aj| bc |Aj|.

Let v be a two-valued valuation. Recall th a t 0 and 1 are fixed points, i.e. hO =  0 

and /il =  1 for all h e  H,  therefore from the definition of a valuation, if p(x,hu)  ~  p(x,u)  

then v(p(x,hu)) = t>(p(x, u)). By induction on the length of formulas, it can be seen th a t if 

P  ~  P1 and Q ~  Q' then v(PoQ) = v(P'oQ') = v(P')ov(Q') for any two-argum ent connectives 

o and v(P) =  v(-<P') =  - v (P ' ) .  Thus, it follows th a t every two-valued valuation v induced 

a valuation v„ over F P /  ~  and, hence if if  is consistent then i f /  =  is also consistent in 

the sense of open theory of a first order logic.

Conversly, if is a valuation of i f /  =  such th a t for (|.P|~, |£)«) S i f /  = , «~(|-f>| ~) = 

|t |w, then v^  induces a two-valued valuation v for if. Therefore, if i f /  =  is consistent then 

so is if.

It implies th a t, if i f  is consistent, then both if  b (p,t) and if  b (—>p, s), where t ,s  > W, 

do not hold simultaneously.

T heorem  5.2. Let K be a formal knowledge. Then



(i) If K  (P,t) then t > W

(H) If K  is consistent then so is C(K).

Proof. The statem ent (i) can be proved by the observation th a t  for every A = (Q , s) e  K,  

we have Truth(A) =  s > W  and, it can be cheked th a t all rules of inference preserve the 

property th a t if Truth(Ai) > W  for all premises of a rule of inference, then Truth(B)  > W, 

where B  is the conclusion of th is rule of inference.

(ii) Suppose th a t K  is consistent. As it has been proved above, K /  =  is consistent,

too, and if (P, t) e  C(K)  then K/=  hc (|P |~ , l), i.e. |P |„  belongs to  an open theory T with 

axioms to be the formulas in K /  = . Since K /  =  is consistent so is T  and hence there is 

a model for T, i.e. there exists a valuation v~ such th a t  v~(|P|„J) =  1 for all |P |^  e  T 

(see [RS68]). As shown above, t~  induces a two-valued valuation v for C[K),  i.e. C ( K ) is 

consistent. *

Now, we give some examples to illustrate our m ethod.

Example 1. Let us receive the following information: (i) ”The more healthy a m an is, the 

more efficient he does his job is ’R ather True” and

(ii) "R obert is possibly healthy’ is ’Very True” .

The question is w hat conclusions can we deduce from these informations. In order 

to answer this question we build a derivation as follows: Let us denote the sentence ’x is 

healthy’ by p(x,healthy) and ’x does his or her job  efficiently’ by q(x,efficiently).

(I) (p(Robert,possibly healthy),Very True) , (by the assum pton);

(2) (p(Robert,very possibly healthy),True), (byRule(RT));

(3) (p(x,healthy) ~ >  q(x,efficiently),Rather True), (by the assum ption);

(4) (very possibly p(R obert,healthy) —* very possibly q(Robert,efficiently), R ather 

True), (by Rule (RPI1));

(5) (very possibly q(R obertefficiently), R ather True),(by Rule (RM P));

(6) (q(Robert,very possibly efficiently),Rather True),(by Rule (RE));

(7) (q(Robert,possibly efficiently),Rather Very True),(by Rule (RT));

(8) (q(Robert,efficiently),Rather Very Possibly True),(by Rule (RT)).

Example 2. In th is example we shall show th a t  although hedges in concaternetion seem 

to be difficult to  understand in practice, bu t it is im portan t in our m ethod to  represent 

the degree of the reliability of fuzzy sentences.E.g. suppose th a t we receive, in addition, 

another more information: (iii) ’’Roll is healthy’ is ’more possibly True” . By a sim ilar 

derivation as in Example 1 above, we obtain:

(9) (q(Roll,efficiently),Rather More Possibly True).



From (8) and (9), it follows th a t R obert does his job b e tte r than  Roll, since ’R ather 

M ore Possibly T rue’ is less than  ’R ather Very Possibly True’.

E xam ple 3. We consider now a more com plicated example. Les us receive the following 

informations:

(i) ’If a studen t work hardly and his university is authorized, then he will be a good 

employee’ is ’tru e ’;

(ii) ’The University where R obert studies is very authorized’ is ’possibly tru e ’;

(iii) ’R obert is studying very ha rd ’.

The question is w hat conclusions can be deduced from these informations? Denote by 

p(a ,hard) the sentence ’x works h a rd ’, by q(U (x),authorized)- the sentence ’the university 

of x is au thorized’ and by r(x,good) the sentence ’x is a good employee’. Then we can 

construct the folllowing derivation:

1) (q(U (R obert),very authorized),Possibly True), (by assum ption);

2) (q(U (R obert),possibly very authorized),True), (by Rule (RT)); '

3) (p (U (R obert),ra ther hard),T rue),(by the assum ption);

4) (p(x,hardly) A q(U (x),authorized) —» r(x,good),True), (by the assum ption);

5) (q(U (x),authorized) ~ >  (p(x,hardly) —> r(x,good)),True), (by Rule (RE))

6) (Possibly very q(U (R obert), autherized —♦ Possibly V ery(p(Robert), ra ther hard)

—► r(R obert,good)),T rue), ( 5) Rule (R PI),(R PI) and rule (RSUB)

7) (Possibly V ery(p(R obert,rather hard) —► r(R obert,good)),T rue), ( 2), 6) and Rule 

(R M P));

8) ((p (R obert,ra ther hard) —* r(R obert,good),Possibly Very True), ( 7) and R ule(R T’l))

9) (p (R obert,ra ther h a rd )—* p(R obert,rather good),Poss Very True), ( 8) and Rule(RPI)

10) ( r(R o b ert,ra th e r good),Poss Very True), ((3), 9) ,Rule(RM P));

11) r(R obert,Poss Very R ather good),True), ( 10), Rule(RT));

It is w orth to  mention th a t  Q —» (P —► Q) and P —* [Q —» R) are requivalent for­

m ular ,however if we use the la tte r  instead of the first one occuring in 5) then we shall 

obtain (r(Robert, Rat her Poss Very good),True),the  tru th  degree of which is different from 

th a t  of the assertion in 11). This shows th a t, the ordering of ^ubformular p(x, hardly) and 

q(U(x), authorized) is im portan t, although they are equivalent in our semantics by Rule 

(R E). The au tho r thinks th a t  the ordering of these subformulars in descending of their 

im portance degree, i.e. subform ular p(x,hardly) has a im portance degrees greater than  

th a t of q(U (x),authorized), is appropriate to  our intuition. Thus, we consider the assertion- 

11) is b e tte r  th an  the above one.

Conclusion: In th is paper we have tried to  give an approach to  hum an reasoning



by means of deductive systems, we consider the knowledge of every person as a set of

sentences associated w ith certain, linguistic belief degrees and believe th a t  one can derive
. *. . . .  .a conclusion- from  its knowledge in. a similar way as th a t based on classical logic. In order

to realise this, we have first constructed m athem atical s tructu re  of tru th  linguistic value, 

the ordering relation-of which can be determ ined by their na tu ra l meaning.

The research^was supported in p a rt by the V ietnam  National Fundam ental on. N at­

ural Sciences.
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