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S u m m a ry . In th is paper, we give a proof of proposition  considered in privious one and s tu d y  an optim al 
ad ap tiv e  control.

I. -  PR O O F OF P R O P O S IT IO N

From (116) the tim es-derivative E  can be w ritten as

Ẻ  =  pT Lp +  pT Lp +  2qT Mq

or, w ith (1.1-5-1)

Ê  =  p t (á Ị L +  L A c) p  +  qT vbT Lp  + p T L b vT q + 2 qT M q  (1.18)

Since

pT [LbvTq) =  (LbvT q)Tp or pTLbvT q =  qT bvbT Lp

then  (18) becomes

£' =  pt (4 T L +  LAc)p + 2qT (vbTLp +Mq).  (1.19)

For the condition

q = - Q ~ 1vbT Pp

we have

vbTP p + Q q  = 0. (1-20)

Choosing the m atrices L =  p, M  = Q, and according to  (1.20), from  (1.19) we obtain

É  = pT ( A Ị P + P A c)p. (1.21)

To show th a t  Ac is Hurwitz, let n-vector p Ỷ  0 and some A satisfy Acp = Xp. Therefore [10]

pT {Á£p  +  P A c)p — 2pTPpKe  A



or, with (1.21)

E = 2 p r PpRe\  (1.22)

Since pTPp > 0 , according to (1.22) we have E  < 0, as expected (1.17), if and only if the 

matrix Ac is Hurwitz, i.e. if and only if ReA < 0. In the case, there is always

E  < 0 (1.23)

for p #  0, and

E  = pT {ATc P + P A c)p. (1.24)

With (1.23), the extensive Lyapunov positive definite energy E  is a nondecreasing function

of time which is bounded below and hence converges to  some finite value Eqo- Then

according to (1-24) lim f* Edt  =  EOq-E(0 )  is a finite num ber and E  is uniformly continuous

since.p and hence E  is bounded. Hence by B arba la t’s lemma [8] lim E  =  0, or, w ith  (1.24),t—►(»
we have lim pT (A ^P  + P A c)p = 0, therefore,

t —+  O O

lim-p =  0. (1-25)
t  — * OO

According to  (1.25) also by B arba la t’s lemma [8] l imp = 0. W ith this result and w ith 

(1.25), from (1.15-1)

p = Acp + bvT q (1-26)

we can obtain

lim q == 0 (1-27)
t —+  OO

From given results (1-25) and (1-26) it is seen th a t the control plant

p =  Acp + B[e) vw + za (1-28)

or the dynamic centralized process (126) in the condition

q = —Q~l vbTPp (1-29)

is asymptotically stable about zero in an extended s ta te  space {p, q}, if and only if m atrix  

Ac is Hurwitz. Proposition has been proved.



The condition for a stability (1 29) is called the dynamic association equation of 

the process (1.26). After the dynamic association equation, the condition for the sta te  

inveriance of the plant can be formed as a s ta te  invariance of the plant with its centralized 

dynamic process (1-26) in the condition (1.29) is called the dynamic association equation 

of the process will be derived, if( 1.27) occurs.

Actually, with (1.27) by B arba la t’s lemma [8] we have

h m  4 = 0. (1.30)
t — ► o o

According to this given result from the condition (1-29) we obtain (1-25) which implies 

the sta te  invariance of the plant.

Thus, the control w in the system (1.28) can be defined according to the conditions

(1.27) we have (1.30) and (1.29). For the system (1.28) its control w defined so th a t the

conditions (1.29) and (1.30) are always satisfied and is called the adaptive algorithm . I-n

this case the dynamic process (1.28) is said to be adaptive control process which will be

able to guanrantee the sta te  invariance of the given plant

x =  A,.x -r B.m  + z K (1-31)

although there is the variance in its work condition.

Proposition 3. I f  there is asymptotic stability of the dynamic diametral process (1-26) and 

(1.29) about zero in the extended state space {p,q} then the state invariance of the plant with its 

dynamic centralized system (1-28) will be derived. And on the contrary.

Actually, there is asym ptotic stability of the process (1.26), (1.29) about zero in the 

sta te  space {p,?}, i.e. there are (1-25) and (1.27), then, according to proposition 1, after 

the dynam ic association equation, e ( 1.25) and ( 1.27) prove the sta te  invariance of the 

given plant.

On the contrary, the sta te  invariance of the plant with its dynamic centralized system

(1.28) is derived, i.e. (1-25) occurs, then by B arbalat’s lemma [8] we have l im p  = 0 . W ith 

thi result and w ith (1.33) from (1.32) it implies (1-28) or, with (1.12),

fcvr $J/'* A(?fl =  2.,

(tu + A&(,) = q

from (1.26) we can obtain (1.27). This given result and (1.25) prove th a t there is asym p­

totic satbility of the process (1.26) and (1.29) about zero in its sta te  space {p,g}.



R em ark. If there is the sta te  invariance of the plant, i.e. there is (1.25), then there 

will be asym ptotic stability  of the diam etral process about zero in the s ta te  space {p, 9},

i.e. there will be (127 ). Thus, in the case when

if there is the s ta te  invariance of the plant then the vector - w will be p lant param eter 

error estim ation vector

For the given p lan t each adaptive control system is constructed according to  the 

concrete adaptive algorithm . And an Lena-K um pati adaptive algorithm  m ust be defined 

according to  the m ain aim of the adaptive control process. It is the sta te  invariance of the 

given plant or the condition for the its sta te  invariance.

II.1. An op tim al adap tive  control.

The plant s ta te  invariance requirem ent (1-25) means th a t  there exists such great tc 

«nough th a t with t > tc there is always p =  0 . Therefore,

In this case the control w of the process (1.28) can be optimized and it usuably [l],[2],[4],[5],[9] 

must minimize the Craxovski general work functional

X

u
A z  =  0,

—w — A9, t > tc

with the great enough tc.

II. -  TH E  STATE IN V A R IA N C E A D A P T IV E  C O N TR O L

V  =  pT Pp, t > tc (2.1)

where K  is some positive definite lx  1-matrix

(2.2)

Wc = i£)[p(ic)ty(ic)].

According to  the Belman dynamic program  procedure the extensive kinetic quantity  A of 

the process is defined by



Introduce (2.2) into (2.3) to obtain

AJ = pT Ppdt. (2-4)

Then, with (2.1), (2.2) and (2.4) the Ham iltonian for this process

rp dJ
H  = A p +  — —  

dp

has the shape

r tc i
H = (  pT P dt)(Acp + Bj.a  ̂vui + z , ) ---- (pT Pp + wT Kw).  (2-5)

Jt 2

The optim al control w is defined as the solution of the Hamilton equation

3J
~ °

or, w ith (2.5)

( J  pT P d t)B {(0)v - W t K  =  0

therefore

w = K - 1{B tce)v)T P  j \ d t  (2.6)

Since the Lena-K um pati adaptive algorithm  has to be defined on the basic of the condition 

for s ta te  invariance of the p lan t, therefore according to  (2.6), w ith (129) and (1.30), the 

optim al adaptive algorithm  can be established as following.

The control w in the dynamic centralized process (1.28) of the plant (1.31) defined 

by (1.26), (1.29) and

w = K - ^ B ^ v f P  pdt (2.7)

is called the optim al adaptive algorithm  if there exist some positive defined m atrices P, Q 

and K  such th a t the s ta te  invariance of the given plant is derived although there is the 

variance in its work condition.

In the case, when the extensive Craxovski general work functional

1 f tc
^  ~  o I iPTPp ^  wTKw)dt  +  wc (2.2*)

2 J t



is examined instead of the functional (2.3), w ith extensive kinetic quantity  A defined by

r  dJ  d J  dq , .
x = a i  + ^ r P (2'3*>

and with
dq
dp

then the Lena-K um pati optim al adaptive algorithm  has the shape (1.26), (1.29) and

w = K - ^ B ^ v ) 7, J  ( P p + R T Qq)dt (2.7*).

R = —Q~1vbT P

II.2. The extensive gradient adaptive algorithm

For given dynam ic centralized process (1.28) of the p lan t (1.31)

x — Acx +  Bcu +  ze

find the control w which has to  guarantee the s ta te  invariance of given plant.

Find it on the basic of the condition for the s ta te  invariance (1.27), (1.29) of the 

plant.

According to  first condition (1.29) for the p lan t invariance (1.27), i.e. according to

lim W = 0, (2.8)t-> oo v ’

where W  is extensive p a rt of Lyapunov energy of extended diam etral process, and

W  =  qT Qq, (2.9)

we can search for such control w which m ust minimize this energy W . The by the gradient 

principle [4,5], the control w can be defined by

^  = - j ( g r a d ^ W ) T (2.10)

where K  is some diagonal positive definite lx l-m atrix .

Introduce (2.9) into (2.10) to  obtain



or

w = - K R TQq, (2.11)

noting

p -  =  R .  (2 . 12 )aw
If the f.,:iction q is continuous and differentiable then from second condition (1.29-2) for 

p lan t s ta te  invariance we can write

L (i q)= - Q ~ l ° i T  pZ
= - Q ~ l vbTp?JP-

dt du) dw
or, noting

J T  =  S  (2 . 13)aw
and w ith (2 .12)

R — —Q~l vbT PS.  - ( 2 . 14)

If the function p is continuous and differentiable then from dynamic centralized equation

(1.28) of the given plant, we can write

a - ( 4 )  = ^ | £ + B i « v
v [dtg) cdw c v

t ,P -  = A ' T -  + bat dw dw
or, w ith (2.13),

S = ACS +  B {c0)v. (2.15)

According to  given results (2.11), (2.14) and (2.15), extensive gradient adaptive algorithm  

can be establish as (1-28) of the plant (1.31) defined by

w =  —K R T Qq, 

p = Acp +  bvT q

q = —Q~1vbT Pp (2.16)

R = - Q ~ 1vbT PS  

S = ACS + B[e)v,

is called the extensive gradient adaptive algorithm  if there exist some positive definite 

m atrices P, Q and K  such th a t the s ta te  invariance of given plant is derived although 

there is the invariance in its condition.
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W ith (2.16), from (1.12-1) the formula for the design can be obtained as

Bc<P = B^vxv  

w =  - K R T Qq, 

p =  A cp + bvT q 

q =  — Q ~ 1vbT Pp  

R =  - Q ~ 1vbT P S  

S  =  A CS +  B ^ v ,

Thus treating  centralized sta te  equation of the plant and the condition for its s ta te  in­

variance the Lena-K um pati adaptive algorithm s have been established any model of given 

plant.

III. -  C O N C LU SIO N

In this paper the adaptive property of the control p lan t is characterized by new 

equation - the dynamic association equation to  the dynamic centralized process of the 

plant. This equation is obtained analyzing conditions which have to be satisfied for the  

Lyapunov’s stability theory to be successfully applied to  adaptive control system. And 

conditions which have to be satisfied for the Lena-K um pati adaptability idea are estab­

lished.

Analyzing these conditions for the adaptability  and treating dynamic centralized 

and association equations of the plant, the adaptive algorithm s wich allow to construct 

the adaptive control systems which can guarantee the sta te  invariance of the p lan t and 

therefore stabilized its dynamic adaptive process, th a t has been shown by proposition 3, 

although there is the variance in its work condition, are established.

The sim ulating results correspond to  theoretical claims.
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