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ON THE METHOD OF STATE INVARIANCE
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Summary. In this paper, we give a proof of proposition considered in privious one and study an optimal

adaptive control.

1. —‘PROOF OF PROPOSITION
From (1.18) the times-derivative E can be written as
E=pTLp+pTLp+2¢" Mg
or, with (1.15-1)
E=pT(ATL+ LA)p+ q" vbT Lp + p7 LbvT g + 2¢T M§

Since
pT (LbvTq) = (LbvTq)Tp or pT LbwTq = qTbubT Lp
then (18) becomes

E=pT(ATL+ LA)p + 247 (vbT Lp + M).

For the condition
§=-Q 'wbTPp

we have

vbT Pp+ Q4 = 0.

(1.18)

(1.19)

(1.20)

Choosing the matrices L = P, M = Q, and according to (1.20), from (1.19) we obtain

E = pT(ATP + PA,)p.

(1.21)

To show that A. is Hurwitz, let n-vector p # 0 and some X satisfy A.p = Ap. Therefore [10]

pT (AT P + PA.)p = 2pT PpRe )
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or, with (1.21)
E = 2pT PpRe) (1.22)

Since pT Pp > 0, according to (1.22) we have E < 0, as expected (1.17), if and only if the

matrix A, is Hurwitz, i.e. if and only if ReX < 0. In the case, there is always
E<0 (1.23)
for p # 0, and
E=pT(ATP+ PA.)p. (1.24)

With (1.23), the extensive Lyapunov positive definite energy E is a nondecreasing function
of time which is bounded below and hence converges to some finite value Ego. Then
according to (1. 24) lim f{: Edt = Eoo—E(0) is a finite number and E is uniformly continuous
since.p and hence E’ is bounded Hence by Barbalat’s lemma [8] lzm E =0, or, with (1.24),
we have lzmp (ATP + PA.)p = 0, therefore,

limp=0. (1.25)

t— oo

According to (1.25) also by Barbalat’s lemma [8] Jimp = 0. With this result and with
(1.25), from (1.15-1)

>

p=Ap+bTq (1.26)
we can obtain
tlir?oq =0 (1.27)

From given results (1.25) and (1.26) it is seen-that the control plant
p=Acp+ B vw + 2, | (1.28)
or the dynamic centralized process (1.26) in the condition
§=-Q 'vb" Pp (1.29)

is asymptotically stable about zero in an extended state space {p, ¢}, if and only if matrix

A, is Hurwitz. Proposition has been proved.



42 . NGUYEN CANH ToaN & Do VAN LAP

The condition for a stability (1.29) is called the dynamic association equation of
the process (1.26). After the dynamic association equation, the condition for the state
mveriance of the plant can be formed as a state invariance of the plant with its centralized
dynamic process (1.26) in the condition (1.29) is called the dynamic association equation

of the process will be derived, if(1.27) occurs.

Actually, with (1.27) by Barbalat’s lemma [8] we have
lim=0. (1.30)

According to this given result from the condition (1.29) we obtain (1.25) which implies
the state invariance of the plant.

Thus, the control w in the system (1.28) can be defined according to the conditions
(1.27) we have (1.30) and (1.29). For the system (1.28) its control w defined so that the
conditions (1.29) and (1.30) are always satisfied and is called the adaptive algorithm. In
this case the dynamic process (1.28) is said to be adaptive control process which will be

able to guanrantee the state invariance of the given plant
Z=A.z+ Bu+ 2, . (1.31)

although there is the variance in its work condition.

Proposition 3. If there is asymptotic stability of the dynamic diametral process (1.26) and
(1.29) about zero in the extended state space {p,q} then the state invariance of the plant with its

dynamic centralized system (1.28) will be derived. And on the contrary.

Actually, there is asymptotic stability of the process (1.26), (1.29) about zero in the
state space {p,q}, i.e. there are (1.25) and (1.27), then, according to proposition 1, after
the dynamic association equation, e (1.25) and (1.27) prove the state invariance of the

given plant.

On the contrary, the state invariance of the plant with its dynamic centralized system
(1.28) is derived, i.e. (1.25) occurs, then by Barbalat’s lemma [8] we have Jlimp=0. With
thi result and with /1.33) from (1.32) it implies (1.28) or, with (1.12),

T L AG, = 2,
q>i.”) (w + Aon) =q
from (1.26) we can obtain (1.27). This given result and (1.25) prove that there is asymp-
totic satbility of the process (1.26) and (1.29) about zero in its state space {p,q}.
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Remark. If there is the state invariance of the plant, i.e. there is (1.25), then there
will be asymptotic stability of the diametral process about zero in the state space {p, g},
i.e. there will be (1.27). Thus, in the case when '

B=(4,8),
[
Az=0,

if there is the state invariance of the plant then the vector - w will be plant parameter
error estimation vector

—w=Af, t >t

with the great enough ¢,.

II..— THE STATE INVARIANCE ADAPTIVE CONTROL

For the given plant each adaptive control system is constructed according to the
concrete adaptive algorithm. And an Lena-Kumpati adaptive algorithm must be defined
‘according to the main aim of the adaptive control process. It is the state invariance of the

given plant or the condition for the its state invariance.

II.1. An optimal adaptive control.
The plant state invariance requirement (1.25) means that there exists such great ¢,
enough that with ¢ > ¢, there is always p = 0. Therefore,

V=p'Ppt>t - (2.1)

In this case the control w of the process (1.28) can be optimized and it usuably [1],[2],[4],(5],9]

must minimize the Craxovski general work functional

te
J=5 [ 6T Pr+uT Ku)dt +w, (22)
t

where K is some positive definite Ixl-matrix
W, = w|p(t)w(t.)).

According to the Belman dynamic program procedure the extensive kinetic quantity A of

the process is defined by

aJ
T __
=3 , (2.3)
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Introduce (2.2) into (2.3) to obtain

te
2T = / p? Ppdt. (2.4)
t .

Then, with (2.1), (2.2) and (2.4) the Hamiltonian for this process

aJ
H=Xp+ =
dp
has the shape
te 1
H= (/ pT Pdt)(A.p + B vw + 2,) — E(pTPp + wT Kw). (2.5)
t

The optimal control w is defined as the solution of the Hamilton equation

o,
dw
or, with (2.5)

te -
(/ pTPdt)B" vy —WTK =0
t

therefore

w=K"YBy)TP / * pdt (2.6)
t
Since the Lena-Kumpati adaptive algorithm has to be defined on the basic of the condition
for state invariance of the plant, therefore according to (2.6), with (1.29) and (1.30), the
optimal adaptive algorithm can be established as following.
The control w in the dynamic centralized process (1.28) of the plant (1.31) defined
by (1.26), (1.29) and '

t.
w= K—I(Bi”)v)TP/ pdt (2.7
t
is called the optimal adaptive algorithm if there exist some positive defined matrices P, Q
and K such that the state invariance of the given plant is derived although there is the
variance in its work condition. ‘

In the case, when the extensive Craxovski general work functional

1 [t
J= 2 / (T Pp + wT Kw)dt + w, _ (2.2%)
t ;
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is examined instead of the functional (2.3), with extensive kinetic quantity A defined by

_ o, 2J5g

T
At = 3 + 34 3p (2.3%)

and with
%
dp

then the Lena-Kumpati optimal adaptive algorithm has the shape (1.26), (1.29) and

tl_‘
w= K" }Bv)T / (Pp+ RT Qq)dt (2.74).
t

R=-Q TP

I1.2. The extensive gradient adaptive algorithm
For given dynamic centralized process (1.28) of the plant (1.31)
T = A.x+ Bou+ 2z,

find the control w which has to guarantee the state invariance of given plant.

Find it on the basic of the condition for the state invariance (1.27), (1.29) of the
piant.
According to first condition (1.29) for the plant invariance (1.27), i.e. according to

kimW =0, (2.8)

t— oo

where W is extensive part of Lyapunov energy of extended diametral process, and

W= qu: (2'9)

we can search for such control w which must minimize this energy W. The by the gradient

principle [4,5], the control w can be defined by

dw K
Tl ——2—(grad('”)W)T : (2.10)

where K is some diagonal positive definite 1xl-matrix.
Introduce (2.9) into (2.10) to obtain

. d
=K Qz0)"
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or
w=—KRTQq, (2.11)

noting

dq
dw

If the f.uction q is cintinuous and differentiable then from second condition (1.29-2) for

(2.12)

plant state invariance we can write

8 d. .1,
gulzd) = QW Py,
Gow - 9 PG,
or, noting .
g_z y (2.13)
and with (2.12)
R=—-Q 'ubTPS. (2.14)

If the function p is continuous and differentiable then from dynamic centralized equation

(1.28) of the given plant, we can write

d d dp
Z (=) = A -2 4+ B9
5o @l = Aegy, T B
d dq dp
ki SN Sl Ry 10
Gow - Aegy TET
or, with (2.13),
S =A.S+ B9y, (2.15)

According to given results (2.11), (2.14) and (2.15), extensive gradient adaptive algorithm
can be establish as (1.28) of the plant (1.31) defined by
w=—KRTQq,
p=Acp+bvTg
¢g=-Q twbTPp (2.16)
R=-Q 'uPS
S = A.S+ B,
is called the extensive gradient adaptive algorithm if there exist some positive definite

matrices P, @ and K such that the state invariance of given plant is derived although

there is the invariance in its condition.
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With (2.16), from (1.12-1) the formula for the design can be obtained as

Bep = Bio)uw
v =—KR'Qq,
p=App+ vaq
§=-Q 'wT Pp
R=—-Q 'uTPS
S = A.S + Bio)u,

Thus treating centralized state equation of the plant and the condition for its state in-
variance the Lena-Kumpati adaptive algorithms have been established any model of given

plant.

III. - CONCLUSION

In this paper the adaptive property of the control plant is characterized by new
equation - the dynamic association equation to the dynamic centralized process of the
plant. This equation is obtained analyzing conditions which have to be satisfied for the
Lyapunov’s stability theory to be successfully applied to adaptive control system. And
conditions which have to be satisfied for the Lena-Kumpati adaptability idea are estab-

lished.

-

Analyzing these conditions for the adaptability and treating dynamic centralized
and association equations of the plant, the adaptive algorithms wich allow to construct
the adaptive control systems which can guarantee the state invariance of the plant and
therefore stabilized its dynamic adaptive process, that has been shown by proposition 3,
although there is the variance in its work condition, are established.

The simulating results correspond to theoretical claims.
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