
ACCELERATED METHOD FOR SOLVING GRID EQUATIONS

Su m m a ry .  In th is p ap er following the  p aram etric  ext rapo lation  technique [l] we consider th e  case when the  
s ta rtin g  o p erato r is sp lit into th e  sum  of th ree  operators. A resu lt on estim a tin g  ite ra tio n  num bers needed 
for solving th e  p e rtu rb ed  problem  is ob tained. Finally, th e  advantage of ou r m ethod  over th e  d irec t use of 
the  a lte rn a tin g  d irections m ethod  is shown on exam ples.

This paper is a continuation of [l], in which the theoretical bacground of the accel­

erated method by parametric extrapolation was elaborated and the case of splitting the 

operator R into the sum of two operators was invest igated. Here we consider the case when 

R is split into the sum of three symmetric and commute operators. This case encounters 

in solving boundary value problems for elliptic equations irf three-dimensional domains. 

For convenience all the formulas in the paper are numbered anew.

Thus, we assume that

Assume also that after discretization of a differential problem on a grid with stepsize h we 

obtain the operator equation

II (3-D CASE)
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R  — R I “b R-2 “Ỉ“ ^ 3  J Rị  J ^ ) 3 — 1 J 2 , 3 ,

ỏtE < Ri = R* < A iE, ỏi > 0 , i =  1 , 2 , 3. (1)

(2)

with A = A* > 6E 

We put

A€ = A + eP. ( 3 )

We construct the operator B, energetic equivalent to As in the form

B = (E + uìR^ịE +  ujR2)(E +  cúR3). ( 4 )

The parameter w will be found so that the ratio of the energetic equivalent coefficients of 

B and Aw is maximal. As in the cases 1 & 2 [1] we set u> = a^/s and seek a.



Lemma. A s s u m e  that

and

Then

i) i f  a e  A, where

we  have  

where

C i R  < A < C2R  (5)

s < C 2Ly / h / C 2. (6)

71-4* < B  < 7 2 Ac, (8)

s Co
71 =  ; ; c _ 2 . 72 =l + i5a2' a^/e

Hence the  ra t io  o f  the energet ic  equivalent  coefficients o f  B  and A e is

£( \ _  7 i _  5ay/i . .
. 7 2  C2( l  + Sa‘2)

ii) i f  excep t  (6) e addi t ional l y  satisfies the condition

c2
e < min 6h),

0
( 10) •

then  in the case

h < C i / S 2 (1 1 )

the  ra t io  £(a) reaches m a x im u m  at a = a =  1 /V5 and we have

o 6 o C 2V 6
7 i = 7 i = 2 >  7 2  =  ^  =  -7 ^

0 y/J~e
i  = ^  = i = l c 2 '

Hi) i f  (11) is n o t  sat isf ied then £(a) reaches m a x im u m  when  a = a = h1/4/^/^,  and  

we have

,I2)

Proof .  The estimate (8 ) is obtained in the same way as in Lemma 3.1 of [1 ], Thus, if (6 ) 

and (7) are satisfied then we have (9).



From the fact that

maxip(a) =  <p[a)
« > 0

follows the assertion ii) of the lemma.

Finally, notice that a — /i1/4/\fGz  < a and a £ A. From the property of monotone 

increase of the function <p{a) in (0 , o) we obtain the assertion iii) of the lemma.

Now for solving the perturbed equation

yi°* is given. Here B is defined by (4) in which u =  a^fs and a is given by the above lemma. 

From the theory of two-layer iterative processes in [4] we get the following result.

Theorem. A s s u m e  tha t  c is chosen so  tha t  (6) and  (10) are valid. Then

i) i f  h satisfies (11) and a =  a then the process  (14) wi th  the C h eb y s e v  collec­

tion o f  p aram e te rs  {rfc+1} cons truc ted  by  and  7 2  reaches the  re la t ive  accuracy 6, 

tha t  is,

Aeus = f, (13)

where Ae has the form (3) we use the iterative process

(14)

||y!fe+1) -  «*|| < 6 ||t^0) -  ueII

after nc(8) i terat ions

nM =  i i ^ / ( \ / J ( S e ) 1/4).

For the s ta t ionary  i t era t i ve  process  wi th

to reach the relat ive  accuracy 6 i t  is needed  nd(0) i terat ions



ii) in the case i f  (11) is no t  satisfied,  wi th the selection

a =  a == h ^ / V c ;

the numbers  o f  i terat ions are e s t im a te d  as follows:

- for the i t e ra t i ve  process  wi th  the Chebyshev  parameters

(0 ) = ln^/ i  ĩ ự l ) ,

- for the s ta t io n a r y  i t e ra t i ve  process

nd( d)= l n 2- /{2 l) ,

where  £ is given by  (12).

Example 1 . Consider the Dirichlet problem for the oisson equation in the unitary cub 

n = {x, 0  < xu < 1 , a = 1 , 2 ,3.} with boundary F

We approximate this problem by the difference scheme on the grid a>, defined as in Example

A y  2 /J in  V x 2 f { X ) t  X  (E OJ,

y\i  =  o.
The operators R, Ra are defined as follows

R = A ,  R„y = - y z aXa, a = 1 ,2 ,3 .

The values of quantities C±, C2 in the Lemma and Theorem above are

Cx = C2 =  1, 5 = 24.

The parameter in the Theorem should be e < m in(l/24,24/i,y/h).

If h < 1/576 then ( l 1.) is satisfied. We choose e =  24h, a =  l/\/24 . Then we have £ = 1 2 y/h. 

Hence

d2u d 2u d 2u
) = ỉ {x),  I Ễ Í 1 ,

u|r — 0 .

3.1 [1]

nc(e) = In l / iựÃEh1/4)
u

n,i{e) =  ln^/(24/i1/2). (15)



24/i3/4

Hence

nc(B) =  ( 1  + 24/l1/2)1/2ln^/(4v/6/*3/8),0

nd(9) =  ( 1  + 24fe1/2)1/2ln?/(48/l3/ 4).
7

(16)

Notice that in [2] it was shown that for solving Dirichlet problem for the Poisson equation 

in unitary cub with the relative accuracy 0 they need perform n iterations

Of course, here we have in mind the alternating directions method (ADM) with the Cheby- 

shev collection of parameters.

From (15)-(17) we see the apparent advantage of our parametric extrapolation tech­

nique over the direct use of ADM.

Below we give some more example for the application of our technique.

Example 2 . Consider the first boundary value problem for the Lame equation in the 

elasticity theory

Here ft and T are the same as in Example 1, u = (u^u 2 , « 3 ) 7  is the displacement vector, 

/  = ( / x, f 2, f 3)T the body strength vector, A and /x are the Lame constants.

Usually, the problem (18) is approximated by the difference scheme (see [2-4])

n = nc(d) = 0 ( \n ± /h V i ). (17)

juAu + (À -I- /¿)grad div(u) + f  =  0, x e  ft,

u = <?(x), x e r. (18)

3 3

(Ay)'" = - » Y u  -  °-5(A + m) + yf,*.) =  f s{x), * e  wh,

where y — (y1, y2, y3)T is a grid vector-function to be sought.

After eliminating the boundary condition on 7 /, we can rewrite (19) in the form



where is the space of grid vector-functions defined in A is the operator, which 

coincides with A on the set of grid vector-functions equal to zero on 7 .̂

Introduce the operator R, Ra by the formulas

3

Ry = ~  ^  '  yxaxa J RtlV = I a  =  1, 2, 3.
0  =  1

Then we have C ^R  < A < C2R  with Ci  =  fi, C2 = A +  2/z. We have also 6 =  24.. Follow­

ing the Theorem we get the estimates for iteration numbers for the perturbed equation 

corresponding to (20), which are like to those in Example 1.
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