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STABILITY OF THE PRINCIPLES OF MINIMAL
SPECIFICITY AND MAXIMAL BUOANCY

DO VAN THANH*

Abstract. The aim of this paper is to investigate an use of the f;’rﬁ;&?ﬁl_gs of minimal .
Specificity and maximal Buoancy (MB) proposed by R.R. Yager and to introduce some
conditions of a set of ‘possibility distributions and weights which guarantee uniqueness of
possibility distribution selected by the use of these principles from a given set of distribu-
tions.
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1. INTRODUCTION

In the theory of approximate reasoning (quantitative and qualitative) possi-
bility distributions play an important and central role (see [2, 3, 14]). There exist
many situations in which we need a determination of the approximate possibility
distribution from the use of other possibility distributions. The most often used
techniques for handling these problems are the principles of minimal Specifici-
ty (mS) for quantitative possibility distributions (qpd) and of maximal Buoancy
(MB) for qualitative possibility distributions (Qpd) (see [14]).

The concept of specificity of qpds was originally introduced by R.R. Yager
[9-13], D. Dubois and H. Prade [2-4], and A.J. Ramer [5-6],.... The principle of
mS is used at least for two classes of following problems (see [14]):

1) In the first class, it must select a possibility value independently for each
z in a set B (in general, B is a set of all atoms of a Boolean algebra or is a set
of possible wolds induced from the set of sentences in propositional language) if
these values are given individual bounds on the elements of B.

In this case, it is simple to select the highest possibility value for each z in
B, then we will get a least specificity distribution from the set of all possible
possibility distributions on B.

2) In the second class, let there be given a set of m possibility distributions
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{71, 72, ..., Tm}, we must pick one of these distributions satisfying some condi-
tions.

Here the use of the principle of mS is to select from these distributions a
possibility distribution that minimizes the chosen specificity measure.

Similarly, let have a quasi-ordering on the finite set B, then there are many
weak orderings that complete this quasi ordering. A proposed problem is to select
a unique weak ordering (Qpd), that is the completion of this quasi ordering.

The use of the principle of MB for weak orderings is in the same spirit as the
use of the principle of mS for qpds, this is to select a weak ordering that maximizes
the chosen Buoancy measure.

We know that under these principles, a selected quantitative or qualitative
possibility distribution depends on weights of the Specificity or Buoancy measure,
respectively. In more detail, a possibility distribution was selected by the use of
principle of mS (or MB) with chosen weights, can not be selected by the use of this
principle with other weights. In other words, a possibility distribution selected by
using one of these principles depends on individual opinions.

Two following problems have arisen: -

1) Which conditions must m given possibility distributions satisfy such that
there exists a possibility distribution that 1s always selected from these distributions
by the use of the principle of mS (or MB). (1)

2) For m given-possibility distributions, which additional conditions must weights
of Specificity measure (Buoancy measure) satisfy such that there exists a possibil-
ity distribution that 1s always selected from these distributions by the use of the
principle of mS (or MB) with any weights satisfying these conditions? (2)

The aim of this paper is to propose a use of these principles, this is to use
simutalneously both the principles-of mS and of MB for selecting one from given
quantitative possibility distributions, and to give a part of answer of the questions
above. !

This paper is structured as follows: after introducing some background con-
cepts in Section 2, in Section 3 we will explain why we propose a use simutalneous-
ly of the principles of mS and of MB for to select one from m given quantitative
possibility distributions. In sections 4, 5 we will introduce concepts of MB-stable,
T-MB-stable, mS-stable, T-mS-stable of a set of possibility distributions and point
out some conditions for these stability sorts.

2. PRELIMINARIES

Assume A is a Boolean algebra with maximal and minimal elements I, ©.
Non minimal element z* in A is an atom (see [14]) of Boolean algebra A if and
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only if for every y in A either z* Ay =z* or z* Ay = O.

Let B = {b;, by,..., by} be the set of all atoms of A, then for any element z
in A, there exists an unique subset B, or B such that z = vy, y € B, (see [7]).

A quantitative possibility measure (qpm) is a mapping II from A into [0, 1]
such that

1) I(©) =0;

2) I(I)=1;"

3) I(a, b) = max(II(a), II(b)) for all a, b of A.

A quantitative possibility distribution (qpd) 7 is mapping from the set of all
atoms of A into [0,1], i.e., 7 : B — [0,1], m is called normalized possibility
distribution if there exists at least one element z* in B such that 7(z*) = 1.

A qualitative posstbility measure on A (Qpm) is an ordering relation S (where
aSb means a is at least as possible as b) satisfying the following conditions:

1) zSy or ySz for all z, y of A;

2) if zSy and ySz then zSz for all z, y, z of A;
3) ISO and OSI;

4) ISa for all a of A;

5) if bSc then (b V a)S(c V a) for all a of A.

An ordering relation S satisfying xSz for every z in A and the condition 2)
above is called a quast ordering. S is called a weak ordering if it satisfies the
conditions 1), 2). A weak ordering on the set of all atoms of finite Boolean algebra
is called a qualitative possibility distribution (Qpd).

. In [14], R.R. Yager showed that if IT is a gpm on A then 7 = II/B is a
normalized qpd, and conversely if 7 is a normalized qpd, then there exists uniquely
a gqpm IT on A such that [I/B = 7.

Similarly, if S is a Qpm then s = S/B is a Qpd, and conversely if s is a Qpd
then there exists uniquely a relationship S satisfying the conditions 1), 2), 4), 5)
in the definition of Qpm, and if S is added the condition 3) then S is a Qpm on
A such that S/B = s (see [14]).

In brief, it can say that both possibility measures (Qpm and qpm) are uniquely
determined by their possibility distributions on the set of atoms.

For any two possibility distributions 7y, 75, m; is more specific than =, if and
only if m(z) < 72(z) for every = in B.

R.R. Yager proposed a class of linear measures of specific (see [14]), each of
them is a function defining on the set of all possibility distributions and has the
form

Sp(n) =my — Y vim, herem = {m;, ¢ =1,...,n; 1 > 7y > -+ > %,} is
i>2
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a quantitative possibility distribution and {v;, ¢ = 1,..., n} are called weights of
this measure if

1) 0 < vy, for i =2,..., n;

Under this definition, for any weights of specificity measure, we get Sp(7y) >
Sp(7r2i) if my < 72, and in particular if 7 is a normalized possibility distribution
then Sp(7) =1— Y v;m,.

i>2
' . 1, if zSy, .
Let S be a weak ordering, define S(z, y) = . forevery z, yin
0, otherwise
B and H(z;) = > S(zs, z), 9(z) = H(z;)/ max H(y). k. .
z€B yeB T

A Buoancy measure Buo (see [14]) is a mapping from the set of all quali-

tative possibility distributions into [0,1] defined by Buo(S) = }_ a; w;, where
. i>1

ai, @z,..., a, are g(z) (z € B) ordered with a; > as > -+ > a, and {w;, 1 =
1,..., n} are called weigths of this measure if

1) w; >0for ¢ =1,..., n};

2) Y w; =1,

i>1
3) wy > wy, if ¢ < j.

3. USE OF THE PRINCIPLES OF mS and MB

From the principles of mS and MB, we get

1) The principle of mS says that if 7;, 7, are two qpds and 7 is more specific
than w9 then my is selected.

In the same spirit, the principle of MB says that when s;, s2 are two weak
orderings (Qpds), if s2 is more relaxing than s; (i.e., s2 D s1) then s2 is selected.

2) In the cases, when it can’t be able to compare possibility distributions each
other, these principles give us a formally framework for selecting one from these
possibility distributions.

On other hand, we know that if 7 is a qpd then there exists a weak ordering
Sy induced from 7 by zSry iff 7(z) > 7(y), then S, is called a natural ordering
associated with 7 and the notation =5,y also means that z is at least as possible
as y. '
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In the possibility theory, a information says that the possibility degree of
element z is higher than one of element y, is more important than concretely
given values about the possibility degree of these elements.

We can see that when 7, 72 are two qpds and S;, S; are orderings associated
respectively with them, there is not any relationship between 7y (z) < m3(z) for
every z in B and S; C S3. In fact, there exists a case 7,(z) < m2(z) for every z,
but Sl ) Sg. kY

For example, let B = {z;, z2, z3, Z4},

T = {7!'1(.’111) = 1, Wl(Iz) = 0.5, 7r1(:1:3) = 0.5, ™ (134) = 0.5},

- g = {7!'2(131) = 1, 7!'2(122) = 0.9, 7l'2($3) = 08, 7!'2(154) = 07}
Clearly that 7y(z) < mg(z) for every z in B and S; D S3, so 73 is selected by

the use of the principle of mS, and S; is selected.by the principle of MB. Now a
question arises: which distribution we ought to select from my, my?

By points of view of important information above and of most basic idea of
the principles of MB and of mS (select a relaxing ordering or a least specificity
possibility distribution), in this case selecting the possibility distribution 7; seems
more pertinent.

Therefore it must continue a discussion to select a qpd from the possibility
distributions 7wy, 72, ..., T, by only the use of the principle of mS.

This example also suggests to us a use simutalneously of the principles of mS
and MB for this problem.

Let 7y, mo,..., 7y be gqpds on the finite set B and s, s2,..., sx be Qpd’s
associated with these distributions, respectively. For selecting a qpd from the
distributions 7y, 7o, ..., Ty, we can make as follows:

1) Select a Qpd so by the use of the principle of MB for the weak orderings
S1y 82500y Sk

2) Select a qpd 7* from the possibility distributions 7y, 7o, ..., m,, by the use
of the principle of mS for the distributions having the same natural ordering sg.

A part of answer to the problems (1), (2) above will be executed on each of
these processes.

4. BUOANCY MEASURE AND PRINCIPLE OF BUOANCY

Let S; be a weak ordering on B, and S be a relation defined on B by zSy if
and only if yS;z and zSr;y. Then S is an equivalent relation on B.

Define B/s = {Bj, By, ..., Bm} such that for every z € B;, v € Bj, and if

i < j then zSry but ySrz (see [14]), then we say that B; > B; and S, is called
an m-classes ordering, the ordered collection {B1, Bz, ..., B} is called collection
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of equivalent classes associated with S.

In [14], R. R. Yager investigated the Buoancy measure and the principle of MB
on the total orderings (m = n, n is number of elements of B) and on two-classes
orderings (m = 2). We now intend to investigate the Buoancy measure and the
use of the principle of MB on the m-classes orderings, here 2 < m < n.

Definition 4.1. Let S;, S2 be two weak orderings in the finite set B, and
{E{, Ei,..., E;}, {E\1, E2,..., Ex} are their collections of equivalent classes, re-
spectively. We say Sy ts more specific than S, (S14S5) if and only if for ¢ = 1 to
max(k, k') we have

U E; € U E; (when max(k, k') > k then for j = k+1 to k' we use E; = 0).

i<i i<

We see that there are not any correspondence between the specificity concept
of two qpds and of two weak orderings (Qpds) associated with them, respectively,
namely m,(z) < 72(z) for every z of B does not imply S;/S2 and conversely.

On other hand, the relation / is developed from the concept of specificity
ordering proposed in [1], and it is deferent to the relation C between the weak
orderings.

However there exists a relationship between the relations C and /. Following
proposition will show this relationship.

Proposition 4.2. Let Sy, S; be two weak orderings on B, and {E}, E, ..., E.},
{E\, Ea,..., Ex} be the collections of equivalent classes associated with them, re-
spectively.

If Sl g 52 then 31452.
Proof. From S; C S;, we have
E| = {z € B|z8y, Yy € B} C {z € B|zSyy, Yy € B} = E; .
Assuming |J E! C |J E; to hold for m < max(k, k'), we will prove it for m + 1.

i<m i<m

For everyz€ |J E!= | E!UE], ., under induction hypothesis z € J E;

i<m+1 i<m ~ i<m
implies z € |J E;, as z € E|,_, implies S,y for every y € (J E;. Since
i<m ¥ i>m+1
U E:C U E! we have zS,y for every y € |J E;. This follows that
i>m+1 i>m+1 i>m+1
z€ |J E;andhence $145;. O

t2>2m+1

Proposition 4.3. S; C S; f and only if for every i = 1,..., k there exist the
positive integers 1 < 7:,_1, 7: < k' such that E; = U E(’I, (1 =730 <75,<

Ji-159<5
e SGe= K.
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Proof. We first prove that when Sy C S, and for any pair (1, j), if E} N E; # 0,
then E; C E;.

Suppose z € E} N E;, then for every y € E}, we have zS1y and yS1z. From
Sy C Sy, it follows that S,y and ySsz, i.e., E; C E;.

Set j;_1 = min{q|E; C E;}, j; = ma.x{q|E(’] C E;}. It follows E; D U E;.

Ji-1<q<7;
If E; # U . Ej then there exists element zo € E; but zo ¢ U E;.
Ji-1<q<Sy Ji—1<q<y;

Therefore zq € E(’I for ¢ < j; or zg € Eé for ¢ > j;. This contradict the definition
of numbers 5,1, 7; and the proof above.

Corollary 4.4. S,, S; are k-classes ordering of B then S; C So tff S = Ss.
The proof is given directly by the Proposition 4.3. [

Let S;, S, be weak orderings on the finite set B. We know that if S; € S5 then
Buo(S;) < Buo(S,) with any weights {w;, ¢+ = 1,..., n}, and in the case S;, S; are
two-classes orderings, if S; is more specific than S, then Buo(S;) < Buo(S2) only

with weights satisfying some conditions, for example m.wy,,41 > Y. w;, m =
1i>m+2
L ..., k (see [14]).

This result is suggestion for following propositions.

Proposition 4.5. Let S;, Sy be k-classes orderings, S, 1s more specific than S,
tf card(E! N E;) > card(E] |, N E;11) for every1 =1,..., k — 1, (3)
then Buo(S;) <Buo(S;) with any weights {w;, 1 = 1,..., n}.

In the case n = 2, the condition (3) is also “only if”.

-

Proof. For k > 2 the condition of the proposition become card(E]) > card(E>).
Define n, = card(E]), r1 = card(E,).
Assume Buo(S;) < Buo(S3) for any weights {w;, 1 = 1,..., n}, so if we choose {w;}
by wy =ws =+ = wy, = % then Buo(S2) —Buo(S;) = #(rl—nl)[nl—(n—rl)] >
0, hence ny > n —ry, i.e., card(E}) > card(Ey).

For k > 2, define n; = ) card(E}). Since J E; C | Ej, we have n; < ry,

i< i<i J<i

fori=1,..., k.

In other side, since S, is the k-classes ordering we get Ex # 0. From the
ExNE} = Ei and under the hypothesis above, we have E;NE! # 0 fori=1,..., k.
Therefore 0 =rg =ng<n; <ry <ny <rp <+ <ngp=rg =n.

From card(E; N E;) > card(E{ , N E;y;) we get n;1y — 7y > nyyg — riy for
everyt =0,...,.k—1. .
n n

! na
Then from Buo(S;) = Y wi+ (1 - 2) Y wi+---+(1-2=2) 3wy,
=1 1=1+n, t=1+4n;_
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ri r2 n
and Buo(S3) = Y w;+(1—-2) 3 wi+---+(1-"2L) 3wy, we have
=1 t=1+4r, t=14rr_
Ty 1 n2 T2
Buo(S2) — Buo(S1) = ). wi+(n1—r1) > wi+ %(nz —-r) > w
i=1+n1 i=1+7'1 i=1+n2
1 ng Tk—1 1 n
+alne—r2) Y wit - +Ei(ne-1—re—2) Y witt(Rk-1—Tk-1) D wi
i=1+7‘2 i=1+nk_1 i=1+7'k_1

2 7{lnywe, (11— n1) = (r1 —n1) (n2 — 1) w, 41]
+{(re — n2) (ng —ri) wy, — (r2 — n2) (n3 — r2) wey 1] + -
H(rk—1 = nk—1) (nk—1 —rk—2) W, = (rk—1 — nk—1) (nk —Th-1) Wrp_, 1]}
> 0.
Therefore Buo(S3) > Buo(S;). O

Proposition 4.6. Let Sy, Sy be k-classes orderings, S is more specific than S,.
If E;NE! # O for every i = 1,..., k then Buo(S;) < Buo(Ss) with any weights
{w;, 1 =1,..., n} of Buoancy measure satisfying

Wy, > Y, w; form=1,..,n—1. (cwy)
i>m+1
Proof. As Sy is more specific than S; and E; N E! # 0 for every ¢ = 1,..., k we
have n; <ry <ng <ro<:.--<np=rx=n.

Analytically as the Proposition 4.5, we also have
r1 no T2

Buo(S2) — Buo(S1) = > wi+ %(nl -r) Y, wi+ —:;(ng —r1) D wit
i=1+n1 1:=1+7'1 i=1+n2
na : Tk—1 1 n
+a(ne—rs) Y witAi(ngoy—re) Y witi(ngoi-ree) Y ws
1=1+4ry i1=14n,_,; t=14rr.,
. Ty nz 1 nq
2| 2 2 witgnr—r) X w,-] +ee
j=1+n1 1::1-‘—7'1 1:=1+7'1
Tk—1 n - n
+ [%(nk—l —Te—2) ) Y. wi+ %(nk——l —rk_1) ) wi]
j=1+ﬂk_1 1:=1+Tk_‘1 i=1+rk_1
no 1 n
> p(ri—ni)(ni—-1) Y, wit- o (re-1—nk-1)(Rk-1—re-2—-1) 2
i=1+r1 — 1:=1+Tk_1
>0. [ 3

From the two propositions 4.5, 4.6 we have immediately following corollaries.

Corollary 4.7. Let S1, Sz be k-classes orderings having the collections of equiv-
alent classes {E}, v = 1,..., k}, {E;, 1 = 1,..., k}, respectively, and {n;, r; i =
1,..., k} are defined as in the Proposition 4.5. If ny <r; <ng <ry <---<mp =
rk = n then Buo(S;) < Buo(S;) with any weights {w;, « = 1, ..., n} satisfying the
condition (cwy).

w* we -
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If {n;}, {r:} satisfy a additional condition
Mip1 — T8 > N2 —ripy fori=0,..,k—1 (4)

then Buo(S;) < Buo(S2) with any weights of Buoancy measure.

Corollary 4.8. Let S; be a k-classes ordering and S, be a m-classes ordering
having the collections of equivalent classes {E], 1 = 1,..., k}, {E;, 1 = 1,..., m},
respectively (m < k).

If for every 1 =1,..., m — 1 emsts 19, 1 <19 < k such that
i io i+1
anrd(Ej) < anrd(E;) < anrd(Ej) . (5)

j=1 1=1 721

then Buo(S1) < Buo(S2) with any weights satisfying (cwy).

Proof.
1 1+1 k
Set Air1 = {q| 2 card(E;) < ¢ < ) card(E;), ¢ = Y. card(E}), k depend i}
=1 =1 7=1

for 1 =0,..., m — 1. Under the hypothesis, we have A;,, # 0 for 2 =0,..., m — 1.

1
Set n; = max{ q } fori=0,..,m—1,andr; = ) card(E;), 1 =1,..., m.
- qEAi+, j=1
We will denote by S* a m-classes ordering having the collection of equivalent
classes

’ h
{Fi|F; = U Ej, ni_ < anrd(EJ'-) < n;}
j=1
where ng =0 and : = 1,..., m.
Applying Proposition 4.6, we have Buo(S*) < Buo(S;) with weights satisfying
(cwy), and under Proposition 4.3 we obtain S; C S*, hence Buo(S;) < Buo(S*)

with any weights of the Buoancy measure. Therefore Buo(S;) < Buo(S;) with
any weights above defined. [J

Remark. If {n;}, {r:} (for 1 = 1,..., m defined as in Corollary 4.8 satisfy the
condition (4) then it is also obvious that Buo(S;) < Buo(S;) for any weights of
the Buoancy measure.

Definition 4.9. A set of quantitative possibility distributions (or qualitative) is
mS-stable (or MB-stable) if and only if there exists at least one of these distribu-
tions such that it is always selected by the use of the principle of mS (or MB) with
any weights of the Specificity (or Buoancy) measure.
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This set is T-mS-stable (T-MB-stable) if any only if it is mS-stable (or MB-
stable) with any weights satisfying the condition 7.

From what has already been presented, we have

Theorem 4.10. Let ® be a finite set of weak orderings on a finite set B.

If any two its possibility distributions satisfy the condition (5) then this set of
1s quast (cw; )-MB-stable.

If any two its possibility distributions satisfy (4), (5) then this set vs MB-stable.

Remark. A finite set of weak orderings is always MB-stable, if it has got the
property that for any two its weak orderings, if both are not total orderings then
there will exist the relation C between them.

Indeed we can see that in this case any two possibility distributions of this set
satisfy the conditions (4), (5). The proof is easy and omitted here.

5. SPECIFICITY MEASURE AND PRINCIPLE OF mS

In this section, we will investigate the use of the principle of mS only on a set
of qpds having a same natural ordering.

From now on, we assume that the quantitative possibility distributions are
normalized.

Let S be weak ordering associated with the qpd 7 on a finite set B. Define
¢°(z) = g(z)n(z), where g(z;) = H(z;)/max H(y), H(z;) = Y. S(z:, z) for

i>1
z € B.

Definition 5.1. A measure R is a mapping from the set of all possibility distri-
butions into [0,1] defined by R(r) = Y a; w;, here ay, ..., a,, are ¢°(z) (z € B)
i>1
ordered with ay > a3 > -+ > a, and {w;, ¢ = 1,..., n} are weights defined as ones

of Buoancy measure (see [14]).

Formally, this measure is similar to Buoancy measure, but they are different
each other by that the measure R coincides both the valu€ of the distribution
7 and the weak ordering induced from #. This is illustrated by the expression

g°(z) = g(z) (<).
For ¢g°(z) we have clearly following properties:
1. 0 < ¢°(z) < 1 for every z € B, this means that 0 < R(7) < 1.
2. There exists z* in B such that g°(z*) = 1.
3. ¢°(z) < n(z) for every z in B.
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4. ¢°(z) < ¢%y) iff w(z) < 7(y).
In the following, we can see that this measure will create a relationship between
two measures above. First, we have a following lemma.

Lemma 5.2. Assume that
o )m={r{ 271 >-->at}tand 7y = {w) > 75 > .- > 7}} are two
possibility distributions satisfying the conditions as:

_ If there exists 1o satisfying 7ri° < 7rf,f’ then there exists r < 1g such that 7] > 7} .

(6)

2) v;, 1 =1,...,n} are weights of specificity measure satisfying the condition
(ewy).
3) ki, i =1,...,n} is a non creasing sequence of non negative reals. (7)
If STvimt > Y vl then Y vikint > > vk T (8)
i>1 i>1 i>1 i>1

Proof. We will prove this lemma by induction on the number of elements in B.
It is obvious that (8) holds for n = 1.

For n = 2, since vy 7} + v 7% > vy 7} + v 72 and if 7} > 7} for « = 1, 2 then
the inequality (8) is obvious.

Conversely, if 72 < 72 then under the hypothesis 7] > 7.
2 2
vi T} + v > vy md + ve nk implies (vy + va o )W} > (v1 + vy 7—7:%) m3.
2

Define a = 1, b= ;Z% and ¢ = —*—"fi%";?fz—a, here k; > kg > 0, then we have
a<b,andg (1/1—H/2 a)ml > q(vitve b) wdie. kyvymi4+ko vy i > g (v +uvg b) Tl
In other side q (vy +vo b) 7] > kyvy 73 +hovo w2 iff (ky —kg)viva(b—a) >0
and this is obvious.
Assume (8) to hold for n = k, we will prove if for n = k + 1.

We need only prove the case where there exists a positive integer 7o (1o > 2)
such that 7}° < 75°. Then under the hypothesis there will exists r < i such that
my > w5 > 0. We can consider that r = 75 — 1.

From ) v; 7} > ) v; 7} we have

i>1 i>1
to
Z l/i7r§+(uio_1+uio% roTt 4 Z vimh
i<io—2 L i>i0+1
Ty io—1 i
Z u,7r2 Vzo—1+Vi0 t.0_1)7T2° + Z Vo . (9)
1.<zo—- T2 i>10+1

Assume {k;, ¢ = 1,..., n} satisfy the condition (7).
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Set

mte o kio—1Vig—1 + kigvi, a
a = il_-lib: i2_1q: to 1.10 1 o Tt T
7 Ty Vig—1t Vi, a
It follows that k;,—1 > ¢ > kij+1, a <b.
Let 77 = {m}* > 7r_;f2 > - > 7r;"} for y =1, 2, {v}, v =1,..., k} and
{k}, i =1,..., k} are defined by

W[ figio-1, L,

T.*t = , L . or ) =

J 7r;-+1, ifig<i<k. ’
ks, if i <io—2, Vi, if 1 <40 -2,

io
k:: q, lfl‘—’lo'—l, V:: Vi0_1+l/,'0'1§%1:7, 1fz=zo—1,
. . . 1
k,‘o_l, 1f20§z§k. Vi—.la 1f7'OSZSk
respectively.
Then we can rewrite (9) as > vim* > Y vfm,'. We can see that
1<i<k 1<i<k

{mi*, v =1, k}, {m3, 1 =1,..., k} and {V}, ¢ :_1,..., k}, {k¥, i =1,.., k}
satisfy the conditions (6), (cw;), (7), respectively.
Applying the hypothesis of induction we have

* pk kg koK kg .
E v k;m* > E v; k;my', le.,

1<i<k 1<i<k
, o

I/'k'7|'i+ (l/' + . 7['1 i0_1+ k 1

PRI NUE | q Zlo—1 Vi, t0—1 ™ Viki T
i<io—2 4! i>ig+1
> 3 wikimi+ T2 ) o kimy (10
= ViKi{Tg 7 q(Vi0—1+Vio 1-0_1)7r2 + ViK; Ty ( )

i<io—2 T2 i>i0+1

Similarly as in the case n = 2,

«A;‘

7r'0 c . . .
q (Vio—l + Vi ;;;2—:—1-) W;O ' 2 (kio—l Vig—1 W;O ' + kio Vi, WZO) iff
2
(kig—1 — kiy) Vig—1 Vi, (b —a) > 0. Therefore the lemma is proved. O

Proposition 5.3. Let my, 7y be two possibility distributions having a same natural
ordering. '
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1. If R(m,) < R(w2) with any weights {w;} of Buoancy measure, then Sp(m;) >

Sp(mg) with the weights {v1 =1, v; = (w; H(z;) / k2>:1 H(zg)), 1 > 2} (ew?)
or {v1 =1, v; = (w; H(z;) / kgl—wkH(zk)), i>2}  (cwa)

2. Conversely if Sp(my) > Sp(my) for any weights of Specificity measure
{vi, 1 = 1,..., n} satisfying the condition (cw,), then R(m;) < R(my) with the
weights {w; = v;fXvg, 1 =1,..., n}.

Proof.
1. R(m) < R(wm;) with any weights {w;} implies > w; H(z;)m(z;) <
i>1
>~ w; H(z;) ma(z;). It is easy to check that Sp(m;) > Sp(wz) with the weights
i>1
{vi, + = 1,..., n} defined as in (cwz) or (cws).
We see if {w;, + = 1,..., n} satisfies (cw;) then {v;, ¢t =1, ..., n} is also.
2. Conversely from Y w;m1(z;) < Y w; m2(z;) and by Lemma 5.2, it can

i>1 >1

imply that > w; H(z) 7 (z;) < 3 w; H(z,) ma(z;) ie. R(m) < R(my) with
i>1 i>1

weights {w; = v;/Zvg, 1 = 1,..,, n} and it is clear that {w;, 1 = 1,..., n} also
satisfies the condition (cw;). [

If selecting a possibility distribution that maximizes the chosen measure R
is considered a use of principle of marimal of measure R (MR) then from the
proposition 5.3, we have

Corollary 5.4. Assume possibility distributions 7y, ..., 7,, have a same natural
ordering. Then the use of the principle of mS with weights {v;, ¢t = 1,..., n} on
the set of these distribution 1s equivalent the use of the principle of MR with any
weights {w;}, here {w;} and {v;} satisfy the additional condition (cw,) and depend
on each other as in the proposition 5.3.

Proposition 5.5. Let Sy, S, be two weak orderings associated with the possibility
distributions my, Ty, respectively.

1. Proposition 5.8 also always holds when Sy, Sy are total orderings.

2. Part (2) of Proposition 5.8 holds when S; ts a total ordering, Sy is a weak
ordering.

8. Part (2) of Proposition 5.8 also holds when S;, S, are any two weak Kk

orderings such that S; C S,.
Proof.

1. The proof is based on one of the proposition 5.3 and following remarks:

weak



14 DO VAN THANH

If Sy, Sy are total orderings, we can consider that 7y (z;) > my(z3) > -+ >
71(zn), here z; € B, ma(zk,) > ma(zk,) > + -+ > mo(zk, ), and (ky, k2,..., k) is a
permutation of (1,2, ..., n).

Then
Sp(m) =1-— Zvi m1(z:), Sp(me) =1-— Zvi mo(zk,)
1>2 122
n—i1+1
R(m )= Z E——— m1(z:)
i>2
n—1+1
R(r) = 3 "= o),
i>2

here {v;}, {w;} are weights of Specificity and Buoancy measures, respectively.

2. If S; is a total orderings, from Sp(m;) > Sp(w2) with any weights of
Specificity measure {v;, ¢ = 1,..., n} satisfying (cw;) and according to Lemma 5.2

we have 1 1
n—1+ n—1+
Z —‘n—“ vy 7r1(-73i) < Z _n——vi 7r2($ki)?

i>2 i>2
where (ki, ko, ..., kn) is a permutation of (1, 2,..., n) and mo(zk,) > ma(zk,) >
oo > mo(zk,)-
From g(z;) > "—_:;ﬂ, here g(z;) is defined by 7, as in the Buoancy measure
it may be concluded that the part 2 of this proposition holds.
3. Assume S, Ss are any two weak and both not total orderings, but S; C Ss.

If mi(z1) = mi(z2) > -+ > mi(zy) then mo(zy) > mo(z2) > -+ > m2(z,) and
H,(z;) < Hz(z;) for every zy € B, here Hi(z;) = LSk(zs, z), k=1, 2.

Since Sp(m;) > Sp(n;) and under Lemma 4.2 we obtain

Y vi Hy(z) my(ze) <) vy Hy(z:) ()

i>1 i>1

In other side

A

Y e Hy () ma(:) < ) vy Ha(z:) ma(z:)

i>1 i>1

thus the part 3 of the proposition is proved. O

Propositions 5.3, 5.5 say that when the possibility distributions have a same
natural ordering, or all orderings associated with them are total, if a possibility
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distribution is selected by the use of the principle of mS with and weights satisfying
(cwy), then it is also selected by the use of the principle of MR with the dependent
weights and conversely.

In the cases, when the all orderings associated with these possibility distribu-
tions are placed in two groups, first group consists of total ordering, second group -
non total weak orderings, but the relation C become linear ordering on this group,
if a possibility disitribution is selected by the use of the principle of mS with any
weights satisfying (cwi), then it is also selected by the use of the principle of MR
with the dependent weights, conversely in general it is not true.

We now return the requested problem above, i.e., analysis the process of the
use of the principle of mS on possibility distribution having a same natural order-
ing.

Let my,..., 7rm be possibility distributions satisfying this constraint, we will
denote by S the ordering associated with them.

Assume 7 (z;) > 7y (z2) > -+ > my(z,) then mr(z1) > 7e(z2) > -+ > Ti(2z0)
for k =2,..., m.

Theorem 5.6. Finite set of possibility distribution having a same natural ordering
is (cwy)-mS-stable and (cws)-mS-stable.

Proof. Assume 7 is a possibility distribution selected from 4, ..., 7, by the use of
principle of mS with weights {vf =1, v = .L(ZQ—, 1> 2}, we will point
= ' 221X H(z) -

out that 7 is also selected by the use of principle of mS with any weights defined
as in (cwg), or (cwa).

Under the hypothesis of 7, we have > v} mg(z;) > ) v!n(z;) for every

i>1 i>1
k=1,..,m.

Define k; = 2w, for ¢ = 1,..., n, here {w;, 1 = 1,...,, n} is any weights of
Buoancy measure. We can see that any two of the distributions 7y, ..., 7, satisfy
(6) (because they are normalized), {v}, 1 =1,..., n} and {k;, ¢ = 1,..., n} satisfy
the conditions (cw;) (7), respectively. Therefore, under Lemma 5.2. we obtain

va kim(z:) > Zv: ki mi(z:), ie.

i>1 i>1
R(m) > R(mg) fork =1,...,n. (11)

From (11), applying the proposition 5.3, we have Sp(w) < Sp(7g) for every
k = 1,..., n with the weights of Specificity measure {v;} defined as in (cws) or
(cwz). Therefore, the proof of the theory is complete. O
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Remark. If 7y,..., m,, are possibility distributions having a same natural ordering

S, then it is also natural ordering associated with all possibility distributions in
m m m

the format 7 = Y a; 7;, where a; > 0 and )_ a; = 1, and Sp(n) = Y a; Sp(m).

i=1 1=1 1=1
m m
Set C(T1,.ey Trn) = {7r => a;m, a; >0, Y a; = ‘1}-then if m;, is selected
=1 i=1
from the possibility distributions =y, ..., m,, by the use of the principle of mS with
weights {v;} then =, is also selected by the use of this principle on C(7y, ..., 7).
This is obvious, because

m m

Sp(mis) = Y aiSp(m) < Y i Sp(m) = Sp(r)

1=1 1=1
for every m € C(71, ..., Tm).

Corollary 5.7. C(ny,..., T,,) is (¢my)-mS-stable and (cws)-mS-stable. C

6. CONCLUSION

In [8] we pointed out that there exists the relationship between the principles
of mS in possibility theory and of maximal entropy (ME) in probability theo-
ry. Namely we showed some conditions of finite sets of possibility distributions
such that the uses of the principles of mS and of ME to select one from these
distributions are equivalent.

Since important role of possibility distributions, it is necessary to continue a
discussion on the use of the principles of mS and MB.

In this paper, we proposed the concepts of mS-stable (MB-stable)... and
showed some conditions of possibility distributions and weights of the Specificity
(Buoancy) measure for these stability sorts.

Use of the principles of mS and of MB on infinite set of possibility distributions
is one of our future research topics, there we will use the relationship between the
principles of mS and of ME for defining a probability distribution that satisfies
the given probability knowledge base such that at the distribution, the Entropy
measure receives approximately maximum value, and then the concepts of mS-
stable, (MB-stable)... of set of possibility distributions are useful.
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