
TASK ASSIG NM ENT FOR SCHEDULING JOBS
A N D RESOURCES IN PARALLEL

DISTRIBUTED SYSTEMS
PHAM HONG HANH, VALERY SIMONENKO

A b str a c t . In managing multiprocessing of parallel distributed systems the central issue
is the scheduling of jobs and resources in the optimum way. This paper describes a
new approach for the solution of this problem. The proposed approach allows us to
create an algorithm that adapts to any kind of systems constraints and the optimization
criterion as well. The key idea in our approach is to divide the process of the scheduling
into preliminary analyzing initial data and finding the solution with the support of the
results of this analysis. This algorithm for analyzing is built on the principle of step-
by-step forming and is called Adaptive Multi-analyzing Algorithm (AMA). The proposed
algorithm is based on our development of the Malgrange method for task assignment.
The results of our investigation are presented in a system of theorems which are shown in
this paper. The time complexity of the proposed algorithm varies from 0[AQog(jV) + E]
to less time, depending on the characters of the initial data of the systems analyzed. The
adding of this algorithm based on our theoretical system for analyzing initial data allow
us to decrease the whole time complexity for finding the schedule of jobs and resources.
These advances of AMA are shown theoretically by describing the analyzing process and
through the results of experiments in the simulation multiprocessing systems as well.

I. INTRODUCTION
In recent years, parallel distributed systems have received increasing attention

in the design of multiprocessing systems. A central issue for the multiprocessing is
the scheduling of jobs and computer resources. Numerical algorithms, methods for
scheduling of jobs and resources have already been provided by several resherech-
ers. They are based on different approaches for optimizing % particular criterion
for instance: run time, compiling time, processor balance, communication costs
etc. The general problem is to schedule a stream of jobs and a system of resources
so that each job can be executed by fit resource in the required time according to
the optimization criterion. This problems is usually solved for meeting one of the
constrains of job-stream features or the constraints of the resource system struc­
ture. In the first case, the features of jobs and the optimization criterion are given
and we need to define the structure of the system of resources that is to fit to such
the given data [16]. In the second case, the structure of the system is fixed and we

have to schedule the jobs so that they are optimized by some criterion executed
by such a system [17].

This paper proposed a new general approach to state and solve the problem
of scheduling jobs and resources throughout any parallel computer system and in
any application problem, where the task assignment takes place. In this light, the
problem of scheduling jobs and resources can be generally stated as the follows:
Into a system of ./'¿’'resources a stream of M jobs is coming at a moment in time,
all the requirements of the process including the criterion of optimization for these
N resources and these M jobs are represented by K limits in two separate binary
matrices: i = 1 ,..., K , j = 1 ,..., M for the job constraints and
i = 1 ,..., K , j = 1 ,..., N for the resource constraints, where K, N, M £ N; the
requirement of the problem is to define a maximum number of assignments of
jobs on resources Ii £ I = {1, 2 ,..., M}» and Jy £ J = {1, 2 ,..., N } ,
Ii I \ Ii and Ji 0 J \ Jj (that is only one job can be assigned on one resource
and vice versa) so that T[l , Ii] « R[l , J j] V/ = 1 K . For simplicity, from
two matrices T and R we can form a new Boolean matrix called the matrix of
connections M C [i , j] , i — 1 ,..., M , j = 1 ,..., N , which represents the fit of JOB(i)
and RESOURCE(y) by all of K limits or the possibility of the assignments of these
Job(i') and Resource(j). Then this problem becomes the problem of assignment in
Combinatorial theory. We will study further with the fact that M = N because
it has been shown that the general case when M ^ N could be changed into the
case when M — N using the Hungarian algorithm [5, p .406].

Therefore the initial data for the problem of assignment can be represented in
a binary Boolean matrix (Fig. la), and in common bipartite unweighted graph as
well (Fig. lb)

RESOURCE
PROCESSES

1 2 3 4 5 6
P 1 2 3 4 5 6
R 1 1 0 1 0 1 0
0 2 0 1 1 1 1 1 AC 3 1 1 0 0 1 0
E 4 1 1 1 0 1 0
S 5 1 1 0 0 1 0
S 6 0 0 1 1 0 1
E

i>

S
1 2 3 4 5 6

RESOURCES

Fig. la Fig. 1 b

Because of the equivalence of these two types of presentation we can study
further with the 1 latrix form using some theorems of Graph theory.

II. TASK ASSIGNMENT

The task assignment has many application in many different areas. However,
it has been shown that the given task is an iVP-completeness task and the solution
has exponential time complexity [20]. For parallel, distributed computer systems
several approaches have been suggested [1-4, 17, 18, 19]. Most of them are based
on heuristic or iterate approaches. All of them have great time complexity for
getting at least one variant of maximum matching and the best algorithm by time
complexity is proposed in [3].

In this paper we propose a new approach to solve the task assignment or
scheduling jobs and resources in computing systems. The key idea is to divide the
process of scheduling into preliminary analysis of the data and finding the solution
with the help of the results of this analysis. It may be strange but our simulation
results show us that the adding of the analysing data algorithm substantially
decreases the total solution time in spite of which method for solving is used:

The proposed algorithm for analysing is based on the principle of step-by-step
forming initial data and we call Adaptive Multi-analysing Algorithm (AMA[.

III. TASK SCHEDULING

We have shown above that the key issue of scheduling jobs and resources
in distributed, parallel processing computer systems is the task assignment. Now
returning to ihe task scheduling, we determine this task as follows: For the system
of N resource, which has to execute N jobs at a moment in time with all the
kinds of requirements represented in Boolean matrix of connection M C [i , j] , i, j =
1, 2 ,..., N , we have to define at least one job-resource schedule: A = {(/¿, */y)},
Ii e I = {1, 2 ,..., TV}, Jj e J = = { 1 ,2 , .. . , N } so that VJt- & I \ /¿, Jy g J \ Jj
and V (/t-, Jj) E A : MC[I i . J j] — 1. That means one resource can serve only one
job at one moment of time, the process of serving one job can not be interrupted,
every job has an individual characteristic and lay claim to the capture only one
resource. The ‘1’ in the matrix C means the pair of Job(i) ĉ nd Resource(j) meet
all K requirements of the given system and of the processing as well. The ‘0 ’
means there is no such meeting [Fig.2a).

For further performance of our proposed algorithm, we form the vector V J[i],
i = 1 ,..., N for jobs and the vector V R[j] , j = 1 ,..., N for resources (Fig. 2b) as
the follows:

N

VJ[*] = ^ A iC [. - ,y] , * = 1,..., N .
y=i

This is called a ratio of claimant for Job(t').
N

VR[j } = J 2 M C [i , j] , j = l , . . . , N .
i= i

This is called a ratio of placement of Resource(y).
1 2 3 4 5 6 V J V R

1 1 0 1 0 1 0 1 (3) 1 (5)
2 0 1 1 1 1 1 2 (5) 2 (2)
3 1 0 1 0 1 0 3 (3) 3 (6)
4 1 1 1 1 0 1 4 (5) 4 (2)
5 1 0 1 0 1 0 5 (3) 5 (5)
6 1 0 1 0 1 0 6 (3) 6 (2)

Fig. 2a. Matrix of Connection Fig. 2b. Vectors of ratios for Jobs and Resources
For solving the problem of job scheduling it is necessary to define the conditions

of the possibility of its solution, that is, the full distribution of all jobs on resources
in the given system. The process of scheduling jobs should be divided into two
phases; the first phase is a quick analysis of the initial data and the results of this
step is the recommendation that will be used in the solving process later. The
second phase is finding the whole schedule of jobs and resources.

The step of analyzing by our proposet algorithm gives us a preliminary an­
swer to the question of whwther or not for the solution existing of the scheduling
problem.

For executing the second phase of problem we can use any well-known algo­
rithm for maximum matching and the matrix after correction (MA) is the input
data for this phase.

IV. ADAPTIVE MULTI-ANALYZING ALGORITHM
We suggest using out algorithm is suggested for finding a first approximation

for the best method to solve the problem of scheduling. The analysis of the input
data in carried out by several steps:

1. Preparing the initial data for analyzing.
2. Finding certain assignments of the schedule.
3. Correcting the initial data for excluding cases, when the process of schedul­

ing has “conflictii i points” or “not stable” points.

The first step is creating the matrix of connections (MC) which reflects the
possibility of the matching of every job to the resources in the given system. In
this step, two vectors VJ, VR of ratios for every job and every resource are created
(F ig.2a, F ig.2b).

The second step is finding certain assignments of the schedule. For getting
them, the following results are used:
R u le 1. (From the Consequence 4.1)

If the matrix of the connection C is a low-triangle matrix and the principal
diagonal consists of ‘l ’s only, then the task assignment has only solution which is
the very this diagonal. The process of analyzing must be interrupted.
R u le 2. (From the Consequence 1.2)

If in the matrix MC there is any Fan (according to the Consequence 1.2).
the task scheduling has no whole solution and the process of analyzing must be
interrupted.
R u le 3 . (From the consequence 1.1)

Any single assignment in the matrix of connection (Fig. la , lb) always partici­
pates in the solutions of maximum matching. They are called certain assignments
of the schedule. These pairs of job(p)s and r e so u r c e 's must be moved away from
the matrix M C in the next steps.

Then the size of the given task may be decreased by the number of pairs
found in rule 3.„ This means that the search of matching will continue from the
new matrix, which has been reconstructed from the initial one.

Our experiments for our proposed algorithm have given us the following sta­
tistical results: When the ratio of fullness of ‘l ’s in the initial matrix M C called
R f is less than 18%, our proposed algorithm gives us the whole solution (that is
the whole schedule of jobs) after the second step! When the ratio R f is more than
18% and less than 50%, the size of the job scheduling’s problem is decreased in
the next steps of the given algorithm. The time complexity of the second step for
finding the certain assignment of the schedule is 0 \2 N \ .

The third step is analyzing the initial data for confirming the availability of
the solutions. Sometimes this step even gives us the whole solution to the job -
resources scheduling problem. The aim of the analysis is to pick out the assign­
ments which we do not need to do because it leads us to conflicting states. That
is why we call these assignments as “Conflicting points” or “Unstable points” .
R u le 4 .

If after the equivalent transformation we obtain an MT with principal diagonal
of ‘l ’s, then all the jobs can match their resources and the scheduling problem has

at least one solution corresponding to the principal diagonal. The process of
analyzing is finished.
R ule 5. (From the Theorem 3)

If in the matrix c after transformation we can define any submatrix MM of
‘0’s as in the Consequence 2.1. with the size s * T, where s + T > N then the
given task has no whole solution. The process of analysing must be interrupted.
R ule 6 . (From the Theorem 3)

If in the matrix c after transformation we can define any submatrix MM of
‘0’s as in the Consequence 3.1. with the size s *T, where s + T = N then all the
assignments: the ‘l ’s in the symmetrical polygon must be nullified because they
are critical in the given initial data. The process of analysing must be continued
with the new corrected matrix.
R ule 7 . (From the consequence 4.1)

If in the part above the principle diagonal we càn find any prominent polygon
concerning the principal diagonal (Fig.2b), then the ‘l ’s that concern this side
are “unstable” points and the ‘l ’s in the symmetrical polygon must be nullified
because they are “Conflicting points”. Now the ‘l ’s in the principal diagonal
become certain assignments and the jobs corresponding to those ‘l ’s, must be
assigned only to the corresponding resources according to the rule 3. Then, after
this exclusion which throw out these unstable assignments, a new corrected matrix MA is created. The process of analyzing must be now continued with the new
corrected matrix.

For getting it, we use a special equivalent algorithm of transformation for MC. This algorithm of sorting is represented by changing the places of the rows
so that the number of ‘l ’s in them increases and by changing the places of the
columns so that the number of ‘l ’s in them decreases. This algorithm is based on
the modification of the method for decomposition from an oriented graph to the
maximum connected subgraph, which was supposed by Malgrange [5]. The next
operations are based on the theorem of Frobenus-Kening [6] and Mine [7] about
computing permanent (0,1) in matrices.

Therefore, in the first phase we can substantially decrease the scheduling time
for the next phase by passing most of the assignments that are conflicting or
unacceptable in the schedule.

V. THEORETICAL BASES FOR ANALYZING DATA
iIn this section we propose a system of the theorems and their consequences

which are the base the building the rules used in previous section.

T h e o r em 1. (Single connection - Belonging)
In the matrix MC[i , j] , i, j = 1, N, if 3 such a single connection (p, q):

MC[p , 9] = 1 and

MC \ p , j] = 0 Vj = 1, N and j (1)

MC[i , q] — 0 Vi = 1, N and j ^ p (2)

Then this pair always participates in the assignment A, which means (p, q) 6 A.

Proof. Using that A{ (I { , J j) } is an assignment for 2 N vertices I{ = 1 ,..., N and
Jj = 1, N we examine the assignment for Ii = p and Jj — q. It is obvious that
if (1) then 3A* E A : A* = (p,x) , x £ { 1, 2 ,..., N } and M C [p ,x\ = 1, from (l)
we receive that x = q, which means (p, q) G A.

By the same way if (2) then 3A** (E A : A** = (x ,q), x = 1 ,..., N and
MC[x , q] = 1, and from (2) we get that x = p and (p, q) G A. Therefore (p, q)
always belongs to A.

C o n seq u en ce 1 .1 . If one solution A* of the task assignment can be divided into
two parts the single assignments (p , q) and the others, then the remaining part (the
others) can be found in the new matrix of connections M C * after deleting the rows
and columns corresponding to these single assignments.

Proof. From the theorem about independent excluding of single edges [3] we have
the following: if the solution A = {(p, q), B } of N pairs, B — {(6 ,d)} of N — 1
pairs of vertices for the bipartite graph G = (V, E) of 2 N vertices then B can be
found in the subgraph G' = (V ' , E ') of 2N — 2 vertices after deleting (p , q) and
all connected edges with these p, q vertices. Translating the representation form
of the initial data from a bipartite graph (Fig. lb) to a matrix (Fig. la) and by
Theorem 1 recall that the^single assignments always participate in the solutions
of the given task, it is obvious that the Consequence 1.1 takes place.
C o n seq u en ce 1 .2 . In the matrix MC[i , j] , i , j = 1 ,..., N if 3 such a Fan:

F A = { (P i ,q)} , Pi e {1 ,..., N } , i = 1 ,..., F, 2 < F < N , where M C [P i , q } = 1
but M C \P i ,Q j \ — 0 VQj = 1 ,..., N and Q j ^ q, (3)

or F A = {(p, Qj) } , Qj e {1 ,..., N } , j = 1 ,..., F, 2 < F < ̂ , where MC[p , Qj] =
1 but M C [P i , Q j] = 0 VPi — 1 ,..., N and Pi ^ p, (4)

then the task assignment has no whole solution A and the size of maximum match­
ing Z a < N — F + 1.

Note that it is possible that several Fans can exist at the same time and this
consequence is true for every one of them.
Proof. We propose that there is one whole solution A — {(Ii , Jj) } - If (3) then that
means for the vertices P,-, * = 1 ,..., F we have F pairs-assignments Q /, / = 1,..., F

so that M C [P i , Q l \ = 1. But from (3) we get MC[P{ , q] = 1 and M C [P { , Q j] =
0 VQt = 1, N and Qi ^ q. That means Q (= q, V* = 1 , F. But because 2 <
F < N this contradicts the propose about the solution A {(I{, J j) } : V li £ I \ h
and Jj J \ Jj . If (4) we get the same result in similar way of considering. That
is why such whole solution can not exist.

Now, it is obvious that for such M C with such FAN, the size Z a can not be
more than or equalHo N — F + 1 because as is shown above, all F vertices Pi (or
Q j) can not be matching than.
T heorem 2. (Sub matrix of ‘0 ’s in M T with the size S * T, S + T > N)

In the matrix MT [i , j] , i, j = 1 ,..., JV, if we can define such a submatrix
M M [i , j], i = { N — 5 + 1),..., N , j = T ,..., N , where S + T > N a n d \ / M M [i , j } =
0, then problem of assignment has no whole solution.

RESOURCES
n-s

P
R
O
C
E
S
s
E
S

1*
1
1
1
1
1
1

0
0
0
0*
0
0
1

0
0
0
0
0*
1
1

0
0
0
0
0
1*
1

0
0
0
0
0
1
1* n-t

n-s

Fig. S. Submatrix of ‘0’s - no solution
Proof. We propose that one whole solution A * { (/ i , Jy)} exists. That means
for each job of Jt* 6 {1 ,..., T } we have one corresponding pair (/¿*, J *) where
Jy* = 1 ,..., N so that M T (/i*, Jj*) = 1 and J? $ {1 ,..., N } \ J }*. It is obvious that
for such T jobs 7t* we need at least T resources Jy*, because (7t* , J ' •*) participate in
A by pairs. Now, from the claim that S + T > N we have T > N — S , that means
{Jj*}, Jj = { l , (N — 5)} is not enough for T jobs I * . Then 3 at least one
J* : J * = (JV - S + 1),..., N and {I*, J /) 6 A consequently M M { I * , J f] = 1,
where Jj = (N — S + 1),..., N , Jt* = 1 ,..., T but this contradicts the condition
about M M .

Therefore, sue’ a whole solution A* can not exist.

C o n seq u en ce 2 .1 . In the matrix MT \ i , j] , i, j = 1 ,..., N if we can define some
such M M (h) as M M in the Theorem 2 with size S^Th, h = 1 ,..., H then the
maximum matching has the size Z a < max{(2iV — Sh — Th)}.
Proof. The considering to proof this consequence is similar to the proof of Conse­
quence 1.2, with the fact is the theorem 2 that (Sh + Th — N) is not enough. Theo­
rem the maximum size of possible matchings is N — (Sh+Th — N) or 2 N — Sh — Th-

C o n seq u en ce 2 .2 . Theorem 2 is true not only for M M that lies in the top-right-
hand corner of the matrix M C but also for any position of M M in M C .

Proof. From [3]: an equivalent transformation of a matrix always exists so that
M M can be moved from and position to the top-right hand corner of the matrix
M C .

T h eo rem 3. (Submatrix of ‘0 ’s in M T (S * T) , S + T = N)
In the matrix MT [i , j] , i, j = 1 , . . . , N if we can define such a submatrix

M N [i , j] , i = (N - S + 1),..., N , j = T , ..., N , where S + T = N a n d V M N [i t j] = 0,
then for I { G {1 ,..., (N - S) } , J j G { { T + 1),..., N } : V(/f, Jy) g A (if such a
solution A exists). All of this (/ t, Jy) 0 A create a submatrix called conflicting
zone or conflicting points and must be excluded from the matrix M T .

(a) M atrix o f (b) M atrix after (c) M atrix after
C on nection s Transform ation C orrection

1 1 0 1 0 L 0 6 1* 1 1 1 0 0 1* 1 1 1 0
2 0 1 1 1 1 1 1 1 1* 1 0 0 0 1 ị* 1 0 0
3 1 0 1 1 1 0 5 1 1 1* 1 0 0 1 1 1* 1 0
4 1 1 1 1 0 1 v3 1 1 1 1* 0 0 1 1 1 1* 0
5 1 0 1 1 1 0 2 1 0 1 1 1* 1 0 0 0 0 1*
6 1 0 1 1 1 0 4 1 1 0 1 1 1* 0 0 0 0 1

1 2 3 4 5 6 3 1 5 4 2 6 Conflicting Zone

1
1*

Fig. 4

Proof. Propose that there is one such a MT[i * , j *] = 1 G A, where i* G
(J V - S) } , j * G { (T + l) , . . . , N } . Then we examine the set of resource

J* = {1 , (N — S) } C J , I* has (T+1) has elements and J* has (N —S) elements.
In the solution A for those I* we have (T + 1) pairs and (T + 1) corresponding
resources J j . From the claim that S + T = N we have S + T + 1 > N that means
T + l > N - S o t [J'j > [J*] and there is at least one J ■ G J' : Jj J *, but J ! G J
and recall that J = 1 ,..., N , J* = 1 ,..., [N - S) so J j G { { N - S + 1),..., N }

and = 1 because (1/ , J?) 6 A. But this is contrary to the conditions
of M N (such a M T [I / , J / } e M N) .

In the case J?\ = 0 it is obvious that J- \ 0 A, therefore the
Theorem has proofed the theorem.
T heorem 4 . (Prominent polygonal)

In the matrix MT[i , j] , i, j — 1 ,..., N if we can define such a prominent
polygonal e.g. such a M M \ i , j] : j = (N — S) , ..., N, i = 1 ,..., T, S + T = N + 1
so that = 0 except M M [T , (N — 5)] = 1 then the symmetrical prominent
polygonal consisting of the submatrix MM' [i , j] , i = 1 ,..., { N — S + 1), i = (T ~
1),..., N is a Conflicting Zone because V(*,y) ^ A except M M [T , (N — 5)].

(a) Matrix of (b) Matrix after (c) Matrix after
Connections Transformation Correction

1 1 0 1 0 1 0 6 1* 1 1 0 0 0 1* 1 1 0 0 0
2 0 1 1 1 1 1 1 1 1* 1 0 0 0 1 1'* 1 0 0 0
3 1 0 1 1 1 0 5 1 1 1* 0 0 0 1 1 1* 0 0 0
4 1 1 1 1 0 1 3 1 1 1 1* 0 0 0 0 0 1* 0 0
5 1 0 1 0 1 0 2 1 0 1 1 1* 1 0 0 0 0 1* 1
6 1 0 1 0 1 0 4 1 1 0 1 1 1* 0 0 0 0 1 1

1 2 3 4 5 6 3 1 5 4 2 6 Unstable Point
Conflicting Zone

Fig. 5

Proof. It is obvious than P P = M M i [i i , j\] + M M 2 [*25J2]? where i x = (N —

S) , ..., N , j \ = 1 ,..., (T + 1), ¿2 = [N - S - 1),..., N, and j 2 = 1 ,..., T. Put
T\ = T — 1 and S\ — S , put T2 = T and S1 = 5 + 1, then [MM\] = (5 X * T\)
and [MM2] = (^2 * T2) where Si + T 1 = N and S2 + Î 2 = N . By Theorem
3: V(/t*, J /) g A where I* 6 {1 ,..., {N - 5 X)} and J * G {(T : + l) , . . . , N}-
V(i2*,j2+) ^ A. where î2* G { l , —, {N ~ and J2*{(^2 + 1), N } at the same
time. Remember that when Ti = T — 1, Si = S , T2 = T, 5 2 = S + 1, we get
the following # A, for i = (T — 1) , N and j = 1 ,..., (N — S + 1) except
((j v - s) , r) .
C onsequence 4 .1 . If there is one or several prominent polygonal consisting of
several M M of ‘0 ’s by the way in Theorem 4, then the correspondingly symmetrical
P P 's are conflicting zones and must be nullified.

Proof. It is obvù as that such prominent polygonal can be divided into several

pairs such M M \ , M M 2. As is in the proof of the Theorem 4 and according to
this proof Theorem 4 is true for each of pairs. Therefore the consequence is proved.
C o n seq u en ce 4 .2 . If there is prominent polygonal consisting of N — 1 different
M M of ‘0 ’s e.g. all the part of the matrix above the principal diagonal are ‘0 ’s,
then all the part of the matrix below the principal diagonal must be nullified.

(a) M atrix o f (b) M atrix after (c) M atrix after
C onnections Transform ation C orrection

1 0 0 1 0 1 0 6 ị* 0 0 0 0 0 1* 0 0 0 0 0
2 0 1 1 1 1 1 1 1 !* 0 0 0 0 0 1* 0 0 0 0
3 1 0 1 1 I 0 5 1 1 1* 0 0 0 0 0 1* 0 0 0
4 1 0 1 1 1 1 3 1 1 1 1* 0 0 0 0 0 1* 0 0
5 1 0 1 0 1 0 4 1 0 1 1 1* 0 0 0 0 0 1* 0
6 0 0 1 0 0 0 2 1 1 0 1 1 1* 0 0 0 0 0 1

1 2 3 4 5 6 3 5 1 4 6 2 Conflicting ZoAe

Fig. 6

Proof. We can prove this consequence complete similar to the above proof
when the number of pairs M M i and M M 2 in the prominent polygonal is N — 1.

VI. COMPUTING TIME COMPLEXITY

The time complexity of the adaptive multi-analyzing algorithm for premilinary
processing and analyzing of the initial data consists of the time complexities of
every step. This time complexity depends on the number of edges in the graph or
of the number of the ‘l ’s in M C e.g. the value of R f .

For the first step, the time complexity for creating the*matrix M C is 0[E]
and for creating two vectors Vj and Vr is 0[2N] . Therefore the time complexity
for this step is equal to 0 [E + 2N}.

For the second step, the searching for certain assignments requires 0[TV] and
the reforming matrix M C in the case where such assignment exist it is 0[iV + 2./V].
If the rule 1 take place then the whole solution (whole schedule) is found for
0 \ E 2N] + 0[37V] = 0 \ E + 5iV] time complexity. If the rule 2 or the rule 3 take
place we have defined that the given problem has no whole schedule for such a
time complexity.

For the third step the time complexity of the special sorting, analyzing and
correcting is 0 [2 N * \o g N + E /2 + E/ 2] . If we use the Malgrange algorithm - the
best algorithm for sorting [5] then the time complexity will be 0 [8 N 2 + E / 2 + E /2],

Therefore, general time complexity for A M A is 0[3i? + 2iV*(3 + log7V)]. When
N is a large number this time complexity can be represented in just 0 { E + Nl ogN] .

VII. CONCLUSION
In this study, we have provided a new approach for solving the task assignment

in scheduling jobs and resource in parallel distributed multiprocessing systems.
The key idea in our approach is the divide the process of the scheduling into
preliminary analysing initial data and finding the solution with the help of the
results of our analysis. The time complexity of our proposed algorithm varies from
0[£' + iVlog7Vr] to less, depending on the characters of the initial data of the process
as is shown above. However, the experiments with simulation multiprocessing
systems using our algorithm show that when R f of M C is less than 50% (that is the
number of separates assignment is less than half of the possible maximum number),
these algorithms provide the whole schedule. Then the time complexity of our
algorithm is the same time complexity of the whole problem of job scheduling.
Note that the well-known algorithms have good results when R f of M C> 50% but
when R f of M C < 50% they have a large solution time. Even when the problem
has no solution it takes longer time to find it out using other algorithms then our.
The proposed approach allows us to create an algorithm that adapts to any kind
of the system constraints and the optimization criterion as well. Note that for just
solving the task assignment not all the theoretical base for our proposed algorithm
is used. However, using Consequence 1.2, and Consequence 2.1, about the size of
maximum matching this can provide more help the further process of scheduling.
Therefore the new proposed approach really gives us an instrument for solving
this intractability of the scheduling problem in parallel processing, particular in
real-time systems where the main criterion of optimization is the solution time.

REFERENCES
1. B. Lipsky, Combinatorics for programmers, Mir, M., 1988, 212.
2. X. Papadimitry, K. Stayglitsh, Combinatory optiminzation algorithm and complexity, Mir, M.,

1985, 512.
3. H. Alt, N. Blum, Computing a maximum carnality matching in bipartite graph in time

0 [n 15 y j m /log(n)j, Elsevier Science Publishers B. V. (North-Holland), 0020-0190, 1991.
4. J. Cheriyan, T. Hagerup, and K. Mehlhorn, Can a maximum flow be computed in O(nm) time?,

it was presented at the 17th ICALP, 1990.

5. A. Kaufmann, Introduction a la combinatorique en vue des applications, Dunod, Paris, 1968), 477.
6. H. Mine, Permanents, Addison-Wesley Publishing Company, Inc., 1978, p. 254.
7. M. Marcus, H. Mine, Modem University Algebra, New York, 1966, 350.
8. Berge C., Theorie des <fraph.es et ses applications, Dunod, Paris, 1958.
9. Dahlhaus Elias, Kerpinski Merk. Parallel construction of perfect matchings and Hamilontan cycles

on dense graphs, Theor. Comput. Sei., N. 2-3 (1988), 121-136.
10. Kedem Zri M., Palem Krishma V., Optimal parallel algorithms for forest and term matching, Theor.

Comput. Sei., 2 (1993), 245-264.
11. Hopcroft J. E. and Karp R. M., An algorithm for maximum matchings in birpartie graphs, SIAM

J. Comput., 2 (4) (1973).
12. Yu Ming-Shing, Yang Cheng-Hsing, A linear time algorithm for the maximum matching problem

on cographs, BIT (Dan.), No. 3, 1993, 420-433, 225 - 231.
13. Ford L. R., Fulkerson D. R., Flows in networks. Princeton university Press, Princeton, N. J.,

1962.
14. Glodberg A. V. and Tarjan R. E., A new approach to the maximum flow problem, J. ACM, 35

(1988), 921-940.
15. 1968 (1980).
16. P hillip ‘Krueger, Ten-Hwang Lai, and Vibha A. Dixit-Radiya, Job scheduling is more important

then processor allocation for hypercube computers, IEEE Trans. Parallel distrib. Syst., 5 (1994),
488 - 496.

17. Shen Shen Wu and David Sweeting, Heuristic algorithms for task assignment and scheduling in a
processor network, Parallel Computing, 20 (1994) 1-14.

18. T. L. Casavant and J. G. Kuhl, A taxonomy of scheduling in general-purpose distributed computing
systems, IEEE Trans. Comput., C -30 (3) (1981), 207-214.

19. W. W. CHu and the others, Task allocation in distributed data processing, IEEE Comput., 13 (11)
(1980), 57-69.

20. M. R. Garney and D. S. Johnson, Computer and Intractability - A guide to the Theory of NP -
completeness, Freeman, New^York, 1979.

Department of Computer Science
National University of Technical
Kiev, Ukraine.

Nhận bài ngày 9-6-1995

