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HOW MUCH INFORMATION OF CONCURRENCY
CAN BE GOT FROM FIRING SEQUENCES
IN PETRI NETS
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Abstract. It is well known from [2], [3] that in general processes in Petri nets are not
recoverable from firing sequences. However, firing sequences in Petri nets say something
about concurrency. The paper presents a way to defipe concurrency from firing sequences
of nets. It turns out that the information of concurrency in a firing sequences characterizes

all its processes. oo
N

1. INTRODUCTION ~ “ iif

In concerning the concurrent and distributed systems, the way in which the
temporal/causal ordering events is described is a problem being under discussion.
In the interleaving approach, the fact that a set of events may occur in paral-
lel is described by saying that they may occur in any order. Models based on
true concurrency use instead partial orderings to explicitly describe the tempo-
ral/causal relations among events [4, 6, 8, 9]. In [2, 3], a comparison between
the two approaches has been treated. These authors proved that in P/T nets
processes (corresponding to the latter) are not recoverable from firing sequences
(corresponding) to the former), while in C/E systems they are. This means that
in general in P/T nets true concurrency cannot be obtained from firing sequences.
As firing sequences play an important role in studying the behaviours of P/T nets,
and as a part of true concurrency is carried in them, it is worth studying the ways
to decide what we can say about concurrency from firing sequence of P/T nets.
By following the approach of Mazurkiewicz [7]. Best [2] and Degano 3] to the
behaviours of concurrent systems and developing some results in [5], the paper
presents a way to study concurrency from firing sequences. We show that in order
to obtain information of true concurrency from firing sequences, only the statis-
tical structures of nets comes into play. We also give a necessary and suflicient
condition to a net for which processes are recoverable from firing sequences.

2. LIKE-DEPENDENCY

We follow Mazurkiewicz/s approach to the behaviours of C/E systems [1], [7]
in studying firing :quences of P/T nets.
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Our starting point is the notion of so-called like - dependency. Intuitively
speaking, when there may be causal dependencies among occurrences of two ac-

tions, we consider them to be in like - dependence. Formally like - dependency is
defined below.

Let A be a finite set whose members are referred to as actions. Let A* (A“
respectively) denote the set of all finite (infinite) sequences (or words) over A,
A® := A* U A, The empty sequence is denoted by ¢.

For w € A® and a € A, #,w will denote the number of the occurrences of a
in w and O(w) denotes the set {(a,?)|#,w > 0A0 < ¢ < #,w + 1}.

Definition 1. A like-dependency on A is a reflexive binary relation on A.

Since in general an action can depend on other action while the latter is
independent of the former, a like-dependency is not required to be symmetrical.

Let D be a like-dependency on A. Each w € A*, w may represent a’ compu-
tation. Then the partial ordering of causal dependency relation <,, is defined as
follows.

Definition 2. The partial ordering generated by w over D is (O(w), <), where
<y is the reflexive and transitive closure F}, of the relation F,, defined by

(a,2) Fy(b,7) iff the j-th occurrence of b precedes the i-th occurrence of a in
w and (a,b) € D.

Example 1. Let A = {a,b}, D = {(a, a), (b,d), (b,a)}, w = (ab)* = abab... € A¥.

Then (O(w),<y) is represented by the following graph (the transitive arcs are
omitted).

<.

(a’ 1)

!
(a,2) (b,1)
] I
(a,n) (byn—1)
! !
(b,n)
]

... Now, we introduce a partial order among members of A*.
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Definition 3. For w, w’ € A®, w C v’ iff O(w) = O(w’) and <,C<y (w C w’
iff the partial ordering generated by w over D is coarser than the one generated
by w').

We consider the behaviour of a computation system as a pair of

e A like-dependency, which approximately represents dependency in the

system. _{

e subset C of A®°, which represents possible computatlon of the system (the
interleaving behaviours of the system).

Then, for each w € C, (O(w), <y) represents uncertainty the causal dependen-
cies among occurrences of actions in w, some causal dependencies of which are

introduced by going to extremes. .

Now, we consider what the relation C means.
In the sequel, let name : A x {1, 2,...} — A be defined as

name ((a,?)) = a for all integers ¢ > 0,

and let pref: A — 24" bea mapping which returns all prefixes of its argument.
The mapping name is extended to a homomorphism from (A x {1, 2,...})*® to A®
in the obvious way. Furthermore, for w, w’ € A*, we write w —;Tv w’ iff there is a

derivation from w to w’ in the rewriting system (A, P) with P = {ab — bal(a, b) ¢
D}.'

Theorem 1.
(1) Let w, w' € A*, w T w' if and only if w —— w'.
(ii) Let w, w' € A¥, w C w' +f and only if (O(w) = O(w')
A(Vv € pref(w’) Ju € pref(w) 3z € A* : (u - vz)).
Proof.

(i) Only the ’only if’ part is not obvious and can be shown by induction on
the length |w| of w, and we leave it to the readers.

(ii) («=): Let €1, e2 € O(w) = O(w') and e; <, ez. There must be v in
pref(w’) such that e;, e; € O(v). Let u and z be such that u € pref(w) and
u —> vz. From (i) it follows e;, e € O(u). By the definition of <, we have
e <y €2, and thus e; <, ey by (i). Hence, e; <, e, by the definition of <,,

(=): Let v € pref(w’). Then O(v) C O(w). Let u € pref(w) such that
O(u) 2 O(v). It follows that <,= (<,,)N(O(u) x O(u)) C (L) N(O(u) x O(u)).

Let o be a topology sorting of (O(u) \ O(v)) by <, and z = name(a). It can be
seen from the definition of <, that (<, N(O(u)x O (u)) C£<,, . Hence, <,C<y; .

By (1) we get u — wvz. a
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Theorem 1 says that for w, w’ € A%, w C w’ if and if they have the same set
of action occurrences and w’ is derived from w by applying a (finite or infinite)
number of rewriting rules ab — ba with (a,b) ¢ D.

Since independent events can occur in any order, it follows from Theorem 1
that if w € C, for each w’ such that w C w’, w’ € C as well.

Corollary 1. Let = be defined as w = w' iff <,=<y then w = w’ if and only if
w —1;—> w', where Dy is the symmetrical closure of D.

8

3. INFORMATION OF TRUE CONCURRENCY IN FIRING
SEQUENCES OF P/T NETS

In this section we investigate how much information of true concurrency can
be got from firing sequences of P/T nets. We shall compare the partial orderings
among events introduced by processes in P/T nets to the partial orderings gener-
ated by firing sequences with respect to the natural like-dependencies defined by
the structure of nets.

A nets is a triple (S,T; F), where
e SNT = oc;
o FC(SxT)u(T xS).
Let, as usual, t* = {s € S|tFs}, *t = {s € S|sFt} for a net (S,T; F).

An occurrence net is a net = (S, T; F) such that

.

e The transitive closure of F, defined by F*, is irreflexive;
» VseS, ["s| < 1At <1
Furthermore,

e SUT is considered as ordered by <, defined as F'*;
e The slices of K are maximal subsets of S which do not contain elements
related by <.

A marked place/transition net (P/T net) is a quintiple N = (S, T; F,W, M),
where ¥

e (S,T;F) is a net, with S and T finite;
e W :F — N assigns a positive weight to each arc;
e M:S — N is the initial marking of N.

Givena P/T net N = (S, T; F,W, M), a firing sequence of N is { MotoMt; M;...},
where for i =1, 2, ...

e M, are markings of S and My = M,t; € T
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o M;[t; > M;;,, where M[t > M’ implies that Vs € S, M(s) > W(s,t) and
M'(s) = M(s) — W(s,t) + W(t,s).

We shall call the sequences obtained from firing sequences by dropping the mark-
ings also firing sequences without fear of confusions.

Given a P/T net N = (S,T, F;W, M) and an occurrence net K = (S',T'; F'),
a P/T process of & is a function

p:K— N
such that

o p(S')CS,p(T") CT;
¢ (S'UT',<') is finitely preceded. Let °K be the set of its minima;
o Vs S, M(s) = {1(s) N°K|
o Y'eT'.Vse S
(1) W(s,p(t") = |p~ (s) n*t'|,
(i) W(p(t'),s) = [p~"(s) nt"|.
Definition 4. The labeled partial ordering generated by a process p: K -— N of
a P/T net N (denoted as above) is (T”, p|7+,<,), where <, is F"*|7  q.

From the results in [2], [3] it follows:

A

For a P/T net N, o is a firing sequence of N if and only if there exists a
process p : K — N of N such that o = p(f), where § is a topology sorting of T’
by <,, p is extended to a homomorphism on sequences in obvious way.

It can be seen easily that if p: K — N is a process of N with K = (S',T'; F'),
S'UT' is countable. Furthermore, since isomorphic processes are not distinguished,
in the sequel 7" is usually considered as a subset of T' x {1, 2,...} satisfying:

(i) t' = (a,n) € T' implies (a,t) € T' for 0 < ¢ < n,

ii) (a,n), (a,n’) € T' and n < n’ implies (a,n’) £, (a,n),
P

(iii) p(t) = name(t) for all t € T".

As in [4] processes are considered to be equivalent iff the partial order of event
occurrences agrees in them. We give the following definition.

Definition 5. Let K and N be denoted as above. p: K — N is a process of N.
(T',<}) is called a concurrency characteristic of p (characteristic of p for short).

As in [2], let us denote for a firing sequence o and for a process p: K — N of
N with K = (S',T"; F'):
Lin(p) := {a]a = name(f) with § being a topology sorting of 7' by <;}.
Proc(a) := {p|a € Lin(p)}.

From the resul’ in [2], [3], we have
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Theorem 2. Let N be a P/T net, a is a firing sequence of N if and only if there
exists a process p: K — N of N with K = (S',0(a), F') such that a = name(f)
with B being a topology sorting of O(a) by <, (p ts said to correspond to a).

This is the first result on the relationship between firing sequences and pro-
cesses. Now we give some anothers.

Definition 6. Let N = (S,T; F,W,M) be a P/T net.

D = {(t,t")|t,t' e TA(t*N*t' # OVt =t')} is called like-dependency generated
by N. _
Let, in the sequel, N be a P/T net, D its like dependency, a a firing sequence

of N with (O(«a), <,) being its partial ordering on D, and let < be defined in as
Definition 3 w.r.t D. '

Theorem 3. Let K = (S',0(a),F') and p: K — N be a process of N corre-
sponding to a, <;= F'"*. Then (0(a),<,) is coarser than (O(a), <q).

-~

Proof. 1t is sufficient to prove:
- V(a,?), (b,7) € O(a) : (a,?) F'2(b,j_) = (a,1) <q (b, 7).

we have

(a,2)F'%(b,5) = 3s € S" : (a,3) F'sF'(b, 5)
= a*N°*b D {p(s)} = (a,b) € D.

Since a € Lin(p), the ¢-th occurrence of a precedes the j-th occurrence of b in a.
By Definition 2 (a,b) € D implies (a,?) <, (b,5). O

Theorem 3 says that if (a,?) and (b, j) are not related by <,, neither are they
by any process corresponding to a. That means we can get some information of
concurrency from firing sequences of the net by its like-dependency.

Example 2.

Let N =

Then, D = {(a,a), (5,8), (5,a)}.

a = (ab)“ is a firing sequence of N, and (0(a), <4) is the same as in Example
1. A process corresponding to « is the following
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(a,1) (8,2) (a.3)

In this case, Proc(a) contains one process, and (O(a), <o) is its characteristic.

Theorem 4. If the parallel occurrence of the same transitions is tmpossible in N,
(this means that if p: (S',T'; F') — N is a process of N, and if (t,7), (t,7) € T'
with1 < j, (t,2) <p (¢,7), then<o= U <p.»

pEProc(a)

Proof. From Theorem 3 we have
U swrc<a.
pEProc(a)

Now we have to show the inverse inclusion. It is sufficient to prove that V(a, 1), (b,7) €
O(a) : (a,t) <4 (b,5) = 3p € Proc(a) : (a,t) <, (b, 7).
Let p be a process of N corresponding to a. If (a,7) <, (b,7), or a = b, the
theorem has been proved. Suppose that (a,¢) £p (b,7) and a # b. Since (a,b) €
D = 3s € a®*N*b. Let 51 € (a,1)® and sy € °(b, 7) such that p(s;) = p(s2) = s. Of
course, s; 7 sz. Now we construct a occurrence net XK' = (S’, 0(a), F"), where

F" =F'\{(s2,(b,5))} U{(s1,(b;5))},

P=p.

It can be seen that F")* is acyclic and p’ : K/ — N is a process in Proc(a)

as well. Furthermore, (a,7) <p (b,5). O

The theorem will not be true in general without the assumption that the
parallel occurrence of the same transitions is impossible. Let us consider the
following example.

Example 3. Let ) a
v O—1—O

Then, aa is a firing sequence of N with (O (aa), <a4) is represented by

(a.1) (8.2)

while D - D
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(3,1)

| O——0

(a.2)

and its characteristics is ({(a, 1), (a,2)},0).

Theorem 4 says, in the case when the parallel occurrence of the same transi-
tions is impossible in N, that the information of concurrency in each firing sequency
is maximal amount derived from all processes corresponding to the firing sequence.

Theorem 5. If o ts a firing sequence of N and a T 3 then 3 is a firing sequence
of N also. Moreover Proc(a) C Proc(g).

Proof. 1Tt follows from Theorem 1 that if is a firing sequence, then Proc(a) ¥ 0.
Let p € Proc(c), from Theorem 3 we have <,C<,C<g, which implies 8 € Lin(p).
Hence, f§ is a firing sequence of N, and every process in Proc(a) is a process in--

Proc(8), too. O

In the sequel, we assume that N be such net in which the parallel occurrence
of the same transitions in impossible. We have the following corollaries.

Corollary 2. For firing sequences o, 3 of N, Proc(c) = Proc(f) if and only if
o = 3, where = s defined as in Corollary 1. :

Proof. The ’only if’ part follows from Theorem 4, and the ’if’ part follows from
Theorem 5. [J

Corollary 3. For a firing sequence o of N, all processes in Proc(a) are equivalent
(by = defined in [2]) if and only if (O(a),<a) is their characteristic.

Corollary 3 shows that the.ﬁring sequence approach and the process approach
to the behaviour of P/T nets coincide only for a restricted class of Petri nets
concluding 1-safe nets.
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