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Hedge algebras were in troduced  in o rder to  m odel th e  n a tu ra l s tru c tu re  of dom ains of lin
guistic  variables. In N. C a t Ho and H. Van N am  [7], we in troduced  a  refinem ent s tru c tu re  of 
hedge algebras ( RSH A, for sh o rt ), and som e fundam en ta l p rop erties  of th is  s tru c tu re  were 
exam ined. In  th is  p aper, th e  m ain p ro p erty  of th e  RSH A is given, and  it is also shown th a t  
m any  linguistis values, w hich con tain  th e  d isjunction  and  con junction , can  be expressed in 
th e  RSHA.
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I. IN T R O D U C T IO N

In the traditional approach to  human reasoning, vague concepts are expressed by 

fuzzy sets, and linguistic hedges could be viewed as operators on fuzzy sets. In [9], Zadeh 

pointed out that the set of linguistic values of linguistic variables can be regarded as a 

formal language generated by a context-free grammar. These ideas suggested the authors 

in [5] to consider the sets of such linguistic values as formal algebras w ith  operations to  

be linguistic hedges, and an axiom atization for the so-called hedge algebras was given. It 

is shown that the meaning of vague concepts can be expressed by elem ents in a suitable 

algebraic structure. Furthermore, the meaning of vague concepts can be also expressed by 

their relative position in this structure. Notice that the meaning of ’true’ and ’false’ in the 

classical logic may be expressed by the relationship between the elem ents in a two-elem ents 

Boolean algebra.

In this approach, every linguistic domain can be interpreted as an algebra A X  =  

.(X, G, H  < ), where (X , <) is a poset and G is a set of primary generators and H  is a set of 

unary operations representing linguistic hedges under consideration.

The assum ptions adopted on H  are simple and natural: H  can be decom posed into 

two disjoint subsets H + and H~  so that each hedge in H + is converse w .r.t. every one in 

H~  and that H + +  I  and H~ +  / ,  where I  is the identity, i. e. Ix — x for every x in X,  

are lattices of finite length. It can be seen that many finite sets of linguistic hedges satisfy  

these conditions.
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In [7] we investigated and gave an axiom atization for the so-called refinement struc

ture of hedge algebras. In order to obtain this structure, we restricted our consideration  

to  the specific hedge algebras called the PN-consistent hedge algebras, we constructed the 

distributive lattices of hedge operations by the action of operations U and n on H + +  I  

and H~ +  / ,  which are modular lattices of finite length and satisfy the condition (Co). 

It is shown that any PN -consistent hedge algebra can be refined to a RSHA, and some 

fundam ental properties of the RSHA were examined. In this paper, we continue our in

vestigation on the RSHA. It w ill be shown that every RSHA w ith a finite chain of the 

primary generators is a lattice.

The paper is organized as follows. In Section 2, we shall recall the way of constructing  

the distributive lattices of hedge operations, and some necessary notions will be introduced. 

In Section 3, we shall review the RSHA and some properties of this structure will be also 

reformulated. The main property of the RSHA, which says that every RSHA w ith a finite 

chain o f the primary generators is a lattice, will be given in Section 4. Finally, some 

concluding remarks are presented in Section 5.

II. P R E L IM IN A R IE S

For the sake of convenience, we will recall some notions introduced in [ l] . Let P  be 

a partial ordered set (poset, for short).

D efin ition  1. By  *a covers b” in a poset P, it  is meant that a > b, but that a > x > b for no 

x e  P.

In a poset P  of finite length w ith the least elem ent denoted by O, the height h(x) 

of an elem ent x e  P  is, by definition, the 1. u. b. of the lengths of the chains O =  

xq < 2̂ 1 <  ... < x„ =  x between O and x. If P  has a universal upper bound 1 then clearly 

/i(l) =  l (P),  where l(P)  denotes the length of the poset P.  Clearly also, h(x) =  1 iff x covers 

O.

D efin ition  2. A poset P is said to be graded poset if there exists a function g: P —+ Z from P to 

the chain of all integers (in their natural order) such that:

Gl .  x >  y implies g(x) >  g(y)

G2. If x covers y then g(x) =  g(y) +  1.

It is known that any modular lattice of finite length is graded by its height function 

h(x).  Let L b e a  m odular lattice of finite length, we can define a relation R on L as follows



V s, y G L, (x, y) G R i f f  h(x) — h(y).

One easily shows that R is an equivalence relation and then we have the following:

L — U Li, w h e r e  Li = {x  G L\ h(x) =  i }  fo r  i  =  0 a re  th e  e q u iv a le n c e  c la sse s  

b y  th e  r e la t io n  R.

We shall need the following condition, which is satisfied by any set of hedges used in 

application:

(Co)Either x > y or x <  y for any x G Li and y G Ly and i ^  j.

P rop osition  1. Let L be a modular lattice of finite length and it satisfies (C0). Then the following 

condition satisfies:

If there exists an index i  G { l,... ,i(L ) — 1} such that |Z.j| > 1 then =  |£ i+ i| =  1,

where \Li\, | _ j |, |£*+i| denote the cardinalities of Li, L ,_ i, Lx+i, respectively. Moreover, Li+1 =

{ v i € i .x} and Lj_i =  {Azgx,,}, where A and V are infimum and supremum in L, respectively.

Proof. The proof is straightforward.

For more details on lattice theory we refer the reader to [1]. We proceed now to 

consider a hedge algebra A X  =  ( X , G , H , < ) ,  where (X, <) is a poset, G is a set of the 

primary generators and H  is a set of unary operations representing linguistic hedges under 

consideration. It is assumed that H  can be decom posed into two disjoint su b se ts ii+ and 

H~  such that H + +  I  and H~ +  I  are modular lattices of finite length, where I  is the

identity, i.e. Ix — x for every x in X.  By our convention, the identity I  w ill only stand in

a prefix of an expression, for instance I...Ih ...h ’x, and it means that if I  occurs explicitly  

in an expression, then every hedge operation applying to I  has no effect, i.e. hlu =  Iu.

We will denote by N + and N~  the lengths of H + I  and H~  +  I,  respectively, and 

denote by N at the set of all non-negative integers. Suppose that / + and f~  are graded 

functions of H + 1 and H~ + 1 ,  respectively, then /+ ( “ ) : —> N at satisfies /+ ( - ) =  0

and if h covers k in +  I  then f + ^~ {̂h) =  / +*~*(fc) +  1.

Unless otherwise stated, in the sequel we shall always adopt the assum ption that 

H + 1 and H~ + 1 are modular lattices of finite length and they satisfy (Co). From now on,

V and L stand for the unit-operations in H + 1 and H~  +  / ,  respectively. W ith this notation  

we have f + (V) =  N + and f~{L)  =  N ~ . Moreover, we have the following representations:

H + + 1  =  ufJoH+,  where H+ = { h e H + \ f+{h) =  *} for t =  0,1 , . . . ,N+,

H~  +  I  =  UiL0H ~ , where if,” =  {h e  H + \ f~{h) =  i'} for i =  0 ,1 ,..., N ~ ,



We will now construct lattices of hedge operations, which are generated from H + I  

and H~ +  I  by the action of binary operations n and U as follows:

The first, we see that the following restrictions are reasonably imposed on the two 

binary operations n and U on the elem ents of H + I :

For any hi, h2,h 3 e H + I  and H~ +  I

1. h\ U h2 — h2 U hi, hi PI h2 — h2 ^ hi*

2 . h i  U {h2 ^  ^3) =  (^1 ^  ^2) U /13.

hi n  {h2 n /13) =  (hi n h2) n /13.

3. hi U {h2 n /13) =  (/¡a U h2) n {hi U /13).

hi  n {h2 U /13) =  {hi n  h2) U {hi n  /13).

4. hi U {hi n /13) =  hi, hi n  (hi U h2) =  hi.

If h < k in H + +  I  for h,k  e  H + + I  then we set h u k  =  k and hC\ k =  h. If there exists

an index i e  { 1 , . . . ,N + -  1} such that > l ,  suppose that H* =  {h\ ,  ...,h'n},  by P ro .l

we have H^_1 =  {h*-1 } and H ^ 1 =  {^’+1}, where h'~l =  Inf H*  and h,+ 1 =  sup H + . And

the following graphical representation is a sublattice of H + +  / .

Let us denote by LJ7+ and L+ the sets of elem ents generated from H*  and H + +  I  

by the action of operations n and u, respectively.

Let L H + +  I  =  {L + ,H *  +  l ,n ,u ) ,  it is easily seen that L H + +  I  is an algebra w ith  

tw o the binary operations n and u. We can define a relation on L H + +  I  as follows: for 

any h, k € L H + +  I ,  h <  k iff h U k =  k. It is easy to check that /iUfc =  fcifF/infc =  /i and 

so <  is ordering relation on L H + +  I. It is known that L H + +  I  is a lattice w ith n and U 

to be supremum and infimum, respectively. Moreover, we have:

h' 1 U h =  h and h* 1n h  =  hi 1 for any h €  L H + , and hi+l  u h =  hi+1 and /i‘+1 n h  =  h 

for any h e  L H + .

Fig. 1.



It is shown th a t  / / t+ is the  free d is tr ibu tive  lattice w ith  n generators  of 77+ and the 

sub la tt ice  of 77+ +  7 in F ig . l  will be replaced by the  following represen ta tion  in L H + +  I.
iH  

O k
/i

By an analogous way, we can construct the lattice, which is generated from H~ +  I 

and we will also write LH~  + 1 — + 1, n , u ) .  This causes no confusion because 77+

and 77 ~ are assumed to be disjoint and so are L H + and L H ~ , where L H + =  L H + + 1 \  {/} 

and LH~  =  LH~  +  I  \  { /} . We obtain the following result.

T h e o r e m  1 . [LH+ +  7, 0 , U, I, V < ) and [LH~ + I, n ,  U, / ,  V <) are distributive lattices of finite 

length.

Let 1+ =  {0 ,1 ,..., N + } and I~ =  {0 ,1 ......-AT- }, and SI+ = {i  e  /+  \  |/ /+ | > 1} and

S I  =  {i e  I \  \H+\ >  l} .

For any i in S I + (SI~),  LH^ (LH~)  is the free distributive lattice w ith the generators 

of and is a sublattice of L H + +  I(LH^).

In the rest of this section, we make some necessary preparations. We first recall the 

following notion as defined in [5].

D e f in it io n  3 . For any h,k  € LH, we shall write hx < <  kx (hx < <  Ix) if for any h! , k' E UOS  

and any m ,n  6  Nat, V nh'hx < V mk!kx (V nh!hx < Ix). If the latter inequalities are always strict 

then we shall write hx < <  kx (hx «  Ix).

For any two hedges h, k in L H , if x < hx im plie^/iz < khx and hx < x implies khx < hx 

then k is said to be positive w .r.t. h. In the opposite case, k is said to be negative w .r.t. 

h. Recall that we only consider hedge algebras in which H + +  /and  H~ +  I  are modular 

lattices of finite length and satisfy (C0). A more im portant definition is the following.



D efin ition  4. A hedge algebra A X  =  (X , G, H , <) is said to be PN-consistent if the unit operation 

V in H + + I is positive(negative) w.r.t. h in H + or in H~ for i in S I + or in S I ~ , respectively, 

then V is also positive (negative j w.r.t any operation in H f  or in H ~ , respectively.

Let LH = L H U LH~  and k(hx) =  khx for any h,k  e  LH and x t. LH(G),  where 

LH(G)  denotes  the set of all elem ents generated from G by means of hedges in LH.

D efinition  5. For any h , k  €  LH and x in LH[G). If h > k in L H + + I or in LH~ +  I  then

hx > kx if hx > x and hx < kx if hx  < x.

If i e  I + \  S I + { r  \  SI~)  then H I + (HI~)  has only one elem ent and we also write  

L H f  =  H*{ LH~ =  H~).  W ith this notation we have:

LH + + I ~  ufJ()LH+  and LH~ + I =  ufL0L H f . Let us denote by UOS the set of two 

elem ents V  and L, which are unit-operations in L H + +  I  and in LH~ +  I,  respectively.

As usual, the notation x < y means that x > y or i  and y are incomparable. 

R em ark. From the construction of the lattices L H + +  I  and LH~ -+-/ and these notations, 

it is easly seen that the lattice L H + + I (or LH~  +  I) also satisfy condition (C0) with 

replacing L{ and Lj  in (Co) by LH+  and L H f  (or LH^ and LHJ),  respectively.

III. R E F IN E M E N T  S T R U C T U R E  OF H E D G E  A L G E B R A S

This section reviews refinement structure of hedge algebras. We start with introduc

ing an axiornati?.ation for refinement structure of hedge algebras. Let us make necessary 

notations.

For every subset Y  of LH(G), LH{Y)  denotes the set of all elem ents generated from

Y by m eans of hedges in LH.  If Y  consists of a single element, say x, then we shall simply 

write LH(x).  For any two hedges h,k  in LH,  if x < hx iff kx < x for every x in LH(G)  then  

h and k are said to be converse, or h is converse to k and vice versa. If x < hx iff x < kx 

for every x in LH(G)  then h and k are said to be compatible.

Let us denote by LH * the set of all strings of hedges in LH.  For any 6,6' e  LH* , we 

shall write 6 < 5' if for every x in LH(G), x < 6x or < S'x implies x < 6x < S'x and 6x < x 

or 6'x < x implies S'x < Sx < x.

We now recall the axiom atization for refinement structure of hedge algebras.

D efin ition  6. An algebraic structure A X  =  (X , G , L H , <) is said to be a refinement structure 

of hedge algebras (or, briefly, RSHA) if (H[G), G, H, <) is a PN-consistent hedge algebra and the 

following conditions hold:



(Cl) Every operation in L H + is a converse operation of the operations in L H ~ .

(C2) The unit operation V in L H + is either positive or negative w.r.t any operation.

(C3) If u and v are independent , i.e. u ^ LH(v) and v ^ LH(u),  then x ^ LH(v) for any 

x ^ LH(u). Especially, if a,b €  G and a < b then LH(a) < LH(b).

(C4) For x ^  hx, x ^ LH(hx).  For any h k and hx < kx :

(i) If h,k  £  LH^ (LH~) for i £  S I + (SI~) and hx ^  kx then Shx < Skx for any S €  LH*. 

Furthermore, for any y €  LH(kx) such that y > Skx, Shx and y are incomparable, and for any 

z €  LH(hx) such that z  < Shx, Skx and z  are incomparable.

(ii) h'hx < k' kx for any h!, k' S UOS, otherwise.

Furthermore, if hx ^ kx and h €  L H + (L H ~ ) for i 6  I + (I~) then hix  and kx are indepen

dent for any hi  6  L H * (LH~ and hi k.

(C5) If u G LH(x) and for each i €E I + (/~ )  such that u ^ LH(hx) for any h £  L H + (LH¡~) 

and u > v(u < v) for v 6  LH(hx) then u >  h'v(u <  h'v) for each h' g  UOS.

D efin ition  7. Let x and ú be two elements in a RSHA A X  =  (X,G,  LH, <).  The expression 

hn...hiu is said to be a canonical representation of x w.r.t. u in A X  if:

(i) x =  hn...hiu;

(ii) hi...hiu /  hi- i . . .h iu  for every i < n.

All results in the rest of this section (with more details and proofs) can be found in 

N. C. Ho and H.V. Nam [7],

T heorem  2. Let A X  =  (X, G, LH,  <) be a RSHA. Then the following statements hold:

(0) If hx < <  kx then hx < kx.

(1) The operations in L H + or the ones in LH~ are compatible, i.e. for any h, k €  L H + (L H ~ ), 

for any x €  X, x < hx iff x <  kx.

(ii) If x & X  is a fixed point of an operation h in LH, i.e hx =  x, then it is also a Sxed point 

of the orthers.

(Hi) If x =  hn...hiu then there exists an indexi such that the suffix hi...hiu of x is a canonical 

representation of x w.r.t. u and hjX =  x for all j  > i.

H  For any h, k €  LH, if x < hx(x > hx) then Ix  < <  hx (Ix > >  hx) and if hx < kx and 

h ^  k and there is no i in S I + or in SI~ such that both h and k together belong to L H + or L H ~ , 

respectively, then hx < <  kx.

(v) If h ^ k and hx =  kx then hx is a fixed point.

Theorem  3. For every operation h G LH, there exist two unit-operations h~ and h+ such that h~ 

is negative and h+ is positive w.r.t. h and for any hi , . . . , hn €  LH, V nh~h < hn...hih < V nh+ h.



The following proposition, which has been proved in [7], shows that we can deduce 

om the fact that hx is a fixed point, that kx is also a fixed point and vice versa, if both  

h and k together belong to LH^(LH~)  for i G S I + (SI~).

P rop osition  2. For any X  €  X  and i €  s I + (sI~) .  ỈỈ there exists a hedge h €  L H f  (L H ~ ) such 

that hx is a fixed point then so is kx for any k €  LH*(LH~) .

Recall that the RSHA is constructed from a given PN-consistent hedge algebra. 

Naturally, one may ask whether the PN-consistent property of the unit-operation V in 

L H + +  1 still holds if we replace H*  and H~ by L H f  and LHị , respectively. The following 

proposition answers this question.

P ro p o sitio n  3. If the unit operation V in L H + +  I is positive ( n e g a t i v e )  w.r.t. h in H* or in 

H~ for i  in S I + or in S I ~ , respectively. Then V is also positive (negative) w.r.t. any operation in 

l h :  or in LH , respectively.

Proof. The proof for this proposition we refer the reader to  [7].

P rop osition  4. For any h, k £  L H * (LH~),  here i  6  S I + (SI~).  We have the following assertions:

(i) Shx >  X (Shx < x) if f  Skx >  X (Skx <  X )  f o r  a n y  s  €  LH* a n d  X € X.  

fiij If hx Ỷ kx th e n  Shx a n d  6'hx a re  in c o m p a r a b le  iff 6kx a n d  S'kx are in c o m p a r a b le  fo r  

any s, S' €  LH* and X  E X.

(Hi) Sh > 6'h iff 8k ^  6'k for any 8, S' €  LH*.

IV . M A IN  TH EO R EM

In this section, we shall formulate a main property of RSHA, which say that a 

RSHA is a lattice if the set of primary operators is a finite chain. Before stating the main 

theorem , the following theorem, which will give us a characterization to determine the 

relative position of elem ents in a RSHA, is necessary. ■

T heorem  4 Let X =  hn...hỵu and y =  km...kịU be two arbitrary canonical representations of X 

and y w.r.t. u, respectively. Then there exists an index j  < min {m, n} +  1 such that hi =  ki for 

all i <  j  and

( l )  X < y  if f  e i th e r  h j X j  <  k j X j  and S k j X j  <  8 ' k i X j ,  i f  there  ex is ts  i 0 in S I + o r  in SI~ such  

th a t  b o th  h j  a n d  k j  to g e th e r  b e lo n g  to L H * or  L H ~ , resp ec t iv e ly ,  o r  h j X j  <  k j X j  f o r  o t h e r w i s e ,  

w h e r e  X j  =  h j - i . . . h i U ,  6 =  h n . . . h j + 1, 6 '  =  k m . . . k j + i .



(2) x =  y iff m =  n =  j  and hjXj =  kjXj.

(3) x and y are incomparable iff there exists i’o in S I + or in SI~ such that both h¿ and kj 

together belong to LH^ or LH~,  respectively, and one of the fowllowing conditions holds:

(3’) hjXj and kjXj are incomparable 

(3”) hjXj < kjXj and SkjXj < S'kjXj,

(3”’) hjXj > kjXj and SkjXj > S'kjXj,

Proof. We refer the reader to [7] for the proof of this theorem.

Corollary 1. If x is not a fixed point and u is an arbitrary elem ent in X ,  then the

canonical representation of x w .r.t. u, if it exists, is unique, i.e. if hn...hiu and km...kiu 

are two canonical representations of x w .r.t. u then m =  n and hi =  ki for all i < n.

We can now formulate our main result.

Theorem  5 (Main Theorem ). Let A X  =  [X,G,  LH, <) be a RSHA. If G is a ñnite chain then 

AX is a lattice. Moreover, for any two incomparable elements x and y in X,  then there exist 

two hedge operations h and k in LH and an element w in LH[a),  where a  £  G, such that both 

h and k together belong to LH t+  or LH~o for an index i’o in S I + or in S I ~ , respectively, and 

x — Shw, y =  6'kw, where 8, 6' £  LH*, and

6(h U k)w V 6'(h U k)w, if hw > w and hw and kw are incomparable
8(h D k)w V 6'{h PI k)vj, if hw < w and hw and kw are incomparable

x V y =  <
Shw V 6 hw, if hw > kw
Shw V S'hw, if hw < kw.

8{h PI k)w A S'(h D k)w, if hw > w and hw and kw are incomparable
S(h U k)w A S'(h U A:)to, if hw < w and hw and kw are incomparable
Shw A S'hw, if hw > kw
Shw A S'hw, if hw < kw.

Where V and A stand for supremum and inBmum, respectively.

Proof. Since G is a finite chain and by (C3), it follows that if x and y are incomparable in 

X  then there exists an elem ent a in G such that both x and y together belong to LH(a).  

Thus, there exist two canonical representations of z and y w .r.t. a as follows: 

x =  h„...h*a, hf £  LH,  here i =  1,..., n 

and y =  h^.-.h^a, h\  €  LH,  here i =  1, ...,m.

By Theorem 4, there exists an index j  < min  {m, n} +  1 such that hf =  hv. for any i < j

and set hf =  h  ̂ =  ĥ . Moreover, by also Theorem 4, there exists an index i0 in S I +

or in SI~  such that both hf and h? together belong to L H Ï  or L H ~ , respectively. Let 

S =  h*...hx- , , ,S'  =  hv. . .hy_,,, w ith this notations we have: x =  Shw and y =  S'kw here
m  j-rl1 1 &

w = hj- i . . .hia.  By Theorem 4, we have the following cases:

x V y =



(1) hw and kw are incomparable.

(2) hw > kw and S'hw < 6hw.

( 3) hw < kw and S'hw >  Shw.

We shall prove the theorem for the supremum. The proof for the infimum is by 

duality.

Case ( l ) .  Assume that hw and kw are incomparable. If hw > w,  by Pro. 2 it follows 

that ( h u k ) w  > {hw,kw}.  By (C4) we have S ( h u k ) w  > Shw and S'(hL)k)w > S'hw. Thus, 

S(h u  k)w V S'(h u  k)w >  {x, y}. For any t G LH(a) such that t >  {x, y},  we have to prove the
%x

following assertion: t > S(hU k)w V S'(h u  k)w. .

We have possible cases of t as follows:

(1 ’) t i  LH(w)

(1” ) t G LH{w)  and t f  LH(h'w)  for any h' G LH?o(LHr) .

(1’” ) t G LH{h0w) for some h0 G L H t ( L H 7 ) .

Suppose that t =  kp...kia is the canonical representation of t w .r.t. a. Clearly, 

w =  h j- i . . .h ia  is the canonical representation of w w .r.t. a.

First, we shall prove the assertion for the case t LH(w),  by Theorem 4, it follows

that there exists an index j'  < j  such that hi =  ki for any t < j '  and kj'h > h f u ,  where

u =  hj' -i- . .hia.  If there is no index i i  in S I + or in SI~  such that both hy< and kj> together 

belong to L H + or LH~,  respectively, then by Theorem 2 (iv) and (C3) and (C4), it implies 

that kj'U > >  hjiu,  i.e. V qk'^kj'u >  V q‘h'^hj'U for any G UOS and q, q' G Nat. By

Theorem 3, there exist h', h", h'" G UOS such that:

S(h U k ) h j - i ...hj'U < V n~3 ~ 1h'hjiu, a n d  

6'(h u  k)hj-i . . .hj>u < V m~:,'~1h"hj'U> an d  

kp...kjiu > V p~3 ~1h'"kj'U.

Thus, we have t >  {5(/i U k)w, S'(h U k)w}  which shows that t > 6(h U k)w V S'(h U k)w. 

If there exists an index Ú G S I + (SI~)  such that hj',kj> G LH^ILH^),  by (C4) we have

S h h } — 2 * *. h j 1 1 kj  t xjl ^ S h h j — and 

S'khj-i. . .hji  + ik] iu > S'khhj-i . . .hji+ ihjiu,  and 

S(h  U k ) h j - i . . . h j i + i k j i u  > S ( h U  k ) h j - i . . . h j i + i h } iu,  and 

S ' (h  U k ) h j ^ 1. ..hji + i k j i u  > S ' (h  U k ) h j ^ i . . . h j i + i h j i u .

Since t G LH(kjiu)  and t >  {x, y} ,  it implies that t > 6hh} - 1...h]>+ ik]<u)

By Pro.3(ii) it follows that 6hhj- i . . .h ji+ik}'ix and S'khj-\ . . .hj ‘+ikj iu  are incomparable, and 

hence t > {6hh} - 1...hji + ik:, 'u,6'khj- i . . .hj i+ ik] iu} (*).



We now consider hy< + i and fy'+i- If hj>+1 /  fcy>+i, we have /iy. + 1fcy.u ±  Jfcy<+1fcy,u. 

Moreover, since (*) and by Theorem 4, we have fcy<+iA:y»u > h}i+ 1kj,u. If there is no 

index i2 6  S I + {SI~)  such that h}-i+ ik}-i + i 6  LH^(LH~7) , then by Theorem 2(iv) and (C3) 

and (C4), it implies that kji+ ikj<+1it »  /iy/+1fcy«u. By also an analogous argument as in 

the case of ky< and /iy# we obtain: t > {6(h u A;)/iy_i„./iy» + 1A;y<u, 6'(/i U fc)/iy_1.../iy/+1jfcy/u}. 

Moreover, by (C4) we have:

6{hU k)hj- i . . .h j i+ í kjiu > 5{h U fc)/iy_1.../iy< + 1fcy/u} and

6'(/i U k)hj- i . . .h j i+ ihjiu > U k)hj- \ . . .h  y' + l/ly*u}.

Thus, we have: f > {¿)(h U k)w, S'{h U fc)iw}, it follows that t > {¿>(/1 U k)w V S'{h U k)w}.  

If there exists an index i 2 c  S I + (SI~)  such that h}i+ i k}i+ i €  LH ^(L H ^),  since (*) and 

by Theorem 4, it follows that t > 5 h h j - í ...h:¡i+2kji+ ikj iu ,6 'khj- i . . .h j i+2kj' + l kjiu},  since 

6hhj—i.. .hj t+ikjiu and 6'khj- i . . .hj '+ ikjiu}  are incomparable and by P ro.3 (ii) it implies 

that Shhj-i.. .hj>+2kj'+ikj'u  and S'khj-i . . .hj i+2kj<+ikjiu} are also incomparable. It follows 

that t > {Shhj— 1 .../iy'+2 ŷ/+ 1 kj* u, S'k

hj-i . . .h ji+2kji+ ikj iu}  (**). If /iy'+ i =  kji + 1 , then we consider hj*+2 and fcy<+ 2. By also 

an analogous argument, for the case hy»+2 ^ fcy-+2 > can show that if there is no index 

»3 G S I + {SI~)  such that /iy'+2 , % '+ 2  G LH *{L H ^),  then we obtain t > 6{hUk)wV S'{huk)w.  

Conversely, if there exists an index i 3 S S I + (SI~)  such that hj‘+2kji2 e  LH ^(LH~)  then  

we also obtain (**). For the case /iy>+2 =  fcy<+2, we consider /iy'+3, kj>+3 and repeating  

this argument. From (**), we shall consider cases of hj>+2 and fcy/+2 if hy' + i /  %' + i and 

consider cases of hj<+3 and fcy<+3 if h} ' + 1 =  fcy+i and repeating the argument above.

From the cases proved above, we can see that if there exists an index i e  { j ' t ■•■,]} 

and there is no an index 1' e  S I = (SI~)  such that hi,ki e. LH ^(L Hi7 ), then we obtain  

t > S{h U k)w V S'{h u k)w. Thus, if p < j  — 1, then the assertion is proved, since we have 

kp+i =  I  /  hp + 1 which is the case proved above. It remains to prove the assertion for the 

case p > 3' — 1 and for any t S { j 1, •••,]} then either hi and ki are identical or there exists 

an index i' €  S I + {SI~)  such that hi t ki e  LH^(LH {7).

Let w' =  kj- i . . .kj iu,  we have t e  LH{w‘) and |tu'| =  |to|, where |u>'| and |w| denote 

the lengths of the canonical representations of w' and w w .r.t. u, respectively. From  

the condition on hi and kt for i e  and the proof above, we have fcy-+ n ...fcy -u  >

hji+nkji+n- i . . . k j ‘u for any n =  0 — j' — 1. In addition, we have:

t — kp...kjw' > {Shw', S'kw'}, if p > j  — 1, 

t — w' > {Shw', S'kw'},  if p =  3 — 1, 

and Shw' > Shw, S'kw1 > S'kw, S{h U k)w' > S{h U k)w, S' (/il l  k)w' > S'{h U k)w.



If p =  j  -  i ( we have t =  w', by Corollary 1 (ii) in [5] it implies that w' > {hw', kw1},  

since h U k e  LH*o (L H ~ ) it follows that h and h u  k are com patible, hence w' > (h U k)w'. 

By also Corollary 1 (ii) in [5], we have w' > {6(h U k)w', S'(h U k)w'},  which im plies that 

t > S(hUk)w', S'(huk)w'}.  In other words, we obtain the assertion: t > S(hUk)w'vS'(hUk)w'.

If p > j  -  1, if w' is a fixed point then we have t =  w' and it follows by above that 

w' >  { S ( h  u k)w', S ' ( h  U k)w'},  which shows that t = { S ( h  U k)w' V S ' ( h  U k)w'}.  If w' is not a 

fixed point, the possible cases of t is as follows:

(i) t £  LH(h'w')  for any t i  e  LH+(LH 7) .

(ii) t £  LH(h'w')  for some t í  e  LH+(LH~).

If (i) holds, using the argument at the begining of this proof, one easily verifies that 

t >  {S(h u  k)w',6'(h  u k)w'}.  Hence, it implies that t >  {<S(/i U k)w' V S'(h U k)w'}> which 

shows that t > {5(h U k)w' V 6'(h U k.)w'}. If (ii) holds, it follows that k}- =  h'. We can easily  

seen that Shw' and S'kw' are incomparable and we have t > {Shw', S'kw'}. It implies by 

Theorem 4 that h'w' > {hw' ,kw‘},  since h, k, t í ,  h U k €  LH*o(LH~),  so h'w' > (h.Uk)u/ .

If h'w' =  (h U k)w ' , h' ^  (h u  k) then it follows by (C4) and Pro.2 that h'w' =  hw' =  

kw' =  (h U k)w' . Hence t í  =  (h U k), it follows by Theorem 4 that

t =  kp...kj+1(h U k)w'{6'(h U k)w',S(h U k)w'}.

Thus, it im plies that t >  {¿»(/lUArJu/, S'(hUk)w'},  since if one of the opposite cases holds then  

it leads to a contradiction by Pro.3 and Theorem 4. It implies that t > [6(h u  k)w', S'(h U 

k)w'},  which shows that t >  {<5(/i U k)w' V S'(h u  k)w'}.  As the cases considered above, we 

have proved the assertion for the case (1 ’). The remaining cases ( l ”) and (1” ’) will be 

proved by an analogous argument as in the cases (i) and (ii).

The proof for the case hw < w is obtained by duality. Consequently, the proof for 

Case (1) is com plete.

Case (2). Assume that hw > kw and S'hw < Shw. By (C4) we have S'hw > S'kw, 

hence it follows that Shw V S'hw > i V y .  For any t & LH(a)  such that t > {x, y }, we have to  

prove that t > Shw V S'hw. We have also the analogous cases of t as in Case (1), and then  

the proof for this case is obtained by the same way.

Case (3). The proof for this case is similar to the proof for Case (2). Consequently, 

the proof of the theorem  is com plete.

As a consequence of Theeorem 5, we have the foolowing



Theorem 6. Let A X  =  (X , G, LH,  <) be a RSHA and G is finite chain. For any x €  X ,  for any 

two operations h and k such uhat h and k are compatible, the following assertions are hold:

(i) If Vx > x then

. ( hxV kx, if h ,k &  L H + +  I.
(h U it) = ^

(ii) I f V x < x  then

hx A kx, i f h , k e  LH  +  / .
. . ( hx A kx, if h,k  G L H + +  I.
(h n k) =  {

\  hx V kx, i f h , k e  LH  +  I.

(/i u fc) = I  

(h n  Jb) =  I

hx A kx, if h, k G L H + +  I.
hx V kx, if h,k  £  LH~  +  I.
hx V kx, if h,k  6  L H + + I.
hx A kx, if h,k  €  LH~ +  I.

Y . C O N C L U SIO N

In this paper we have investigated the refinement structure o f hedge algebras and 

examined the main property of these structure, which says that every RSHA w ith  a finite 

chain of the primary generators is a lattice. N otice that the assum ption, which says that 

the set of the primary generators is a finite chain, is not stringent, since the primary 

generators of many languistic variables constitute linearly ordered sets. Consequently, the 

RSHA have a gtiod algebrical structure, and then they can also be used as logical basis 

for some kind of Linguistic-valued logic and Linguistic reasoning.
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