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LATTICE CHARACTER OF THE REFINEMENT
STRUCTURE OF HEDGE ALGEBRAS-

NGUYEN CAT Ho & HUYNH VAN NaAM

a

Hedge algebras were introduced in order to model the natural structure of domains of lin~
guistic variables. In N. Cat Ho and H. Van Nam (7], we introduced a refinement structure of
hedge algebras ( RSHA, for short ), and some fundamental properties of this structure were
examined. In this paper, the main property of the RSHA is given, and it is also shown that
many linguistis values, which contain the disjunction and conjunction, can be expressed in '
the RSHA.

Keywords: PN-consistent hedge algebras, Rﬁﬁr{ement structure of hedge algebras, Linguistic
- valued logic, Linguistic reasoning.

I. INTRODUCTION

In the traditional approach to human reasoning, vague concepts are expressed by
fuzzy sets, and linguistic hedges could be viewed as operators on fuzzy sets. In [9], Zadeh
pointed out that the set of linguistic values of linguistic variables can be regarded as a
formal language generated by a context-free grammar. These ideas suggested the authors
in [5] to consider the sets of such linguistic values as formal algebras with operations to
be linguistic hedges, and an axiomatization for the so-called hedge algebras was given. It
is shown that the meaning of vague concepts can be expressed by elements in a suitable
algebraic structure. Furthermore, the meaning of vague concepts can be also expressed by
their relative position in this structure. Notice that the meaning of ’true’ and ’false’ in the
classical logic may be expressed by the relationship between the elements in a two-elements
Boolean algebra.

In this approach, every linguistic domain can be interpreted as an algebra AX =
(X,G,H <), where (X, <) is a poset and G is a set of primary generators and H is a set of
unary operations representing linguistic hedges under consideration.

The assumptions adopted on H are simple and natural: H can be decomposed into
two disjoint subsets H* and H~ so that each hedge in H* is converse w.r.t. every one in
H~ and that H* + I and H™ + I, where I is the identity, i. e. Iz = z for every z in X,
are lattices of finite length. It can be seen that many finite sets of linguistic hedges satisfy

these conditions.

* This research is supported in part by Vietnam National Program for Fundamental

Research in Natural Sciences.
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In {7] we investigated and gave an axiomatization for the so-called refinement struc-
ture of hedge algebras. In order to obtain this structure, we restricted our consideration
to the specific hedge algebras called the PN-consistent hedge algebras, we constructed the
distributive lattices of hedge operations by the action of operations U and Nnon H* + I
and H~ + I, which are modular lattices of finite length and satisfy the condition (Cp).
It is shown that any PN-consistent hedge algebra can be refined to a RSHA, and some
fundamental properties of the RSHA were examined. In this paper, we continue our in-
vestigation on the RSHA. It will be shown that every RSHA with a finite chain of the
primary generators is a lattice.

The paper is organized as follows. In Section 2, we shall recall the way of constructing
the distributive lattices of hedge operations, and some necessary notions will be introduced.
In Section 3, we shall review the RSHA and some properties of this structure will be also
reformulated. The main property of the RSHA, which says that every RSHA with a finite
chain of the primary generators is a lattice, will be given in Section 4. Finally, some

concluding remarks are presented in Section 5.

II. PRELIMINARIES

For the sake of convenience, we will recall some notions introduced in [1]. Let P be

a partial ordered set (poset, for short).

Definition 1. By ”a covers b” in a poset P, it is meant that a > b, but that a > = > b for no
ze P. '

In a poset P of finite length with the least element denoted by O, the height h(z)
of an element z € P is, by definition, the 1. u. b. of the lengths of the chains O =
Zo < 71 < ... < z, = z between O and z. If P has a universal upper bound 1 then clearly
h(1) = I(P), where /(P) denotes the length of the poset P. Clearly also, h(z) = 1 iff z covers
0.

Definition 2. A poset P is said to be graded poset if there exists a function g: P — Z from P to
the chain of all integers (in their natural order} such that:

G1. z > y implies g(z) > g(y)

G2. If z covers y then g(z) = g(y) + 1.

It is known that any modular lattice of finite length is graded by its height function

h(z). Let L be a modular lattice of finite length, we can define a relation R on L as follows
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Vz,y € L, (z,y) € R iff h(z) = h(y).
One easily shows that R is an equivalence relation and then we have the following:

L= Ufg,) L;, where L; = {z € L| h(z) =1} for : = 0,...,{(L) are the equivalence classes
by the relation R.

We shall need the following condition, which is satisfied by any set of hedges used in

application:

(Co)Either z >y or z <y for any z € L; and y € L; and 1 # j.

Proposition 1. Let L be a modular lattice of finite length and it satisfies (Cy}. Then the following
condition satisfies:

If there exists an index © € {1,...,l(L) — 1} such that |L;{ > 1 then |L;—y = |Li4,| = 1,
where |L;|,|Li—1|, | Li31| denote the cardinalities of L;, L;_y, L; 11, respectively. Moreover, L;;, =

{Vzer,z} and L;_; = {AzeL,}, where A and V are infimum and supremum in L, respectively.

Proof. The prbof is straightforward.

For more details on lattice theory we refer the reader to [1]. We proceed now to
consider a hedge algebra AX = (X, G, H, <), where (X,<) is a poset, G is a set of the
primary generators and H is a set of unary operations representing linguistic hedges under
consideration. It is assumed that H can be decomposed into two disjoint subsetsHt and
H~ such that H* + I and H~ + I are modular lattices of finite length, where I is the
identity, i.e. Iz = z for every z in X. By our convention, the identity I will only stand in
a prefix of an expression, for instance I...Ih...h’x, and it means that if I occurs explicitly

in an expression, then every hedge operation applying to I has no effect, i.e. hiu = Iu.

We will denote by N* and N~ the lengths of H*I and H~ + I, respectively, and
denote by Nat the set of all non-negative integers. Suppose that f* and f~ are graded
functions of H*I and H~ + 1, respectively, then f*(=): H*(-) 4+ I — Nat satisfies f*(-) =0
and if h covers k in H*(=) 4 I then f*(=)(n) = f+(-) (k) + 1. |

Unless otherwise stated, in the sequel we shall always adopt the assumption that
H*I and H~ + I are modular lattices of finite length and they satisfy (Co). From now on,
V and L stand for the unit-operations in H*I and H~ + I, respectively. With this notation

we have f*(V) = N7* and f~(L) = N~. Moreover, we have the following representations:

H* + I=UNJH}, where HY ={he H*| ft(h) =1} fori=0,1,...,N*,
1=0 [

1

H- +1=U¥ H , where HF ={h€ H*| f(h) =1} fori=0,1,..,N™,
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We will now construct lattices of hedge operations, which are generated from H*I
and H~ + I by the action of binary operations N and U as follows:

The first, we see that the following restrictions are reasonably imposed on the two
binary operations N and U on the elements of H*I:

For any hy,ha,hs € HYI and H™ + I

1. hyUhy =hoUhy, hiNhy=hyNhy.

2. hy U (hz Uhsg) = (hy Uhg) Uhs.

hy N (he N ha) = (hy Nha) N ha.

3. h1 U (he N h3) = (h1 U h2) N (hy U hs).

hy N (ha U hg) = (k1 Nhy) U (hy N hg).

4. hy U (hy Nhg) = hy, hy N (hy Uh2) = h;.

Ifh<kin HY* + I for h,k€ H* + I then we set hUk = k and hnk = h. If there exists
an index i € {1,..,N* — 1} such that |H;'| > 1, suppose that H;' = {hi,..,hL}, by Pro.1
we have H} | = {h*"!} and H},| = {h'T'}, where h'~! = Inf H;' and h'*! = sup H}. And \nd

the following graphical representation is a sublattice of H* + I.

k;mL
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OLI“‘ i O‘\z B kh—

Fig. 1.

Let us denote by LH;}' and L} the sets of elements generated from H;' and H* + I
by the action of operations N and U, respectively.

Let LH* + 1 = (L}, HY +1,n,U), it is easily seen that LH* + I is an algebra with
two the binary operations N and U. We can define a relation on LH* + I as follows: for
any h,k € LH* + 1, h <k iff hUk = k. It is easy to check that hUk =k iff hnk =h and
so < is ordering relation on LH* + I. It is known that LH* + I is a lattice with N and U

to be supremum and infimum, respectively. Moreover, we have:

K=1Uh = h and K"~ h=hi"! for any h € LH*, and K"t Uh = h+! and K+ nh =h
for any he LH*.
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It is shown that H;" is the free distributive lattice with n generators of HY and the

sublattice of H* + I in Fig.1 will be replaced by the following representation in LH* + I.
144
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Fig. 2.

By an analogous way, we can construct the lattice, which is generated from H~ + I
and we will also write LH~ + I = (L, H~ + I,n,U). This causes no confusion because H*
and H~ are assumed to be disjoint and so are LH* and LH~, where LH* = LH* + I\ {I}
and LH™ = LH™ + I\ {I}. We obtain the following result.

Theorem 1. (LH* +1,n,U, I,V <) and (LH~ +1,n,U, 1,V <) are distributive lattices of finite
length.

Let I = {0,1,..,N*} and I~ = {0,1,.., N7}, and SI* = {t € I'* \ |H}| > 1} and
SI={iel\|H|>1}.

For any ¢ in SI*(SI~),LH;"(LH) is the free distributive lattice with the generators
of H}Y(H; ) and is a sublattice of LH* + I(LH;).

In the rest of this section, we make some necessary preparations. We first recall the

following notion as defined in [5].

Definition 8. For any h,k € LH, we shall write hx << kz (hz << Iz) if for any b/, k' € UOS
and any m,n € Nat, V"h'hz < V™k'kz (V"h'hz < Iz). If the latter inequalities are always strict
then we shall write hz << kz (hz << Iz).

For any two hedges h,kin LH, if z < hz implies’hz < khz and hz < z implies khz < hz
then k is said to be positive w.r.t. h. In the opposite case, k is said to be negative w.r.t.
k. Recall that we only consider hedge algebras in which H* + Iand H~ + I are modular
lattices of finite length and satisfy (C;). A more important definition is the following.
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Definition 4. A hedge algebra AX = (X, G, H, <) is said to be PN-consistent if the unit operation
V in H* + I is positive(negative) w.r.t. h in HY or in H~ for 1 in SI* or in SI~, respectively,

then V is also positive(negative} w.r.t any operation in Hl.+ or in H, respectively.

Let LH = LHY* U LH™ and k(hz) = khx for any h,k € LH and z ¢ LII(G), where
LH(G) denotes the set of all elements generated from G by means of hedges in LH.

Definition 5. For any h,k € LH and z in LH(G). If h > k in LH* + I or in LH™ + [ then
hzr > kz if he > z and hz < kz if hz < z.

IfieIt\SIY (I~ \SI”) then HI*(HI") has only one element and we also write
LH} = HY(LH = H). With this notation we have:

LH* + I=UNTLH} and LH™ 4+ I = UM LH; . Let us denote by UOS the set of two

elements V and L, which are unit-operations in LH* + I and in LH™~ + I, respectively.

As usual, the notation z < y means that z > y or z and y are incomparable.
Remark. From the construction of the lattices LH* + [ and LK~ -+ I and these notations,
it is easly seen that the lattice LH* + I (or LH~ + I) also satisfy condition (Co) with
replacing L; and L; in (Co) by LH and LH; (or'LH; and LH), respectively.

III. REFINEMENT STRUCTURE OF HEDGE ALGEBRAS

This section reviews refinement structure of hedge algebras. We start with introduc-
ing an axiomatization for refinement structure of hedge algebras. Let us make necessary
notations.

For every subset Y of LH(G), LH(Y) denotes the set of all elements generated from
Y by means of hedges in LH. If Y consists of a single element, say z, then we shall simply
write LH (z). For any two hedges h,k in LH, if z < hz iff kz < z for every z in LH(G) then
h and k are said to be converse, or h is converse to k and vice versa. If 2 < hz iff z < kz
for every z in LH(G) then h and k are said to be compatible.

Let us denote by LH" the set of all strings of hedges in LH. For any 6,6’ € LH*, we
shall write § < §' if for every z in LH(G), z <6z or < §'z implies z < §z < §'z and 6z < z
or §'z < z implies §'z < 6z < .

We now recall the axiomatization for refinement structure of hedge algebras.

Definition 6. An algebraic structure AX = (X,G,LH, <) is said to be a refinement structure
of hedge algebras (or, briefly, RSHA) if (H(G), G, H, <) is a PN-consistent hedge algebra and the

following conditions hold:
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(C1) Every operation in LH* is a converse operation of the operations in LH™.

(C2) The unit operation V in LH? is either positive or negative w.r.t any operation.

(C3) If u and v are independent , i.e. w ¢ LH(v) and v ¢ LH(u), then z ¢ LH(v) for any
z ¢ LH(u). Especially, if a,b € G and a < b then LH(a) < LH(b).

(C4) For z # hz, = ¢ LH(hz). For any h # k and hz < kz :

(i) If hk € LH;F(LH;) forv € SI*(SI™) and hz # kz then 6hz < 8kz for any § € LH*.
Furthermore, for any y € LH(kz) such that y > 6kz, 6hz and y are incomparable, and for any
z € LH(hz) such that 2 < 6hz, §kz and z are incomparable. '

(ii) h'hz < k'kz for any h', k' € UOS, otherwise.

Furthermore, if hz # kz and h € LHY(LH) fori € I'*(I~) then hyz and kz are indepen-
dent for any hy € LH} (LH and h, # k.

(C5) If u € LH(z) and for eachi € I+(I").such that w ¢ LH(hz) for any h€ LH}(LH.)
and u > v(u < v) for v € LH(hz) then u > h'v(u < h'v) for each h' € UOS.

Definition 7. Let z énd u be two elements in a RSHA AX = (X,G,LH,<). The expression
h,,...h u is said to be a canonical representation of z w.r.t. u in AX if:

(1) = hn...hyu;

(ii) hi...hyu # hi_y...h u for every i < n.

All results in the rest of this section (with more details and proofs) can be found in
N. C. Ho and H.V. Nam [7]. '

Theorem 2. Let AX = (X,G,LH, <) be a RSHA. Then the following statements hold:

(0) If hz << kz then hz < kz.

(i) The operationsin LH™ or the onesin LH™ are compatible, i.e. foranyh,k € LH*(LH™),
for any z € X,z < hz iff z < kz.

(ii) If z € X is a fixed point of an operation h in LH, i.e hz = z, then it is also a fixed point
of the orthers. '

(iii) If £ = hy,...hyu then there exists an index 1 such that the suffix h;...hju of = is a canonical
representation of ¢ w.r.t. w and hyz = z for all j > 1.

(iv) For any h,k € LH, if z < hz(z > hz) then Iz << hz ([z >> hz) and if hz < kz and
h # k and there is not in SI" or in SI~ such that both h and k together belong to LH" or LH",
respectively, then hz << kz.

(v) If h # k and hz = kz then hz is a fixed point.

Theorem 8. For every operation h € LH, there exist two unit-operations h~ and h™ such that h~

is negative and h™ is positive w.r.t. h and for any hy,...,h, € LH, V*h™h < hy,...hih < V"h*th.
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The following proposition, which has been proved in [7], shows that we can deduce
" om the fact that hz is a fixed point, that kz is also a fixed point and vice versa, if both
h and k together belong to LH(LH) for i € SIT(SI™).

Proposition 2. For any z € X and ¢ € SI*(SI™). If there exists a hedge h € LH} (LH.") such
that hz is a fixed point then so is kz for any k € LHY (LH[").

Recall that the RSHA is constructed from a given PN-consistent hedge algebra.
Naturally, one may ask whether the PN-consistent property of the unit-operation V in
LH?* +1 still holds if we replace H;' and H by LH} and LH , respectively. The following

proposition answers this question.

Proposition 3. If the unit operation V in LH* + I is positive(negative) w.r.t. h in H} or in
HT for i in SI* or in SI™, respectively. Then V is also positive(negative) w.r.t. any operation in

LHY orin LH, respectively.

1 t

Proof. The proof for this proposition we refer the reader to [7].

Proposition 4. Forany h,k € LH;"(LH), herei € SI*(SI~). We have the following assertions:

(i) 8hz > z (6hz < z) iff §kz > z (§kz < z ) for any § € LH* and z € X.

(ii) If hz # kz then 6hz and &'hx are incomparable iff §kz and §'kz are incomparable for
any §,6' € LH* and z € X.

(iii) 6h > &'h iff 6k > 8'k for any 6, 8' € LH*.

'

IV. MAIN THEOREM

In this section, we shall formulate a main property of RSHA, which say that a
RSHA is a lattice if the set of primary operators is a finite chain. Before stating the main
theorem, the following theorem, which will give us a characterization to determine the

relative position of elements in a RSHA, is necessary. °

Theorem 4 Let z = h,...hju and y = k,,...kyu be two arbitrary canonical representations of z
and y w.r.t. u, respectively. Then there exists an index j < min {m,n} + 1 such that h; = k; for
all1 < 7 and

(1) z < y iff either h;z; < k;z; and 6kjz; < §'k;z;, if there exists 19 in SI* or in SI™ such
that both h; and k; together belong to LH;: or LH, , respectively, or h;z; < k;z; for otherwise,

where x; = hj_1..hju, 6§ = hp...hjpy, §' = k.. kjir.
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(2) z=y if m=n=7 and hyz; = k;z;.

(3) z and y are incomparable iff there exists 1o in SIT or in SI~ such that both h; and k,
together belong to LH?0 or LH'-—O, respectively, and one of the fowllowing conditions holds:

(3’) hjz; and k;z; are incomparable

(37) hyz; < kjz; and 6k;z; < 8'k;z;,

(37°) hjz; > k;z; and 6kjz; > 6'k;z;,
Proof. We refer the reader to [7] for the proof of this theorem.
Corollary 1. If z is not a fixed point and u is an arbitrary element in X, then the
canonical representation of z w.r.t. u, if it exists, is unique, i.e. if h,...h;u and ky,...kju

are two canonical representations of z w.r.t. u then m =n and h; = k; for all i < n.

We can now formulate our main result.

Theorem 5 (Main Twiw'leorem). Let AX = (X,G,LH,<) be a RSHA. If G is a finite chain then
AX is a lattice. Moreover, for any two incomparable elements = and y in X, then there exist
two hedge operations h and k in LH and an element w in LH (a), where a € G, such that both
h and k together belong to LH‘-"O' or LH; for an index 1o in SI* or in SI™, respectively, and
z = 6hw,y = 6'kw, where §,6' € LHx, and

(6(hUk)wV é'(hUk)w, if hw> w and hw and kw are incomparable
§(hnk)wV ' (hNk)w, ifhw < w and hw and kw are incomparable

Shw V §'hw, if hw > kw
\ Shw V §'hw, if hw < kw.

zVy={

( §(hnk)wAS§'(hNk)w, if hw> w and hw and kw are incomparable
§(hUk)w A& (hUk)w, if hw< w and hw and kw are incomparable
Shw A §'hw, if hw > kw
\ Shw A §'hw, if hw < kw.

Where V and A stand for supremum and infimum, respectively.

:ch=T

Proof. Since G is a finite chain and by (C3), it follows that if z and y are incomparable in
X then there exists an element a in G such that both z and y together belong to LH(a).
Thus, there exist two canonical representations of z and y w.r.t. a as follows:
z=hZ...hfa, h* € LH, herei=1,..,n "
and y = hY,...h{a, hY € LH, here i =1,...,m.
By Theorem 4, there exists an index j < mun {m,n} + 1 such that A7 = k¥ for any i < j
and set hf = h¥ = h;. Moreover, by also Theorem 4, there exists an index ¢, in SI*
or in SI~ such that both hf and h¥ together belong to LH} or LH;, respectively. Let
§ = hj..hi, 8 = h?n...h;(H, with this notations we have: z = §hw and y = §'kw here

w = h;_1...hja. By Theorem 4, we have the following cases:

anthe

y i< j
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(1) hw and kw are incomparable.
(2) hw > kw and §'hw < §hw.
(3) hw < kw and §'hw > §hw.

We shall prove the theorem for the supremum. The proof for the infimum is by
duality.

Case (1). Assume that hw and kw are incomparable. If hw > w, by Pro. 2 it follows
that (hU k)w > {hw,kw}. By (C4) we have §(hUk)w > §hw and §'(h U k)w > §'hw. Thus,
6(hUk)w V' (hUk)w > {z,y}. For any t € LH(a) such that t > {z,y}, we have to prove the
following assertion: t > §(h U lc)w vé'(hUk)w. . ’ '

We have possible cases of t as follows:

(') t ¢ LH(w)

(1”) t e LH(w) and ¢t ¢ LH(h'w) for any h' € LH} (LH).

(17’) t € LH(how) for some ho € LH; (LH).

Suppose that ¢t = k,...kya is the canonical representation of ¢ w.r.t. a. Clearly,
w = hj_i...hja is the canonical representation of w w.r.t. a.

First, we shall prove the assertion for the case t ¢ LH(w), by Theorem 4, it follows
that there exists an index ;' < j such that h; = k; for any 1 < j' and kj:h > h;iu, where
u = hy_y..hja. If there is no index ¢, in SI* or in SI~ such that both h; and k;: together
belong to LH[: or LH, , respectively, then by Theorem 2 (iv) and (C3) and (C4), it implies
that kju >> hjiu, ie. VIklkju > Vq'h;.,h,-gu for any kl,,h} € UOS and g, ¢' € Nat. By
Theorem 3, there exist &/, k", k" € UOS such that:

'-
J

§(hUk)hyj— 1. hju SV ~1p'p .y, and
§'"(hUk)hj_y..hyou < V™3~ 1hMhu, and
kpe.kyu > VP=I =ik gy,

Thus, we have t > {§(h U k)w, §'(h U k)w} which shows that t 2 5(huk)wvVE(hUk)w.
If there exists an index 1, € SI*(SI~) such that hji, k;» € LH} (LH;]), by (C4) we have

Shhj_y...hjiykjiu > 6hhj_y...hjiy1hjiu, and
§'khj_y...hji1kjiu > 8'khhj_y.. .hjiy1hjru, and

8(h U k)hj—r.-hjigiksou > §(h U k)hj—y...hjy1hjiu, and
8'(h U k)hy—y.hjog yhjrw > 6' (AU k)hj—y.ohjrgthjiu.

Since t € LH(k,-:u.) and t > {I, y}, it implies that ¢t > 5hh5_1...h,-:+1k,-:u, 5'khj..1...h_,'l+1kjlu}.
By Pro.3(ii) it follows that §hh;—y...hji41k;u and §'kh;_y...hj 4 k;ou are incomparable; and
hence t > {6hhj_y...hjiq1kjou,8'kh;_y. hjyikyu} (¥).
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We now consider hjyy and kpyi. If hjiypy # kjyy, we have hjyikpu # kjgikjiu.
Moreover, since (*) and by Theorem 4, we have kjiiikj;u > hjiykypu. If there is no
index iz € SI*(SI7) such that hjiy,1kjiyy € LH (LH), then by Theorem 2(iv) and (C3)
and (C4), it implies that ky41k; 41w >> hjy1k;u. By also an analogous argument as in
the case of k; and h; we obtain: ¢ > {6(h U k)h;_y...hjiy1kjiu,8'(h U k)hj1..hjiyikpu},
Moreover, by (C4) we have:

6(}1. U k)hj_l...h.]-r+1k]-ru > 5(h U k)hJ-_l...h]-l+1kJ-lu} and
§' (R U k) Ry 1.ohjrsthyu > 6'(hU k) Ry gy Lhjou).

Thus, we have: ¢ > {§(hU k)w,§'(h U k)w}, it follows that ¢t > {§(h U k)w V §'(h U k)w}.
If there exists an index vz € SI*(SI7) such that hyyiky o € LH}(LH), since (*) and
by Theorem 4, it follows that ¢t > 6hh;_1..hjokjiy1kjiu,8'khj_ . hjyokyy kju}, since
§hhj_y..hjiy1kju and 8'khj_y...hj41k;iu} are incomparable and by Pro.3 (ii) it implies
that 6hh;_1...hji4okjiy1kju and 6'khj_y...hjiyokjiy kjiu} are also incomparable. It follows
that ¢ > {6hh,_y..hjipak;s1kju, 6k
hj—yohjigokjipikyuy (**). If hjipy = kjyy, then we consider hjy o and kji,,. By also
an analogous argument, for the case hjiy2 # kji42, we can show that if there is no index
i3 € SI*(SI™) such that hjiyz, kjiy2 € LHY (LH;), then we obtain ¢t > §(hUk)wV §'(hUk)w.
Conversely, if there exists an index i3 € SI*(SI™) such that hj40kjip € LH[t(LHi:) then
we also obtain (**). For the case hji1; = kji2, we consider hjii3, kji43 and repeating
this argument. From (**), we shall consider cases of h;i4; and kjiy2 if hjiy) # kjyy and
consider cases of h;43 and kjiy3 if hj»y1 = kjy; and repeating the argument above.

From the cases proved above, we can see that if there exists an index 1 € {7’,...,5}
and there is no an index ' € SI=(SI~) such that h;, k; € LH}(LH), then we obtain
t > 6(hVk)wvé'(huk)w. Thus,if p < 7~ 1, then the assertion is proved, since we have
kpt1 = I # hyy1 Which is the case proved above. It remains to prove the assertion for the
case p > 7 — 1 and for any « € {§’,...,7} then either h; and k; are identical or there exists
an index i’ € SI*(SI~) such that h;,k; € LH}Y (LH).

Let w' = k;_;...k;;u, we have t € LH(w') and |v'| = |w|, where |v'| and |w| denote
the lengths of the canonical representations of w’ and w w.r.t. u, respectively. From
the condition on h; and k; for ¢ € {]T',...,j} and the proof above, we have kjiy,..kjiu >

hjrinkjitn—1...kyu for any n=0,...,7 — ' — 1. In addition, we have:
t = ky..kjw' > {6hu',6'kw'}, if p> g5 -1,
t=w' > {6hw',6'kuw'}, ifp=7-1,
and Shuw' > Shw, 8'kw' > §'kw, §(hUk)w' > §(hUKk)w, §'(RhUKk)w' > §'(hUk)w.
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If p=j—1, we have t = w', by Corollary 1(ii) in [5] it implies that w' > {hw’, kw'},
since hUk € LH (LH) it follows that h and h U k are compatible, hence w' > (h U k)w'.
By also Corollary 1(ii) in [5], we have w’ > {§(h U k)w',6'(h U k)w'}, which implies that
t > §{hUk)w’,6'(hUk)w'}. In other words, we obtain the assertion: t > §(hUk)w’V§'(RUk)w'.

If p>75—1,1if « is a fixed point then we have t = v’ and it follows by above that
w' > {§(hUk)w’, §'(hU k)w'}, which shows that ¢t = {§(hUk)w’ vV §'(hUk)w'}. If w' is not a

fixed point, the possible cases of ¢ is as follows:

(i) t¢ LH(h'w') for any k' € LH} (LH).
(i) te LH(h'w') for some h' € LH}(LH_).

If (i) holds, using the argument at the begining of this proof, one easily verifies that
t > {§(huk)w',é'(huk)w'}. Hence, it implies that ¢t > {§(h U k)w' v §'(h U k)w'}, which
shows that t > {§(hUk)w’ v §'(hUk)w'}. If (ii) holds, it follows that k; = h’. We can easily
seen that §hw' and 6'kw' are incomparable and we have t > {§hw',6'kw'}. It implies by
Theorem 4 that h'w’ > {hw', kw'}, since h,k,h',hUk € LH}(LH_), so h'w’' > (h Uk)w'.

If 'w' = (RUKk)w', h' # (RUK) then it follows by (C4) and Pro.2 that h'w’ = hw' =
kw' = (hUk)w'. Hence b’ = (hU k), it follows by Theorem 4 that

t = kp.kj o1 (h Uk)w {6'(h U k)w',6(h U k)w'}.

Thus, it implies that ¢t > {§(hUk)w’, 8'(hUk)w'}, since if one of the opposite cases holds then
it leads to a contradiction by Pro.3 and Theorem 4. It implies that ¢t > {§(h U k)w',§'(hU
k)w'}, which shows that t > {§(h U k)w’ v §'(h U k)w'}. As the cases considered abo?e, we
have proved the assertion for the case (1’). The remaining cases (1”) and (1”’) will be
proved by an analogous argument as in the cases (i) and (ii).

The proof for the case hw < w is obtained by duality. Consequently, the proof for
Case (1) is complete.

Case (2). Assume that hw > kw and 6’hw < §hw. By (C4) we have §'hw > §'kw,
hence it follows that §hw Vv §'hw > zv y. For any t € LH(a) such that t > {z,y}, we have to
prove that ¢ > §hw V §’hw. We have also the analogous cases of t as in Case (1), and then

the proof for this case is obtained by the same way.

Case (3). The proof for this case is similar to the proof for Case (2). Consequently,
the proof of the theorem is complete.

As a consequence of Theeorem 5, we have the foolowing
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Theorem 6. Let AX = (X,G,LH, <

two operations h and k such ¢hat h and k are compatible, the following assertions are hold:

) be a RSHA and G is finite chain. For any z € X, for any

(1) fVz > z then

hzVkz, ifh,ke LH* +1.
(hUk) = .
hzAkz, ifh,ke LH™ + 1.
hzAkz, ifhkeLHY + 1.
(hﬂk)={ zAkz : +
hzVkz, ifh ke LH™ +1I.
(ii) f Vz < z then
(hUk) {hz/\kx, ifh,ke LHY + I.
hzVkz, ifhkelLH™ +1.
(hk) hzVkz, ifhkeLH*+1.
htANkz, ifh,ke LH™ + 1.

V. CONCLUSION

In this paper we have investigated the refinement structure of hedge algebras and
examined the main property of these structure, which says that every RSHA with a finite
chain of the primary generators is a lattice. Notice that the assumption, which says that
the set of the primary generators is a finite chain, is not étringent, since the primary
generators of many languistic variables constitute linearly ordered sets. Consequently, the
RSHA have a good algebrical structure, and then they can also be used as logical basis

for some kind of Linguistic-valued logic and Linguistic reasoning.
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