ON THE STOPAGE RULE IN SOLUTION FOR MONOTONE ILL-POSED PROBLEMS

NGUYEN BUONG

Abstract. The purpose of this note is to present an iterative method for solving a regularized equation for nonlinear monotone ill-posed problems in Banach space and to study its stopage rule so that iteration sequence converges to a solution of initial problem, as the noisy data of the right-hand side converges to its exact.

1. INTRODUCTION

Let X be a real reflexive Banach space and X^* be its dual space. For the sake of simplicity norms of X and X^* will be denoted by one symbol $\|\cdot\|$. Let A be a continuous and monotone operator with domain of definition D(A) = X and range $R(A) \subseteq X^*$. Let f_0 be an element of R(A).

Consider the nonlinear ill-posed problem.

$$A(x) = f_0 \,. \tag{1.1}$$

By ill-posedness we mean that solution of (1.1) do not depend continuously on the data f_0 . To solve (1.1) we can use variational method of Tikhonov regularization that consists of minimizing the functional

$$||A(x) - f_{\delta}||^2 + \alpha \Omega(x), \text{ over } D(A), \qquad (1.2)$$

where $\Omega(x)$ is a some functional that plays the role of regularization, $\alpha > 0$ is a small parameter and the noisy data f_{δ} satisfies the condition

 $\|f_0-f_\delta\|\leq\delta\to 0\,.$

In [1] and [2] they showed another version of Tikhonov regularization, that is the use of regularized equation

$$A(x) + \alpha U(x) = f_{\delta} \tag{1.3}$$

Supported by the National Program for Fundamental Researches in Natural Sciences.

NGUYEN BUONG

instead of (1.2), where U is a uniformly monotone operator or dual mapping of X. The regularized equation (1.3) is difficultly solved by iteration methods, because iterative parameters must satisfy very complex condition (see [3]). To overcome this difficulty [4] we showed another approach of regularization for (1.1). That is the use of linear and strongly monotone operator B instead of U in (1.3), i.e. the use of equation

$$A(x) + \alpha B x = f_{\delta}, \qquad (1.4)$$

with $\overline{D}(B) = X$, $S_0 \subset D(B)$, S_0 denotes the set of solutions of (1.1), B is linear and

$$|x|^{2} := \langle Bx, x \rangle \ge m_{B} ||x||^{2}, \ x \in D(B), \ m_{B} > 0.$$
(1.5)

Without loss of generality, assume that $m_B = 1$.

In [4], we presend an iteration method for solving (1.4) with variable parameters of iteration. In this note, we consider another one for (1.4) and the stopage rule for it, when $\delta \to 0$ and α is shosen such that $\delta/\alpha \to 0$. Our methods is a generation of [5] and [6] in Hilbert spaces for a Banach spaces.

Below the symbols \rightarrow and \rightarrow denote the strong and the weak convergence for any sequence, respectively.

2. MAIN RESULTS

As in [5], we require an additional condition on A: For each $N > 0 \exists C_B(N) > 0$ such that

$$\langle A(x) - A(y), w \rangle \leq C_B(N) | x - y | | w |, x, y \in D(B),$$

 $|x|, |y| \leq N, \forall w \in X.$ (21)

Note that this condition was considered in [5] under D(B) = X = H, is a Hilbert space, and B is bounded.

For finding x_{α}^{δ} , the regularized solution of (1.4), we study the iteration method

$$x^{n+1} = x^n - \rho B^{-1} (A_{\alpha}(x^n) - f_{\delta}), \ A_{\alpha} = A + \alpha B,$$
(2.2)

 $\alpha > 0$ and f_{δ} are fixed $(x^0 \in D(B))$.

Theorem 2.1. Let $\langle Bx, y \rangle = \langle x, By \rangle$, $x, y \in D(B)$ and $0 < \rho < \frac{2\alpha}{(\alpha + C_B(N_0))^2}$, $N_0 : ||x_{\alpha}^{\delta}|| \leq N_0/2$. Then

$$x^n o x^\delta_lpha \,, \,\, ext{as} \,\, n o +\infty \,.$$

Proof. From (2.2) it implies that

$$egin{aligned} \lambda_{n+1}^2 &:= \langle B(x^{n+1}-x_lpha^\delta),\,x^{n+1}-x_lpha^\delta
angle\ &= \langle B(x^{n+1}-x^n),\,x^{n+1}-x^n
angle+\lambda_n^2+2\langle B(x^{n+1}-x^n),\,x^n-x_lpha^\delta
angle\ &= \lambda_n^2-2
ho\langle A_lpha(x^n)-A_lpha(x_lpha^\delta),\,x^n-x_lpha^\delta
angle\ &+
ho^2\langle A_lpha(x^n)-A_lpha(x_lpha^\delta),\,B^{-1}(A_lpha(x^n)-A_lpha(x_lpha^\delta))
angle\,. \end{aligned}$$

Since

$$\begin{split} \langle A_{\alpha}(x^{n}) - A_{\alpha}(x_{\alpha}^{\delta}), x^{n} - x_{\alpha}^{\delta} \rangle &\geq \alpha \langle B(x^{n} - x_{\alpha}^{\delta}), x^{n} - x_{\alpha}^{\delta} \rangle = \alpha \lambda_{n}^{2}, \\ \langle A_{\alpha}(x^{n}) - A_{\alpha}(x_{\alpha}^{\delta}), B^{-1}(A_{\alpha}(x^{n}) - A_{\alpha}(x_{\alpha}^{\delta})) \rangle &= \\ &= \langle A_{\alpha}(x^{n}) - A(x_{\alpha}^{\delta}) + \alpha B(x^{n} - x_{\alpha}^{\delta}), B^{-1}(A(x^{n}) - A(x_{\alpha}^{\delta})) + \alpha(x^{n} - x_{\alpha}^{\delta}) \rangle = \\ &= \alpha^{2} \lambda_{n}^{2} + 2\alpha \langle A(x^{n}) - A(x_{\alpha}^{\delta}), x^{n} - x_{\alpha}^{\delta} \rangle \\ &+ \langle A(x^{n}) - A(x_{\alpha}^{\delta}), B^{-1}(A(x^{n}) - A(x_{\alpha}^{\delta})) \rangle \,, \end{split}$$

we have

$$\begin{split} \lambda_{n+1}^2 &\leq \lambda_n^2 - 2\rho\alpha\lambda_n^2 + \rho^2 \times \\ & \left[\alpha^2\lambda_n^2 + 2\alpha\langle A(x^n) - A(x_\alpha^\delta), \, x^n - x_\alpha^\delta \rangle + \langle A(x^n) - A(x_\alpha^\delta), \, B^{-1}(A(x^n) - A(x_\alpha^\delta)) \rangle \right]. \end{split}$$

Let N_0 be a number so that $|x_{\alpha}^{\delta}| \leq N_0/2$ and $C_0 = C_B(N_0)$. We suppose that the recurrent hypothese $|x^n - x_{\alpha}^{\delta}| \leq N_0/2$, then $|x^n| \leq N_0$ and

$$\langle A(x^n) - A(x^\delta_\alpha), \, B^{-1}(A(x^n) - A(x^\delta_\alpha)) \rangle \leq C_0^2 \lambda_n^2 \, .$$

We have

$$egin{aligned} &\lambda_{n+1}^2 \leq \lambda_n^2 - 2
holpha\lambda_n^2 +
ho^2[lpha^2\lambda_n^2 + 2C_0lpha\lambda_n^2 + C_0\lambda_n^2] \ &= [1-2
holpha +
ho^2(lpha^2 + 2lpha C_0 + C_0^2)]\lambda_n^2\,. \end{aligned}$$

If we choose $0 < \rho < 2\alpha/(\alpha + C_0)^2$, then $\theta_S = 1 - 2\rho\alpha + \rho^2(\alpha + C_0)^2 < 1$. Therefore, the hypothese is verifies. Consequently, $\lambda_n \to 0$. Hence, the convergence of x^n to x_{α}^{δ} follows from (1.5) and the definition of λ_n .

Remark. In much cases, we can choose the unbounded operator B such that $||x||, ||y|| \le N \to |x|, |y| \le N$ in condotion (2.1). In fact, for example $Bx(t) = -d^2x(t)/dt^2 + c_0x(t)$, $c_0 > 0$, where D(B) is the closure in the norm W_q^2 , 1 < q < 2 of all functions from $C^2[0, 1]$ satisfying the condition u(0) = u(1) = 0. Then $B^{-1}v(t) = \int_0^1 g(t, s) v(s) ds$ with

$$g(t, s) = \left\{egin{array}{cc} u_1(t)\, u_2(s), & t\leq s\,, \ u_2(t)\, u_1(s), & t\geq s\,, \end{array}
ight.$$

NGUYEN BUONG

where u_1 , u_2 are the nontrivial solutions of Bu = 0 such that u(0) = u(1) = 0. The derivatives are understood in generalized. Then, $|x|^2 = \langle Bx, x \rangle = \int_0^1 c_0 x(t)^2 dt = c_0 ||x||_{L_2[0,1]} \ge c_0 \tilde{c}_p ||x||_{L_p[0,1]}, 2 with some <math>\tilde{c}_p > 0$, since in these cases $L_p[0,1]$ is conctinuously embedded in $L_2[0,1]$.

For each $\delta > 0$, the value $\alpha = \overline{\alpha} = \overline{\alpha}(\delta)$ is chosen that $\delta/\overline{\alpha}(\delta) \to 0$, then $x_{\overline{\alpha}(\delta)}^{\delta} \to x_0$, the solution of (1.1), as $\delta \to 0$. In order to approximate the solution $x_{\overline{\alpha}(\delta)}^{\delta}$ of (1.3) with $\alpha = \overline{\alpha}$, we can use the iterative process (2.2). It is important to indicate how many iterations (depending on δ) are performed. Choices of $n = n(\delta)$ are also called "stopping rules" in the literature.

We have the result

Theorem 2.2. If the first integer $n = n(\delta)$ satisfying the condition $|x^{n+1} - x^n| \le a\delta$, where a > 0, then $x^{n(\delta)} \to x_0$, as $\delta \to 0$.

Proof. Indeed,

$$egin{aligned} &|x^{n+1}-x^n| = \langle B(x^{n+1}-x^n),\,x^{n+1}-x^n
angle\ &=
ho^2 \langle A_{\overline{lpha}}(x^n) - f_\delta,\,B^{-1}(A_{\overline{\delta}}(x^n) - f_\delta)
angle\ &=
ho^2 \langle A_{\overline{lpha}}(x^n) - f_0 + f_0 - f_\delta,\,B^{-1}(A_{\overline{\delta}}(x^n) - f_0 + f_0 - f_\delta)
angle\ &\geq
ho^2 \{\delta^2 - 2\delta
ho|x^{n+1} - x^n| + \langle A_{\overline{lpha}}(x^n) - A_{\overline{lpha}}(x_{\overline{lpha}}),\,B^{-1}(A_{\overline{lpha}}(x^n) - A_{\overline{lpha}}(x_{\overline{lpha}})
angle, \end{aligned}$$

where $x_{\overline{lpha}}:A(x_{\overline{lpha}})+\overline{lpha}Bx_{\overline{lpha}}=f_0.$

Since

$$egin{aligned} &\langle A_{\overline{lpha}}(x^n) - A_{\overline{lpha}}(x_{\overline{lpha}}), \ B^{-1}(A_{\overline{lpha}}(x^n) - A_{\overline{lpha}}(x_{\overline{lpha}})
angle \overline{lpha} |x^n - x_{\overline{lpha}}| \ &+ \overline{lpha} \langle A(x^n) - A(x_{\overline{lpha}}), \ x^n - x_{\overline{lpha}}
angle \geq \overline{lpha}^2 |x^n - x_{\overline{lpha}}| \end{aligned}$$

we have

$$|x^{n+1}-x^n|^2 \geq \overline{\alpha}^2 \rho^2 |x^n-x_{\overline{\alpha}}|^2 - 2\rho\delta |x^{n+1}-x^n| - \rho^2\delta^2.$$

Therefore,

$$|x^n - x_{\overline{\alpha}}| \leq \frac{2\delta}{\overline{\alpha}}$$

This means that $x^n \to x_0$, as $\delta \to 0$.

REFERENCES

- J. I. Alber, On solution of nonlinear problem involving monotone operators in Banach spases, Sibirskii Math. J., 16 (1975) 3-11 (Russian).
- 2. J. I. Alber and I. P. Riazanseva, On the solution of the nonliear equations with monotone and discontinuous operators, URSS Differential Equations, 15 (2) (1979) 331-342 (Russian).

ON THE STOPAGE RULE IN SOLUTION FOR MONOTONE ILL-POSED PROBLEMS

- 3. J. I. Alber and A. I. Notik, The geometrical characteristics of the Banach spaces and the method od approximation for the nonlinear problems, URSS Dokl. Acad. Nauk, 276 (5) (1984) 1033-1037 (Russian).
- 4. Nguyen Buong, Linear and strongly monotone operator in regularization for ill-posed problems, Proceedings of the NCST of Vietnam, 7 (1995), 9-18.
- 5. M. Sibony, Analyse numerique III, Iteration et approximations, Hermann, ed. des Sciences et des Artts, 476 p, 1988.
- 6. I. P. Ryazatseva, On the stopage rule in solution of nonlinear ill-posed problems, AIT, 10 (1985) 27-30.

Institute of Information Technology Nghia Do, Tu Liem, Hanoi.

Received: August 14, 1997

67