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ITERATIVE METHODS FOR SOLVING
DEGENERATE SYSTEM OF GRID EQUATIONS*

DANG QUANG A

Abstract. In this paper we construct an iterative method for solving degenerate system
of gird equations and after that we use parametric extrapolation technique for accelerating
its convergence rate. The efficiency of the method is shown on examples.

1. INTRODUCTION

In mathematical physics besides boundary value problem with unique solu-
tions we meet also problems having infinite set of solutions, for example, the
Neumann problem for elliptic equation and the problem for Lame equation in
elasticity when stress is given on whole boundary. After discretization of these
problems by difference or variational methods we get a system of linear algebraic
equations with symmetric, nonnegative matrix

Au = f (1)

The system, usually, is nonconsistent because due to the errors of computation
the consistence condition of differential problem is not preserved yet. For degener-
ate system of linear algebraic equations in particular and for degenerate operator
equation in general, in the nonconsistent case, one introduced the concept of gen-
eralized solution [5,7] (or pseudosolution ([6,11]). There always exists an infinite
number of generalized solutions of operator equation. Among them the solution
with minimal norm is called the normal solution. The normal solution exists and
is unique and is orthogonal to the kernel of the operator.

The construction of stable method for finding normal solution of the operator
equation of the first kind when the operator and the right-hand side are given not
exactly is the subject of the theory of ill-posed problems (see c. f. [11, 12]). The
latter problems often arise in processing experimental data. For them the matrix
usually is complete and has not any special structure. Therefore, the problem of
estimating the computational work for obtaining the normal solution with a given
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accuracy is not set yet.
Nevertheless, for the degenarate system of grid equations obtained after dis-

cretization of boundary value problem in mathematical physics one always is in-
terested in the computational work for achieving the normal solution with a given
accuracy as the size of this system is very large (for example 105). One wishes to
construct methods with minimal cost. In this direction in [7,9] there have been
proposed and investigated some iterative method for finding normal solution and
solving the two-dimensional Neumann problem as an application.

In this paper we shall construct an iterative method for degenerate equation
with help of a regulizator and apply the method to the Neumann problem in
two and three dimensions. After that we shall accelerate the convergence rate of
the method by a parametric extrapolation technique. It is the technique that we
have developed to construct accelerated methods for solving equation with positive
definite operator or only positive operator in Hilbert space of infinite dimension
(see [1- 4]).

Throughout the paper all the operators are assumed to be linear.

11.SOME AUXILIARY RESULTS

We shall consider the system of grid equations (1) as an operator equation in
Hilbert space of finite dimension H = HN, where N is the number of unknown
values of grid functions. Denote by KerA and ImA the kernel and the image of A,
respectively. There are the following expansions of H into orthogonal sums:

H = KerA EEl ImA* ,

H = KerA* EEl ImA,

where A * is the conjugate operator of A.
If A = A * we have

H = KerAEBlmA. (2)

Lemma 1. Let R be a symmetric, nonnegative operator and B be symmetric,
positive definite operator in Hand RB = BR. Then:

B-1 U E ImR if u E ImR ,

ts+« E KerR if u E KerR.

This lemma is easily followed from Lemmas 2, 3 in §3, Chapter XII of [9].
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Now assume that

(3)

with
(4)

and
KerR1 = ... = KerRp• (5)

We consider the operator B of the form

(6)

where Wet > 0, 0: = 1, .. : , p.

It is clear that B = B* > o. From Lemma 1 it follows

Lemma 2. Assume that Rand B are defined above. Then:

B-1 U E ImR if u E ImR ,

B-1u E KerR if u E KerR.

Lemma 3. Assume that A and P are symmetric, nonnegative in H, Ker A
KerP. Let At; = A + eP, e > O. Then:

i) Ker A, = KerA,
ii) ImA, = ImA.

Proof: Since the assertion ii) may be followed from i) and (2) it is sufficient to
prove the assertion i).

Obviously, if u E KerA then u E KerP. Hence, AEu = 0, i.e. u E KerAE.
Conversely, let AEu = 0, u i= o. It means Au + eFu. = o. Therefore, (Au, u) +

c(Pu, u) = o. Since by the assumptions of the lemma A :::::0, P :::::0 it follows that

(Au, u) = o. (7)

We shall show that Au = o.
Assume the contradiction, that is Au i= o. Then we are able to decompose

u = u + u, where u E ImA, u E KerA, u i= o. In result, we have (Au, u) = (Au, u).
Let el, e2, , eN be the orthogonal basis of H, consisting of eigenvectors of A

and 0 = Al = = Am < Am+1 :S ... :S AN are the corresponding eigenvalues,
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N N
i.e. Aei = Aiei, i = 1,'" ,N. Then we have u = E Ciei with E e; > o.

i=m+l . i=m+l
Consequently,

N N
(Au, u) = LAic; > Am+l L c; > O.

i=m+l i=m+l

Hence, (Au, u) > O. It contradicts (7). Thus, Au = 0, i.e. u E KerA. The lemma
is proved.

Ill. ALTERNATING DIRECTIONS ITERATIVE METHOD
FOR SOLVING DEGENERATE EQUATION

In order to construct iterative method for solving the operator equation (1)
we start from an operator R = R* 2': 0, which we term the regulizator. On R we
assume that:

i) KerR = KerA,
ii) there exist constants 0 < Cl :S Cz such that

Cl (Rx, x) :S (Ax, x) :S Cz (Rx, x) , 't;/x, Ax t- 0, (9)

that is
Cl R :S A :S Cz R in ImA

We denote by u the normal solution of (1).
First, let us consider the case when (1) is consistent, i.e.

(9')

f ~KerA. (10)

It is equivalent to f E ImA. Therefore, we have

Au = f, u E ImA. (11)

We shall consider the iterative process

B Yk+l - Yk + AYk = f, k = 0, 1, ...
Tk+l

(12)

YoE ImA,

where B is a symmetric, positive definite operator constructed in dependence on
R. If R has the from (3) ~(5) we choose B in the form (6). The coefficient w will
be determined afterwards.
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From (12) we derive

Yk+l = Yk - rk+1B-l(AYk - f), k = 0,1. .. (13)

Since f E ImA, we have AYk - f E ImA for arbitrary Yk. Hence AYk - f E
ImR. By Lemma 2 B-1 (AYk - f) E ImR. Consequently, if Yk E ImA we have
Yk+l E ImA.

Thus, starting from Yo E ImA by the iterative scheme (12) we obtain the
sequence {yd c ImA, or in other words, the iterative process is implemented
entirely in subspace ImA of the space H. Therefore, it is possible to use the
results on convergence of the iterative scheme for the case of symmetric, positive
definite operator in the whole space to the case considered in ImA.

Below we state the results on convergence of (12).

Case 1. Under Case 1 or 2D-case we shall understand the case, when the following
conditions are satisfied:

R = RI + R2' Ra. = R: ~ 0, 0: = 1, m2, RIR2 = R2Rl , (14)

oa.E :::;u; :::;s;», oa.> 0, 0: = 1, 2 in ImA. (15)

For oa. and tla. we can choose the minimal nonzero and maximal eigenvalues of
Ra. respectively.

Lemma 4. In Case 1 taking

(16)

where
Wo Wo 1 1

Wl = , W2 = , Wo=
1+ WoCo 1- WOCo Joftl~ Jo~tl~'

O~=OI+CO' tl~=tlI+CO, 0~=02-CO, tl~=tl2-cO, (17)
02tl2 - 01tll

Co =
01 +02 + tll + tl2 '

we have
o 0
11 B:::; R:::; 12 B, (18)

with
o 1-1' 0 1+1'
11 = --, 12 = --, r = Wl + w2 ,r r

l-y1]fl-~
p:::::. ---'---== ---'-==

1+y1]fl+~'
, o~ ( )"la.= tl' 0:= 1, 2 .

a.
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The coefficients of energetic equivalence in (18) are optimal in the sence that
the ratio ~I / ~2 is maximal.

The content of Lemma 4 was proved in [10, §2,Chapter VIII] although it was
not formulated as a lemma.

In the sequel under 11 ·11 we mean 11· liD where D = A, B in ImA.

Theorem 1. If WI, W2 are chosen as in Lemma 4 then the iterative method (12)
is convergent and there holds the estimate

IIYn - till ~ P~ IIyo - till, (19)

where
1- € /1 0 0

Po = 1+ €' € = /2 ' /1 = Cl/I, /2 = C2/2 ,

if
2

Tn+I = , n = 0, 1, ...
/1 + /2

In the case, .f {T n+d is the Chebyshev collection of parameters constructed by
/17 /2 (see, (9, 10/) then instead of (19) we have

IIYn - till ~ qnllyo - till,

where

2Pl
= --2n'qn 1+ PI

2 _ 1- € = 1- -If, ~ = /1 ,
Po - 1+ e' PI 1+ -If, , /2

- ,
TO - /1 + /2

Hence, the estimate of iteration numbers needed to achieve an approximation to
the normal solution with the relative accuracy 0 is follows:

- for the stationary process

1 1
nd(O) = 2€Inn' (20)

- for the Chebyshev process
1 2- -In-.nc(O) - 2-1f, () (21)



ITERATIVE METHODS· FOR SOLVING DEGENERATE SYSTEM OF GRID EQUATIONS 89

Example 1. On the grid w = {x = (ihl' jh2), O:S;i:S; NI, 0 < j :s; N2, Nlhl =
11, N2h2=12} consider the system of equations

Ay = - f (x), x E w ,
2 2

A = Al + A2' f(x) = cp(x) + hI cpt{x) + h2 CP2(X) .
(22)

Here

{

h2 atlyxa, XOt = 0,

AOty = (;~YxJxa, hOt:S; xOt:s; i: - b«,
- ha aOtYxa, XOt = lOt ,

{

g-Ot(x,l3), XOt = 0,
CPOt(x) = 0, hOt :s; XOt :s; lOt - hOt ,

g+Ot(x,l3), XOt = lOt,

(3= 3 - 0:, 0:= 1, 2;

ail (x) = kdxl + hI, X2), atl = k2(Xl, X2 + h2).

The notations of difference deviratives are adopted as in [9,10].
Assume that the coefficients ad x), a2 (x) satisfy the conditions

(23)

The system of grid equations (22) is the difference scheme of the Neumann problem
for elliptic equation

8 ( 8u ) 8 ( 8u)- kl(x)- +- k2(x)- =-cp(x), xEG={x:O<xOt<lO/, 0:=1,2},
8Xl 8Xl 8X2 8X2

8u
kO/-8 . = g-O/(x,l3), XO/ = 0, {3 = 3 - 0:,

XO/

In the space H of grid functions defined on w we introduce scalar product

(u, v) =L u(x) v(x) n,l(Xt) n,2(X2)'
xEw

hO/ :s; XOt :s; lO/ - hO/
XOt = 0, lO/; 0: = 1, 2
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and consider the operator A = - A.
Then A = A * ~ O. KerA consists of grid functions which are constants on the
grid w. We can assume that f E ImA because in the contrast case we replace f
by h = f - (J, J-Loo) J-Loo, where uoo ~ uoo (i, i) = 1/vTJ;..
The operators R and RI, R2 are defined as follows:

o 0 0 0 0

R . -A, A = Al + A2' ROt = - AOt ,

{

.a, -0
h Yx, XOt - ,

'" '"lOt = . Yx", x", , hOt ::; XOt ::; lOt - hOt ,
- h2 Yx, XOt = lOt, a = 1, 2,

c '"

The coeffcients of energetic equivalence of A and R in (9) are the same Cl, c2 in
(23). It is easy to verify that KerR = KerRI = KerR2 = KerA. The coefficients
60t and AOt in (15) are given by

4 . 2 '!rhOt 8 4
60t = h2 sin -l- ~ i2' AOt = h2 ' a = 1,2 .

Ot 20t o o

By Theorem 1the number of iterations needed to achieve the normal solution with
the relative accuracy ()= h2 = hi + h~ are

1 1) (1 1)nd(()) = O(k Ink ' nc(()) = 0 Vh Ink . (24)

Case 2. Under Case 2 or 3D-case we shall understand the case, when the following
conditions are satisfied:

* f3 'R = RI + R2 + R3, ROt = ROt ~ 0, ROtR{3 = R{3ROt, a, = 1, 2, 3,

80tE < ROt ::; AOtE, a = 1, 2, 3 in ImA.
(25)

In this case we take

B = (E + wRt}(E + WR2)(E + WR3). (26)

Denote
6 = min{81, 82, 63}, A = max{AI, A2' A3}, 17 = ~ . (27)

Then by [8,91 with the choice
3..([&

W = 3y'6 + \/~ (28)
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we have

where
o (1-TJ2/3)30 6(1+2TJ) (1-TJ2/3)3
11 = 36 1 ' 12 = 2/3 1-TJ TJ -TJ

Hence, the coefficients of energetic equivalence of A and B in ImA are

o 0
11 = Cl11, 12 = C212·

The results on convergence of the iterative scheme (12) in the case under consid-
eration are the same as stated in Theorem 1.

Applying these results to the Neumann problem in unitary cub we obtain the
estimate

(29)

IV. ACCELERATING CONVERGENCE RATE BY PARAMETRIC
EXTRAPOLATION

In this section we shall accelerate the convergence rate of the iterative process
(12) with the help of the extrapolation technique by a parameter, which will be
introduced into the equation (1). The theoretical background of this accelerating
method was elaborated in [3]. The applications of this method to the equation
with positive definite operator is presented in [3,4] and with only positive operator
in [1,2].

Below we only state the result on acceleration of convergence rate of the pro-
cess (12) and point out the difference, which it should be drawn attention to when
using known techniques to the case of degenerate operator.

Instead of (1) we consider the perturbed equation

(30)

where Ae = A + eP, e > 0,

P = P* ~ 0, KerP = KerA.

By Lemma 3 we have KerA, = KerA, ImA, = ImA. Under the assumption
f E ImA the equation (30) has solutions and its normal solution ue E ImA.
Hence, like to (1), being considered in the subspace ImA (30) has unique solution
Ut:.
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Theorem 2. Assume that A and P satisfy the condition of Lemma 3 and let M
be a natural number. Then the normal solution of (30) may be expanded in the
form

M

- - '" k M+lu~= Uo + Le Vk + e w~ ,
k=l

where uo is the normal solution of (1), Vk (k = 1, ..., M) are elements (belonging to
ImA) independent of e and w~ E ImA is uniformly bounded in e, i.e, Ilw~11:::;const.

This theorem is proved in the same way as Theorem 2.1 in [3]. The only
difference is that here all things occur in ImA. This is ensured by Lemma 3.

We now construct the approximation of the normal solution u of (1) in the
form

M+l
-E '" _U = L aku~/k,

k=l

where
(_1)M+l-k kM+l

ak= k!(M+1-k)!'

u~/ k is the normal solution of (30) with the parameter e / k.

Since U~/k E ImA (k = 1, ... , M + 1) we have also UE
E ImA. Using Theorem

2 we obtain the following.

Theorem 3. Suppose that A and P satisfy the conditions of Lemma 3. Then we
have

-EIIU - ull :::;C e;M+l ,

where C = const, independent of e.

From the above results we see that in order to obtain an approximate normal
solution of (1) with the prescribed accuracy 0 we must choose e = Ol/(M+l) and
solve (30) M + 1 times with the parameters e/ k (k = 1, ... , M + 1) at the same
level of accuracy O.

To solve (30) we use the iterative process

(k+l) (k)
B y~ - y~ + A~ y~k) = f ,

Tk+l
y~O) E ImA.

k = 0,1, ...
(31)

Using the results of [3,4] weobatin the following ones on convergene of (31) in the
cases arising from two and three-dimensional problem as defined in Section 3.
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In 2D-case (Case 1) we take P = R1R2• Then we have

Theorem 4. If B = (E + y'fR1) (E + y'fR2), where 0 = 01 + 02 and {rdk=1

are the collection of chebyshev parameters constructed by the bounds /1 = %, /2 =

C2 VI, C2 being coefficient in (9), then the iterative process (31) converges to the
normal solution Ut: of (30) and there holds the estimate

where I-le 0 ~

Ie,e=-.
o 2C2

1+ e
For the stationary iterative process with rk == r = 0 +2 0 there holds estimate. '1 '2

o 0

where p = (1 - e)/(1 + e).
The estimates for number of iterations needed to get an approximate normal solu-
tion of (30) with relative accuracy () are

(32)

Example 2. Consider Example 1 in Section 3 again. The achieve accuracy ()= h2
when choosing M = 1 we take e = h. Then it should solve (30) with parameters
hand h/2.

According to Theorem 4 we have

From the above estimates and (24) we see that the iterative process for solving
(30) requires iteration number less than for (1).

In 3D-case (Case) we take

P = RIR2 + R2R3 + RIR3 + VhRIR2R3'

B = (E + wRd(E + wR2)(E + wR3) , w = ay'€.
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{
c2.Jh c2 }Theorem 5. Suppose A 2: 6E in ImA and e ::;min ~'~' Sh. , where Cl, C2

are the coefficients in (19). Then:

i} 11 h ::; cV62 and a = ~ = 1/V6 then the iterative process (31) with the
Chebyshev parameters constructed by the bounds 11 = ~1 = 6/2 and 12 = ~2 =
c2Vh/vii converges to the normal solution u~ 01 (30) and we have the estimate
(32).

ii} 11 h > cV 62 and a= a = h 1/4 / yfCi then

nc(O = In(2/O)
2vE '

nd(O = In(2/O)
2E '

where
€ = __6h_1

_/
42...fi_e

y'c2( C2 + 6v'h) .

Applying the accelerated method to the Neumann problem in unitary cub we
get the estimates for iterative number, which are better than (29).

V. SOME CONCLUDING REMARKS

1. Above we restrict ourselves to the case 1 EImA. If this condition is not
satisfied we replace f by 1- 1,where 1 is the projection of 1 onto KerA. In
applications it is realizable because we usually know KerA, for example, when
solving Neumann problem for elliptic equation or the Lame equation with stress
given on whole boundary (see [7]).

2. In [5]Marchuk also studies iterative methods for solving degenerate system
of linear algebraic equations, but there absent results on convergence rate of the
methods. It should be emphasized that there the iterative process is convergent to
some generalized solution of the system and not necessarily to the normal solution.

3. For solving degenerate system of linear algebraic equations with symmetric,
nonnegative matrix some authors (c.f. [7]) used the method of shift for spectrum
of operator, i.e. instead of (1) they considered the equation .

(A + eE)ue = I.

Then a problem has been set up. That is to choose the regularization parameter
e for obtaining the normal solution with a given accuracy on computers with a
specified arithmetic. It means that we must draw attention to number of correct
digits in floating-point arithmetic. This problem was involved in [7J. An further



ITERATIVE METHODS FOR SOLVING DEGENERATE SYSTEM OF GRID EqUATIONS 45

discussion of it and an study of application of parameter extrapolation technique
will be presented elsewhere.
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