MÖBIUS TRANSFORM FOR CADIAG-2

PETR HAJEK ${ }^{(1)}$ and NGUYEN HOANG PHUONG ${ }^{(2)}$

Abstract

This study presents how the Möbius transform can be used for Max-Min compositions of rules of the CADIAG-2. The algorithm for Möbius transform to find new weights of rules for CADIAG-2 is proposed. This method is tested for different examples and some remarks are indicated.

Keyword: MaxMin inference, Möbius transform, CADIAG-2.

Preface (by P. Hajek)

This report contains Mr. Nguyen elaboration of my suggestion to extend Möbius transform (in the sence of MYCIN-like systems, (Hajek, Valdes, 1994) to CADIAG-like fuzzy expert systems, extended by negative weights. The new and slightly surprising result is that non-invertibility of the maximum operation does not make the transform impossible provided we carefully combine positive and negative weights.

This contributes to our observation that CADIAG-like systems are very close to MYCIN-like systems, even if we keep maximum as the combining operation for positive weights. I want to stress that means that CADIAG-like systems have both similar advantages as MYCIN-like systems (ease of inference) and similar disadvantages, namely the fact that truth-functionality (use of combining functions) prevents consequent understanding of weights as degrees of belief. Methods like Möbius transform or guarded use give only partial correctness, as discussed at large in (Hajek, Havranek, Jirousek, 1992, Chap. VI-VIII). The main question remains:

If thing as relative frequencies are used as weights of implications (rules) and fuzzy inference is applied, what meaning have the results obtained? (see Hajek, Harmancova, 1995).

It is hoped that the present report bring a partial contribution to a future answer to this question.

1. INTRODUCTION

CADIAG-2 is a medical diagnostic expert system based on Max-Min inference. The rule base of CADIAG-2 consists of rules with the form IF (antecedent) THEN
(succedent). Degrees of truth of rules in CADIAG-2 may be used as relative frequencies or their fuzzifications (Adlassnig, 1986; Adlassnig et al., 1986). In (Hajek, Nguyen, 1995), we have studied how CADIAG-2 is embedded into MYCINlike systems if we replace Max of MaxMin composition of CADIAG-2 by a suitable t-cornom and we propose confirmation and exclusion gives the same results at the corresponding MYCIN-like system. In (Hajek, Havranek, Jirousek, 1992) an algorithm of Möbius transform for MYCIN-like systems which allows to determine the weight of a rule from the corresponding expert's belief was proposed. The new rule base produces from the coresponding expert's belief was proposed. The new rule base produces global weights compatible with the expert's beliefs. In this study, the question is that how much the Möbius transform can be used for MaxMin compositions of rules of CADIAG-2. The answer is that it is possible, but only if negative weights are introduced. The paper is organized as follows: Section 2 presents an algorithm for construction of Möbius transform for MaxMin inference of CADIAG-2 allowing to find new weights such that the values of composition of rules satisfying to expert's beliefs. Section 3 verifies several examples by the above described algorithm and finally, some conclusions are reported.

2. CONSTRUCTION OF MÖBIUS TRANSFORM FOR CADIAG-2

For construction of Möbius transform algorithm for CADIAG-2, we need add some definitions extending CADIAG-2 by negative knowledge.

Definition 1. A fuzzy patient data patient P_{q} consists of values $\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)$ - degree of confirmation and $\mu_{R_{P S}}\left(P_{q}, S_{i}\right)$ - degree of exclusion for $i=1, \ldots, m$. Assume that, at least, $\mu_{R_{P S}}^{+}\left(P_{p}, S_{i}\right)$ or $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)=0$ and let

- $\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)=0$ and $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)=0$ mean symptoms S_{i} - unknown for patient P_{q}.
- $\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)=1$ means symptoms S_{i} - surely present for patient P_{q}.
- $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)=1$ means symptoms S_{i} surely absent patient P_{q}.

Definition 2. The patient data $\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)$ and $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)$ (for $\left.i=1, \ldots, m\right)$ are three-valued for patient P_{q}, if for all $S_{i}, \mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)$ and $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)$ take value 0 or 1 . Then $\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)$ and $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)$ determine an elementary conjunction E_{q} of symptoms S_{i} such that S_{i} occurs in E_{q} positively if $\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)=$ 1 and negatively $\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)=1$.

For example, give a fuzzy patient data in Table 1.

Table 1. A patient data

P_{q}	S_{1}	S_{2}	S_{3}	S_{4}
$\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)$	1	0	0	0
$\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)$	0	0	1	0

where, $S_{1}, S_{2}, S_{3}, S_{4}$ - symptopms,
P_{q} - patient q,
$\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right), \mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right)$ are values of the patient data.
From Table 1, the following elementary conjunction of symptoms S_{i} for patient P_{q} is construted:

$$
E_{q}=S_{1} \& \neg S_{3}
$$

Definition 3. The values $\mu_{R_{P S}}^{+}\left(P_{q}, \neg S_{i}\right), \mu_{R_{P S}}^{-}\left(P_{q}, \neg S_{i}\right)$ of patient data for patient P_{q} are defined as follows

$$
\begin{aligned}
& \mu_{R_{P S}}^{+}\left(P_{q}, \neg S_{i}\right)=\mu_{R_{P S}}^{-}\left(P_{q}, S_{i}\right) \\
& \mu_{R_{P S}}^{-}\left(P_{q}, \neg S_{i}\right)=\mu_{R_{P S}}^{+}\left(P_{q}, S_{i}\right)
\end{aligned}
$$

Definition 4. An elementary conjunction E_{q} of symptoms S_{i} is defined by

$$
E_{q}=\left(\varepsilon_{1}\right) S_{1} \&, \ldots, \&\left(\varepsilon_{m}\right) S_{m}
$$

(recall the notion (0) $S_{i}=\neg S_{i},(1) S_{i}=S_{i}$).
If for each $i, i=1, \ldots, m, \mu_{R_{P S}}^{-}\left(P_{q},\left(\varepsilon_{i}\right) S_{i}\right)=0$ then

$$
\begin{gathered}
\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}\right)=\min _{S_{i} \in E_{q}}\left(\mu_{R_{P S}}^{+}\left(P_{q},\left(\varepsilon_{i}\right) S_{i}\right)\right) \\
\mu_{R_{P S}}^{-}\left(P_{q}, E_{q}\right)=0
\end{gathered}
$$

If there is $i, \mu_{R_{P S}}\left(P_{q},\left(\varepsilon_{i}\right) S_{i}\right)>0$ then

$$
\begin{gathered}
\mu_{R_{P S}}^{-}\left(P_{q}, E_{q}\right)=\max _{S_{i} \in E_{q}}\left(\mu_{R_{P S}}^{-}\left(P_{q},\left(\varepsilon_{i}\right) S_{i}\right)\right) \\
\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}\right)=0
\end{gathered}
$$

The value of elementary conjunction E_{q} of symptoms S_{i} is defined

$$
\begin{equation*}
\mu_{R_{P S}^{t o t}}\left(P_{q}, E_{q}\right)=\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}\right)-\mu_{R_{P S}}^{-}\left(P_{q}, E_{q}\right) \tag{1}
\end{equation*}
$$

Recall that a value $\mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)$ in $[0,1]$ used for confirmation of diagnosis, where the value $\mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)$ indicates degree in wich a symptom (or elementary conjunction of symptoms) E_{i} confirms a diagnosis D_{j}. The MaxMin composition of rules for confirmation of diagnosis is

$$
\begin{equation*}
R_{P D}^{+}=R_{P S} \circ R_{S D}^{+} \tag{2}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right)=\operatorname{Max}_{E_{i} \in \operatorname{Sys}} \operatorname{Min}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{i}\right) ; \mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)\right) \tag{3}
\end{equation*}
$$

We extend CADIAG-2 by a relation $R_{S D}^{-}$defined by $\mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)$ (E_{i} is a symptom or elementary conjunction of symptoms) in $[0,1]$, where the value $\mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)$ indicates degree in wich a symptom (or elementary conjunction of symptoms) E_{i} excludes a diagnosis D_{j}. Thus, the following MaxMin composition of rules proposed and used to deduce the degree of exclusion of the disease D_{j} for the patient P_{q} from the obeserved symptoms E_{i} is follows:

$$
\begin{equation*}
R_{P D}^{-}=R_{P S} \circ R_{S D}^{-} \tag{4}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\operatorname{Max}_{E_{i} \in \operatorname{Sys}} \operatorname{Min}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{i}\right) ; \mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)\right) \tag{5}
\end{equation*}
$$

where Sys - a set of symptoms E_{i}.
Definition 5. A rule base Θ given by $\mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)$ and $\mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)$ consists of rules:

$$
\begin{align*}
E_{i} & \rightarrow D_{j}\left(\mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)\right) \tag{6}\\
E_{i} & \rightarrow \neg D_{j}\left(\mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)\right) \tag{7}
\end{align*}
$$

Assume that $\mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)=0$ or $\mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)=0$ where $\mu_{R_{S D}^{+}}\left(E_{i}, D_{j}\right)$, $\mu_{R_{S D}^{-}}\left(E_{i}, D_{j}\right)$ are weights of fuzzy rules in $[0,1]$.

Now we are going define the total degree of confirmation and exclusion of diagnisis as a combination of degree of confirmation and degree of exclusion. We shall see that it is more convenient use their difference in the sence of a operation on $(-1,1)$ than just their difference as reals.

Definition 6. Given a patient data, the total degree for confirmation and exclusion of diagnosis by patient P_{q} from observed symptom S_{i} is:

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}^{t o t}\left(P_{q}, D_{j}\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{S D}^{-}}\left(P_{q}, D_{j}\right) \tag{8}
\end{equation*}
$$

in $[-1,1]$, where

$$
\begin{aligned}
& \mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right)=\operatorname{Max}_{E_{q}^{\prime}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right], \\
& \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\operatorname{Max}_{E_{q}^{\prime}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D_{j}\right)\right],
\end{aligned}
$$

where E_{q}^{\prime} varies over all elementary conjunctions of symptoms for which $\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)$ or $\mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D_{j}\right)$ is positive.
Remark: note that of the patient data are three-valued, i.e. given by an elementary conjunction E_{q}, then this reduces to $\mu_{R_{S D}^{+}}\left(P_{q}, D_{j}\right)=\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left(\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right)$ and it is similar for $\mu_{R_{S D}^{-}}\left(P_{q}, D_{j}\right)$.

Let us recall some notions on \oplus and Θ on ($-1,1$) (Hájek et al.; 1992, 1994).

- Operation \oplus is an odered Abelian group, extended to extremals:

$$
1 \oplus x=1, \quad-1 \oplus x=-1
$$

- The PROSPECTOR group operation \oplus on $(-1,1)$ is defined as follows:

$$
\begin{equation*}
x \oplus y=\frac{x+y}{1+x y} \tag{9}
\end{equation*}
$$

- Operation Θ is a group operation defined by

$$
\begin{equation*}
x \ominus y=x \oplus-y \tag{10}
\end{equation*}
$$

Remark: Let recall that we compare the degree of confirmation $\mu_{R_{S D}^{+}}\left(P_{q}, D_{j}\right)$ and the degree of exclusion $\mu_{R_{S D}^{-}}\left(P_{q}, D_{j}\right)$ in $[0,1]$ of diagnosis D_{j} for patient P_{q}. One can see the representation of these degrees in $[-1,1]$ in Graph 1.
$-1-1$
$-\mu_{R_{P D .}^{-}}\left(P_{q}, D_{j}\right) \quad \mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right)$

Graph 1. Representation of $\mu_{R_{P_{D}}^{+}}\left(P_{Q}, D_{j}\right)$ and $\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)$
To this end we represent the exclusion as negative confirmation, so we take $-\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)$ in $[-1,1]$ instead of $\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)$ in $[0,1]$.

Definition 7. A conditional weight system β consists of $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right)$ and $\beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)$ in $[0,1]$ for a set of pairs $\left(D_{j}, E_{q}\right)$. Assume that $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right)$ or $\beta_{\bar{S} D}^{-}\left(D_{j} \mid E_{q}\right)=0$, where E_{q} : elementary conjunction of symptoms S_{i}.

Definition 8. A tolal conditional weight system $\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$ for a set pairs $D_{j} \in$ Dise (Dise: a set of Diseases $\left.D_{j}\right), E_{q} \in E C(S y m)$ (Elementary Conjunction
of Symptoms) is defined as follows:

$$
\begin{equation*}
\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)=\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right)-\beta_{S D}^{-}\left(D_{j} \mid E_{q}\right) \tag{11}
\end{equation*}
$$

Definition 9. A conditional weight system β is weakly sound the following holds for each $E_{q}^{\prime} \subseteq E_{q} \in E C(\mathrm{Sym})$ and $D_{j} \in$ Dise: if $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)$, $\beta_{S D}^{+}\left(D_{j} \mid E_{q}^{\prime}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}^{\prime}\right)$ are defined and $\beta_{S D}^{+}\left(D_{j} \mid E_{q}^{\prime}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}^{\prime}\right)$ is extremal (i.e $=1$) (one of them takes value 0), then

$$
\begin{align*}
& \beta_{S D}^{+}\left(D_{j} \mid E_{q}^{\prime}\right)=\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right) \tag{12}\\
& \beta_{S D}^{-}\left(D_{j} \mid E_{q}^{\prime}\right)=\beta_{S D}^{-}\left(D_{j} \mid E_{q}\right) \tag{13}
\end{align*}
$$

Theorem. Let β be a weakly sound conditional weight system. Then there is a rule Θ with new weight $\mu_{R_{S D}^{+}}\left(S_{i}, D_{j}\right.$ and $\mu_{R_{S D}^{-}}\left(S_{i}, D_{j}\right)$ of fuzzy rules such that for each patient P_{q} and each three-valued patient data $\mu_{R S D}^{+}\left(P_{q}, S_{i}\right), \mu_{R S D}^{-}\left(P_{q}, S_{i}\right)$ (theorefore E_{q} exists)

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right) \tag{14}
\end{equation*}
$$

whenever the right hand side is defined.
Proof. Fix D_{j}, we define $\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)$ and $\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)$ for pairs $\left(E_{q}, D_{j}\right)$ such that $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)$ are defined.

We proceed by induction on length of E_{q}.
Case 1: For each E_{q} such that $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)$ are defined but $\beta_{S D}^{+}\left(D_{j} \mid E_{q}^{\prime}\right), \beta_{S_{D}}^{-}\left(D_{j} \mid E_{q}^{\prime}\right)$ are underfined for each proper subconjunction E_{q}^{\prime} of E_{q}, we put

$$
\begin{align*}
& \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right) \tag{15}\\
& \mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{-}\left(D_{j} \mid E_{q}\right) \tag{16}
\end{align*}
$$

Case 2: If $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)$ are defined and extremal (i.e $=1$), then put

$$
\begin{align*}
& \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right) \tag{17}\\
& \mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{-}\left(D_{j} \mid E_{q}\right) \tag{18}
\end{align*}
$$

Case 3: Assume that $\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)$ are defined and nonextremal (i.e $\neq 1$) and $\mu_{R S D^{+}}\left(E_{q}, D_{j}\right), \mu_{R S D^{-}}\left(E_{q}, D_{j}\right)$ are not yet defined, E_{q} has some
proper subconjunctions E_{q}^{\prime} such that $\beta_{S D}^{+}\left(D_{j} \mid E_{q}^{\prime}\right), \beta_{S D}^{-}\left(D_{j} \mid E_{q}^{\prime}\right)$ are defined and for all such $E_{q}^{\prime}, \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}, \mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D_{j}\right)\right.$ have been defined. Collect positive and negative know ledge M^{+}and M^{-}for D_{j} under proper subconjunctions E_{q}^{\prime} of E_{q}. Define the total knowledge $M^{t o t}=M^{+} \ominus M^{-}$, where M^{+}, M^{-}are defined as follows:

$$
\begin{align*}
& M^{+}=\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] \tag{19}\\
& M^{-}=\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D_{j}\right)\right] \tag{20}
\end{align*}
$$

We consider the following cases:
a) If $M^{t o t}=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$ then put

$$
\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

if $\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right) \geq 0$ or

$$
\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

if $\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)<0$.
b) If $M^{t o t}<\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$ then put

$$
\begin{equation*}
\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=M^{-} \oplus \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right) \tag{21}
\end{equation*}
$$

operation \oplus is defined as in (9).
c) If $M^{t o t}>\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$ then put

$$
\begin{equation*}
\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)=M^{+} \ominus \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right) \tag{22}
\end{equation*}
$$

operation Θ is defined as in (10)
and we get (14) for each $\left(D_{j}, E_{q}\right)$ in the domain β.
Proving case 1. One proves by induction on the length of E_{q} that eventually $\mu_{R_{S D}^{+}}\left(S_{i}, D_{j}\right), \mu_{R_{S D}^{-}}\left(S_{i}, D_{j}\right)$ are uniquely defined for each E_{q} such that $\beta_{S D}^{+}\left(S_{i} \mid D_{j}\right)$, $\beta_{S_{D}}^{-}\left(S_{i} \mid D_{j}\right)$ are defined. We have (by definition of MaxMin composition of CA-DIAG-2)

$$
\begin{aligned}
\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) & =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] \\
& =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right]
\end{aligned}
$$

(because $\mu_{R_{S D}^{t o t}}\left(P_{q}, E_{q}^{\prime}\right)=1$ from (2.0), if E_{q}^{\prime} exixts, then $\mu_{R_{S D}}^{-}\left(P_{q}, E_{q}^{\prime}\right)=0$)
$=\operatorname{Max}\left(\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right], \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)\right)=\operatorname{Max}\left(0, \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)\right)=$ $\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right)$
because $\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right]=0$ (due to $\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)$ is unknown, when $\left.E_{q}^{\prime} \subset E_{q}\right)$.

In an analogous, we get

$$
\mu_{R_{P_{D}}^{-}}\left(P_{q}, D_{j}\right)=\mu_{R_{S_{D}}^{-}}\left(E_{q}, D_{j}\right)=\beta_{S_{D}}^{-}\left(D_{j} \mid E_{q}\right)
$$

and thus

$$
\mu_{R_{P D}^{t o t}}^{\text {to }}\left(P_{q}, D_{j}\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)
$$

and the equation (14) holds.
Proving case 2. Given $\beta_{S D}^{+}\left(D_{j}, E_{q}\right)=1\left(\right.$ or $\left.\beta_{S D}^{-}\left(D_{j}, E_{q}\right)=1\right)$ we have

$$
\begin{aligned}
\mu_{R_{P D}^{+}}^{+}\left(P_{q}, D_{j}\right) & =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] \\
& =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right]
\end{aligned}
$$

(because $\mu_{R_{S D}^{+}}\left(P_{q}, E_{q}^{\prime}\right)=1$ from (1), if E_{q}^{\prime} exixts, then $\mu_{R_{S D}}^{-}\left(P_{q}, E_{q}^{\prime}\right)=0$)
$=\operatorname{Max}\left[\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right], \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)\right]=\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{+}\left(D_{j} \mid E_{q}\right)$ (because $\mu_{R_{P S}^{+}}\left(E_{q}, D_{j}\right)=1$ by condition).

In an analogous way, we get

$$
\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{-}\left(D_{j} \mid E_{q}\right)
$$

and thus

$$
\mu_{R_{P D}^{\text {toto }}}\left(P_{q}, D_{j}\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)
$$

and the equation (14) holds.

Proving case 9:

a) When $M^{\text {tot }}=\beta_{S D}^{\text {tot }}\left(D_{j} \mid E_{q}\right)$:

First, we consider the case $M^{\text {tot }}=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right) \geq 0$
By definition of MaxMin composition of CADIAG-2, we have:

$$
\begin{aligned}
\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) & =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] \\
& =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right]
\end{aligned}
$$

(because $\mu_{R_{S D}^{+}}\left(P_{q}, E_{q}^{\prime}\right)=1$ from (1))

$$
=\operatorname{Max}\left(\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right], \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)\right)
$$

From definition (17), having

$$
\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left(\mu_{R_{S D}^{c}}\left(E_{q}^{\prime}, D_{j}\right)\right)=M^{+}
$$

(because $\mu_{R_{P S}^{+}}\left(E_{q}^{\prime}, D_{j}\right)=M^{+}$for some $E_{q}^{\prime}>0$)
and by condition, put $\mu_{R_{P S}^{+}}\left(E_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$, we get

$$
\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right)=\operatorname{Max}\left(M^{+}, \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)\right)=M^{+}
$$

because $M^{-} \geq 0, M^{t o t}=M^{+} \ominus M^{-}=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right) \geq 0$, then $M^{+} \geq \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$.
In an analogous way, we get

$$
\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\operatorname{Max}\left(M^{-}, 0\right)=M^{-}
$$

because $\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}=0\right.$, and thus

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=M^{+} \ominus M^{-}=\beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)
$$

and the equation (14) holds.
Second, for the case $M^{t o t}=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)<0$, the proof is quite similar.
We have

$$
\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right)=\operatorname{Max}\left(M^{+}, 0\right)=M^{+}
$$

and

$$
\mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=\operatorname{Max}\left(M^{-}, \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)\right)=M^{-}
$$

because $M^{+} \geq 0, M^{t o t}=M^{+} \Theta M^{-}=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)<0$, then $M^{-}>\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$, we get

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right)=M^{+} \ominus M^{-}=\beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)
$$

and the equation (14) holds
b) When $M^{t o t}=M^{+} \ominus M^{-}<\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$:

We have

$$
\begin{aligned}
\mu_{R_{P D}^{t o t}}^{\text {tot }}\left(P_{q}, D_{j}\right)= & \mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right) \\
= & \operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] \ominus \\
& \operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D_{j}\right)\right] \\
= & \left.\left.\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{P S}^{+}}\left(E_{q}^{\prime}\right), D_{j}\right)\right] \ominus \operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{P S}^{-}}\left(E_{q}^{\prime}\right), D_{j}\right)\right] \\
= & \operatorname{Max}\left(\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] ; \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)\right) \ominus \\
& \operatorname{Max}\left(\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] ; \mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)\right)
\end{aligned}
$$

Put

$$
\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)=M^{-} \oplus \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

We have now $\mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)>0$, because $0 \leq M^{+}<M^{-} \oplus \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$ and $M^{-} \geq 0$. We get

$$
\mu_{R_{P D}^{t o t}}^{\text {tot }}\left(P_{q}, D_{j}\right)=\max \left[M^{+}, M^{-} \oplus \beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)\right] \ominus \max \left[M^{-}, 0\right]
$$

and finally, we have

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)=\left(M^{-} \oplus \beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)\right) \ominus M^{-}=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

Thus the equation (14) holds.
c) When $M^{t o t}>\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$

In similar way, we have

$$
\begin{aligned}
\mu_{R_{P D}^{t o t}}^{t o t}\left(P_{q}, D_{j}\right) & =\mu_{R_{P D}^{+}}\left(P_{q}, D_{j}\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D_{j}\right) \\
& =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] \ominus \\
& \operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D_{j}\right)\right] \\
& \left.\left.=\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{P S}^{+}}\left(E_{q}^{\prime}\right), D_{j}\right)\right] \ominus \operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}}\left[\mu_{R_{P S}^{-}}\left(E_{q}^{\prime}\right), D_{j}\right)\right] \\
& =\operatorname{Max}\left(\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] ; \mu_{R_{S D}^{+}}\left(E_{q}, D_{j}\right)\right) \ominus \\
& \operatorname{Max}\left(\operatorname{Max}_{E_{q}^{\prime} \subset E_{q}}\left[\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D_{j}\right)\right] ; \mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)\right)
\end{aligned}
$$

Put

$$
\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)=M^{+} \ominus \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

We have now $\mu_{R_{S D}^{-}}\left(E_{q}, D_{j}\right)>0$, because $0 \leq M^{-}<M^{+} \ominus \beta_{S D}^{\text {tot }}\left(D_{j} \mid E_{q}\right)$ and $M^{+} \geq 0$.
We get

$$
\begin{aligned}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right) & =\max \left[M^{+}, 0\right] \ominus \max \left[M^{-}, M^{+} \ominus \beta_{S D}^{t o t}\left(D_{j}, E_{q}\right)\right] \\
& =M^{+} \ominus\left(M^{+} \ominus \beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
\end{aligned}
$$

that the equation (14) holds. This complettes the proof of the theorem.
The following example shows that (22) may be undefined for usual subtraction -:

Let given a conditional weight system β :

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0.3 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.4 & \beta_{S D}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0 & \beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
\end{array}
$$

Applying Möbius transform according to case 3:

- From (11), we get:

$$
\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0-0.7=-0.7
$$

- Now we calculate $M^{\text {tot }}$ from (19), (20), we get

$$
M^{t o t}=\operatorname{Max}(0.3,0.4) \ominus \operatorname{Max}(0,0)=0.4 \ominus 0=0.4
$$

We have $M^{\text {tot }}>\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)$ then put

$$
\begin{aligned}
& \mu_{R_{S D}^{-}}\left(S_{1} \wedge S_{2}, D\right)=M^{+} \ominus \beta_{S D}^{t o t}\left(D_{j} \mid S_{1} \wedge S_{2}\right) \\
& \quad=0.4 \ominus-0.7=0.4 \oplus-(-0.7)=0.4 \oplus 0.7
\end{aligned}
$$

Apply operation \oplus in (9), we get

$$
\mu_{R_{S D}^{-}}\left(S_{1} \wedge S_{2}, D\right)=0.8593
$$

Remark: Now if we use an usual subtraction - for Θ, we have

$$
\mu_{R_{S D}^{-}}\left(S_{1} \wedge S_{2}, D\right)=M^{+}-\beta_{S D}^{t o t}\left(D_{j} \mid S_{1} \wedge S_{2}\right)=0.4-(-0.7)=1.1>1
$$

But from Definition $5, \mu_{R_{S D}^{-}}\left(S_{1} \wedge S_{2}, D\right)$ must be in $[0,1]$, that means (22) is undefined for usual subtraction - in our example.

More than that the examble shows that if $\mu_{R_{S D}^{\text {tot }}}\left(P_{q}, D_{j}\right)$ were defined in (8) using - instead of Θ then we could not construct a rule base Θ such that $\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)$ $=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)$ for $E_{q}=S_{1}, S_{2}, S_{1} \wedge S_{2}$.

Now we would have to construct the following new rule base:

$$
\begin{gathered}
S_{1} \rightarrow D(0.3), \quad S_{1} \rightarrow \neg D(0) \\
S_{2} \rightarrow D(0.4), \quad S_{2} \rightarrow \neg D(0) \\
S_{1} \wedge S_{2} \rightarrow D(0), \quad S_{1} \wedge S_{2} \rightarrow \neg D(w)
\end{gathered}
$$

such that

$$
\begin{equation*}
\mu_{R_{P D}^{+}}\left(P_{q}, D\right)-\mu_{R_{P D}^{-}}\left(P_{q}, D\right)=-0.7=\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right) \tag{23}
\end{equation*}
$$

But $\mu_{R_{P D}^{+}}\left(P_{q}, D\right)=0.4, \mu_{R_{P D}^{-}}\left(P_{q}, D\right)=w$, which gives

$$
0.4-w=-0.7
$$

$w=1.1$, which >1.

3. SOME EXAMPLES

We discuss the following conditional weight system β. We apply the above algorithm to compute new weights using MinMax composition of rules of CADI-AG-2:

For every example, we apply Möbius transfrom to the given β of using MaxMin Composition of CADIAG-2 that we find new weight $\mu_{R_{S D}^{+}}\left(S_{i}, D_{j}\right)$ and $\mu_{R_{S D}^{-}}\left(S_{i}, D_{j}\right)$ such that

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

In all examples, we assume $\mu_{R_{P S}}^{+}\left(P_{q}, S_{1}\right)=\mu_{R_{P S}}^{+}\left(P_{q}, S_{2}\right)=1$. We use PROSPECTOR group operation \oplus and \ominus defined in (9), (10) Example 1:

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0
\end{array}
$$

- Möbious transform for example 1:
a) Calculating $M^{t o t}, \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

$$
M^{+}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) \wedge \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0.7,0.7)=0.7
$$

In similar, we get

$$
M^{-}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0,0)=0
$$

Then $M^{t o t}=0.7 \ominus 0=0.7$.
On the other hand,

$$
\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
$$

b) Compare $M^{\text {tot }}$ with $\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)$:

From results above, having $M^{\text {tot }}=\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)=0.7>0$, then put

$$
\mu_{R_{S D}^{+}}\left(S_{1} \wedge S_{2}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
$$

We receive the following new rule base:

$$
\begin{aligned}
S_{1} \rightarrow D(0.7), \quad S_{1} \rightarrow \neg D(0) \\
S_{2} \rightarrow D(0.7), \quad S_{2} \rightarrow \neg D(0) \\
S_{1} \wedge S_{2} \rightarrow D(0.7), \quad S_{1} \wedge S_{2} \rightarrow \neg D(0)
\end{aligned}
$$

such that

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 \tag{24}
\end{equation*}
$$

c) Verifying (24):

From (6) we have

$$
\begin{aligned}
& \mu_{R_{P D}^{+o t}}^{\text {ot }}\left(P_{q}, D\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D\right) \\
& =\operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right] \ominus \\
& \operatorname{Max}_{E_{q}^{\prime} \subseteq E_{q}} \operatorname{Min}\left[\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) ; \mu_{R_{S D}^{-}}\left(E_{q}^{\prime}, D\right)\right] \\
& =\max (0.7,0.7,0.7) \ominus \max (0,0,0)=0.7 \ominus 0=0.7
\end{aligned}
$$

thus equation (24) holds.

Example 2:

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0 & \beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
\end{array}
$$

- Möbious transform for example 2:
a) Calculating $M^{t o t}, \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

$$
M^{+}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) \wedge \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0.7,0.7)=0.7
$$

In similar, we get

$$
M^{-}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0,0)=0
$$

Then $M^{t o t}=M^{+} \ominus M^{-}=0.7 \ominus 0=0.7$.
On the other hand,

$$
\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0-0.7=-0.7
$$

b) Compare $M^{\text {tot }}$ with $\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)$:

From results above, having $M^{t o t}>\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$ then put

$$
\mu_{R_{S D}^{-}}\left(S_{1} \wedge S_{2}, D\right)=M^{+} \ominus \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)
$$

$=0.7 \ominus-0.7=0.7 \oplus 0.7=0.9395$. We receive the following new rule base:

$$
\begin{aligned}
& S_{1} \rightarrow D(0.7), \quad S_{1} \\
& \rightarrow \neg D(0) \\
& S_{2} \rightarrow D(0.7), \quad S_{2} \rightarrow \neg D(0) \\
& S_{1} \wedge S_{2} \rightarrow D(0), \quad S_{1} \wedge S_{2} \rightarrow \neg D(0.7 \oplus 0.7)
\end{aligned}
$$

where $0.7 \oplus 0.7=0.9395$ (using (9)).
such that

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=-0.7 \tag{25}
\end{equation*}
$$

c) Verfying (25):

From (6) we have

$$
\begin{aligned}
& \mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D\right) \\
& =\max (0.7,0.7,0) \ominus \max (0,0,0.7 \oplus 0.7)=0.7 \ominus(0.7 \oplus 0.7=-0.7
\end{aligned}
$$

Thus

$$
\mu_{R_{P D}^{t o t}}^{t o t}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=-0.7
$$

thus the equation (25) holds.

Example 3:

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0.3 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.3 & \beta_{S D}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0
\end{array}
$$

- Möbious transform for example 3:
a) Calculating $M^{t o t}, \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

$$
M^{+}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) \wedge \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0.3,0.3)=0.3
$$

In similar, we get

$$
M^{-}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0,0)=0
$$

Then $M^{t o t}=M^{+} \ominus M^{-}=0.3 \ominus 0=0.3$.
On the other hand,

$$
\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7-0=0.7
$$

b) Compare $M^{\text {tot }}$ with $\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

From results above, having $M^{t o t}<\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$ then put

$$
\mu_{R_{S D}^{c}}\left(S_{1} \wedge S_{2}, D\right)=M^{-} \oplus \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)
$$

$=0 \oplus 0.7=0.7$. We receive the following new rule base:

$$
\begin{aligned}
S_{1} & \rightarrow D(0.3), \quad S_{1} \rightarrow \neg D(0) \\
S_{2} & \rightarrow D(0.3), \quad S_{2} \rightarrow \neg D(0) \\
S_{1} \wedge S_{2} & \rightarrow D(0.7), \quad S_{1} \wedge S_{2} \rightarrow \neg D(0)
\end{aligned}
$$

such that

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 \tag{26}
\end{equation*}
$$

c) Verfying (26):

From (6) we have

$$
\begin{aligned}
& \mu_{R_{P D}^{\text {tot }}}\left(P_{q}, D\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D\right) \\
& =\max (0.3,0.3,0.7) \ominus \max (0,0,0)=0.7 \ominus 0=0.7
\end{aligned}
$$

Thus

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
$$

thus the equation (26) holds.

Example 4:

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0.3 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.3 & \beta_{S_{D}}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 & \beta_{S_{D}}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0
\end{array}
$$

- Möbious transform for example 4:
a) Calculating $M^{t o t}, \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

$$
M^{+}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) \wedge \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0,0.3)=0.3
$$

In similar, we get

$$
M^{-}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0.3,0)=0
$$

Then $M^{t o t}=M^{+} \ominus M^{-}=0.3 \ominus 0.3=0$,
On the other hand,

$$
\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7-0=0.7
$$

b) Compare $M^{\text {tot }}$ with $\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

From results above, having $M^{t o t}<\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$ then put

$$
\mu_{R_{S D}^{+}}\left(S_{1} \wedge S_{2}, D\right)=M^{-} \oplus \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)
$$

$=0.3 \oplus 0.7=0.8264$ (using (9)). We receive the following new rule base:

$$
\begin{gathered}
S_{1} \rightarrow D(0), \quad S_{1} \rightarrow \neg D(0.3) \\
S_{2} \rightarrow D(0.3), \quad S_{2} \rightarrow \neg D(0) \\
S_{1} \wedge S_{2} \rightarrow D(0.3 \oplus 0.7), \quad S_{1} \wedge S_{2} \rightarrow \neg D(0)
\end{gathered}
$$

such that

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}^{t o t}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 \tag{27}
\end{equation*}
$$

c) Verfying (27):

From (6) we have

$$
\begin{aligned}
& \mu_{R_{P D}^{t o t}}^{\text {to }} \\
& \quad=\max (0, D)=\mu_{R_{P D}^{+}}\left(P_{q}, D\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D\right) \\
& \hline 0.3 \oplus 0.7) \ominus \max (0.3,0,0)=(0.3 \oplus 0.7) \ominus 0.3=0.7
\end{aligned}
$$

Thus

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
$$

thus the equation (27) holds.

Example 5:

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0.3 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.3 & \beta_{S D}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0 & \beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
\end{array}
$$

- Möbious transform for example 5:
a) Calculating $M^{\text {tot }}, \beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)$:

$$
M^{+}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) \wedge \mu_{R_{S D}^{+}}^{+}\left(E_{q}^{\prime}, D\right)\right)=\max (0,0.3)=0.3
$$

In similar, we get

$$
M^{-}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{S_{D}}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0.3,0)=0.3
$$

Then $M^{t o t}=M^{+} \ominus M^{-}=0.3 \ominus 0.3=0$.
On the other hand,

$$
\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0-0.7=-0.7
$$

b) Compare $M^{\text {tot }}$ with $\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)$:

From results above, having $M^{\text {tot }}>\beta_{S D}^{\text {tot }}\left(D \mid S_{1} \wedge S_{2}\right)$ then put

$$
\mu_{R_{s D}^{-}}\left(S_{1} \wedge S_{2}, D\right)=M^{+} \ominus \beta_{S D}^{t o t}\left(\dot{D} \mid S_{1} \wedge S_{2}\right)
$$

$=0.3 \ominus-0.7=0.3 \oplus 0.7=0.8264$ (using (9)). We receive the following new rule base:

$$
\begin{aligned}
& S_{1} \rightarrow D(0), \quad S_{1} \rightarrow \neg D(0.3) \\
& S_{2} \rightarrow D(0.3), \quad S_{2} \rightarrow \neg D(0)
\end{aligned}
$$

$$
S_{1} \wedge S_{2} \rightarrow D(0), \quad S_{1} \wedge S_{2} \rightarrow \neg D(0.3 \oplus 0.7)
$$

where $0.3 \oplus 0.7=0.8264$
such that

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=-0.7 \tag{28}
\end{equation*}
$$

c) Verfying (28):

From (6) we have

$$
\begin{aligned}
& \mu_{R_{P D}^{\text {tot }}}\left(P_{q}, D\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D\right) \\
& =\max (0,0.3,0) \ominus \max (0.3,0,0.3 \oplus 0.7)=0.3 \ominus(0.3 \oplus 0.7)=-0.7
\end{aligned}
$$

Thus

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=-0.7
$$

and the equation (28) holds.
Example 6:

$$
\begin{array}{ll}
\beta_{S D}^{+}\left(D \mid S_{1}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{1}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{2}\right)=0.3 & \beta_{S D}^{-}\left(D \mid S_{2}\right)=0 \\
\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 & \beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0
\end{array}
$$

- Möbious transform for example 6:
a) Calculating $M^{t o t}, \beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

$$
M^{+}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{P S}}^{+}\left(P_{q}, E_{q}^{\prime}\right) \wedge \mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0.7,0.3)=0.7
$$

In similar, we get

$$
M^{-}=\max _{E_{q}^{\prime} \subset S_{1} \wedge S_{2}}\left(\mu_{R_{S D}^{+}}\left(E_{q}^{\prime}, D\right)\right)=\max (0,0)=0
$$

Then $M^{\text {tot }}=M^{+} \ominus M^{-}=0.7 \ominus 0=0.7$.
On the other hand,

$$
\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=\beta_{S D}^{+}\left(D \mid S_{1} \wedge S_{2}\right)-\beta_{S D}^{-}\left(D \mid S_{1} \wedge S_{2}\right)=0.7-0=0.7
$$

b) Compare $M^{t o t}$ with $\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)$:

From results above, having $M^{\text {tot }}=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7>0$ then put

$$
\mu_{R_{S D}^{+}}\left(S_{1} \wedge S_{2}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
$$

We receive the following new rule base:

$$
\begin{aligned}
S_{1} & \rightarrow D(0.7), \quad S_{1} \rightarrow \neg D(0) \\
S_{2} & \rightarrow D(0.3), \quad S_{2} \rightarrow \neg D(0) \\
S_{1} \wedge S_{2} & \rightarrow D(0.7), \quad S_{1} \wedge S_{2} \rightarrow \neg D(0)
\end{aligned}
$$

such that

$$
\begin{equation*}
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7 \tag{29}
\end{equation*}
$$

c) Verfying (29):

From (6) we have

$$
\begin{aligned}
& \mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\mu_{R_{P D}^{+}}\left(P_{q}, D\right) \ominus \mu_{R_{P D}^{-}}\left(P_{q}, D\right) \\
& =\max (0.7,0.3,0.7) \ominus \max (0,0,0)=0.7 \ominus 0=0.7
\end{aligned}
$$

Thus

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D\right)=\beta_{S D}^{t o t}\left(D \mid S_{1} \wedge S_{2}\right)=0.7
$$

and the equation (29) holds.

4. CONCLUSION

In this study, we have described an algorithm using Möbius transform to compute new rule base for CADIAG-2. We have extended CADIAG-2 by including fuzzy negative knowledge. To apply Möbius transform for CADIAG-2 means to find new weights $\mu_{R_{S D}^{+}}\left(S_{i}, D_{j}\right)$ and $\mu_{R_{S D}^{-}}\left(S_{i}, D_{j}\right)$ of fuzzy rules that for each patient P_{q} whose data $\mu_{R_{S D}^{+}}\left(P_{q}, S_{i}\right), \mu_{R_{S D}^{-}}\left(P_{q}, S_{i}\right)$ are three-valued (therefore E_{q} exists) such that

$$
\mu_{R_{P D}^{t o t}}\left(P_{q}, D_{j}\right)=\beta_{S D}^{t o t}\left(D_{j} \mid E_{q}\right)
$$

Thus this algorithm garantees that using generalized MaxMin inference of CA-DIAG-2 the inference machine will reproduce the expert's stated beliefs as total degrees of confirmation and exclusion. To illustrate this algorithm, several examples are examined.

Acknowledgment

This work was supported by grant through COPERNICUS Project No. 10053 (MUM).

REFERENCES

1. K. P. Adlssig, Fuzzy Set Theory in Medical Diagnosis. IEEEE Transaction on Systems, Man, and Cybernetics, SMC-16 (1986) 260-265.
2. .K. P. Adlssnig et al., Approach to a hospital-based application of a medical expert system. Med. Infrom., Vol. 11, No. 3 (1986) 205-223.
3. B. G. Buchanan, E.H. Shortliffe, Rule-Based expert systems. MYCIN experiments of the Stanford Heuristic Progmaming Project (Additions-Wesley, Reading, mS, 1984).
4. P. Háiek, Towards aprobabilistis analysis of MYCIN-like expert systems II. In Artificial Intelligence and Information-Control Systems of Robots (Plander, ed.), North-Holland, 1989.
5. P. Hájek, A note of belief function in MYCIN-like systems. In: AI'90, CSVTS Prague (1990) 19-26.
6. P. Hájek, D. Harmancová, Medical fuzzy expert systems and reasoning about beliefs. In Proc. AIME'95, Spinger-Verlag, 1995, 403-404.
7. P. Hájek, T. Harvánek, R. Jirou \square sek, Uncertain Information Processing in Expert Systems (CRC PRESS, 1992).
8. P. Hájek, J. J. Valdés, Agebraic foundations of uncertaity processing in rule based expert systems (group - theoretical approech). Computers and Artifical Intelligence, Vol. 10, No. 1 (1991) 29-42.
9. P. Hájek, J. J. Valdés, A Generalized Algebraic Approach to Uncertainty Processing in Rule-Based Expert Systems (Dempsteroids). Computers and Arficial Intellgence, Vol. 10, No. 1 (1991) 29-42.
10. P. Hájek, J. J. Valdés, An analysis of MYCIN-like expert systems. Mathware and Soft Computing, 1 (1994) 45-68.
11. P. Hájek, P. H. Nguyen, CADSAG-2 and MYCIN-like systems (in press).
12. P.H. Nguyen, Approach to combining negative and positive evidence in CADIAG-2. In Proc. EUFIT'95, Aachen, Germany, Aug. 28-31, 1995, 1653-1658.
13. L. A. Zadeh, Fuzzy sets. Information and Control, 8 (1965) 338-353.
14. H. J. Zimmermann, Fuzzy Set Theory and Its Applications (Kluwer Academic, Publishers, Boston, Dordrecht, London, 1991).
(1) Institute of Computer Science, Academy of Science of the Czech Republic Pod vodarenskou vezi 2, 18207 Praha 8, Czech Republic.
(2) Institute of Information Technology

National Center for Science and Technology of Vietnam.

