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MOBIUS TRANSFORM FOR CADIAG-2

PETR HAJEK(l) and NGUYEN HOANG PHUONG(2)

Abstract. This study presents how the Mobius transform can be used for Max-Min
compositions of rules of the CADIAG-2. The algorithm for Mobius transform to find new
weights of rules for CADIAG-2 is proposed. This method is tested for different examples
and some remarks are indicated.

•
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Preface (by P. Hajek)

This report contains Mr. Nguyen elaboration of my suggestion to extend
Mobius transform (in the sence of MYCIN-like systems, (Hajek, Valdes, 1994) to
CADIAG-like fuzzy expert systems, extended by negative weights. The new and
slightly surprising result is that non-invertibility of the maximum operation does
not make the transform impossible provided we carefully combine positive and
negative weights.

This contributes to our observation that CADIAG-like systems are very close
to MYCIN-like systems, even if we keep maximum as the combining operation
for positive weights. I want to stress that means that CADIAG-like systems have
both similar advantages as MYCIN-like systems (ease of inference) and similar
disadvantages, namely the fact that truth-functionality (use of combining functions
) prevents consequent understanding of weights as degrees of belief. Methods like
Mobius transform or guarded use give only partial correctness, as discussed at
large in (Hajek, Havranek, Jirousek, 1992, Chap. VI-VIII). The main question
remains:

If thing as relative frequencies are used as weights of implications (rules) and
fuzzy inference is applied, what meaning have the results obtained? (see Hajek,
Harmancova, 1995).

It is hoped that the present report bring a partial contribution to a future
answer to this question.

1. INTRODUCTION

CADIAG-2 is a medical diagnostic expert system based on Max-Min inference.
The rule base of CADIAG-2 consists of rules with the form IF (antecedent) THEN
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(succedent). Degrees of truth of rules in CADIAG-2 may be used as relative
frequencies or their fuzzifications (Adlassnig, 1986; Adlassnig et al., 1986). In
(Hajek, Nguyen, 1995), we have studied how CADIAG-2 is embedded into MYCIN-
like systems if we replace Max of MaxMin composition of CADIAG-2 by a suitable
t-cornom and we propose confirmation and exclusion gives the same results at
the corresponding MYCIN-like system. In (Hajek, Havranek, Jirousek, 1992) an
algorithm of Mobius transform for MYCIN-like systems which allows to determine
the weight of a rule from the corresponding expert's belief was proposed. The new
rule base produces from the coresponding expert's belief was proposed. The new
rule base produces global weights compatible with the expert's beliefs. In this
study, the question is that how much the Mobius transform can be used for Max-
Min compositions of rules of CADIAG-2. The answer is that it is possible, but only
if negative weights are introduced. The paper is organized as follows: Section 2
presents an algorithm for construction of Mobius transform for MaxMin inference
of CADIAG-2 allowing to find new weights such that the values of composition of
rules satisfying to expert's beliefs. Section 3 verifies several examples by the above
described algorithm and finally, some conclusions are reported.

2. CONSTRUCTION OF MOBIUS TRANSFORM FOR CADIAG-2

For construction of Mobius transform algorithm for CADIAG-2, we need add
some definitions extending CADIAG-2 by negative knowledge.

Definition 1. A fuzzy patient data patient Pq consists of values -i., (Pq, Si)
- degree of confirmation and fl-Rps (Pq, Si) - degree of exclusion for i = 1, ... , m.
Assume that, at least, -i., (Pp, Si) or fl-Rps (Pq, Si) = 0 and let

- fl-~ps (Pq, Si) = 0 and fl-Rps (Pq, Si) = 0 mean symptoms S; - unknown for
patient Pq•

- fl-~ps (Pq, Si) = 1 means symptoms S; - surely present for patient Pq•

- fl-Rps (Pq, Si) = 1 means symptoms S; surely absent patient Pq•

Definition 2. The patient data fl-~ps (Pq, Si) and fl-Rps (Pq, Si) (for i = 1, ... , m)
are three-valued for patient r; if for all s., fl-~ps (Pq, Si) and fl-Rps (Pq, Si) take
value 0 or 1. Then fl-~ps (Pq, Sd and fl-Rps (Pq, Si) determine an elementary con-
junction Eq of symptoms S, such that Si occurs in Eq positively if fl-~ps (Pq, Si) =
1 and negatively fl-Rps (Pq, Si) = l.

For example, give a fuzzy patient data in Table 1.
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Table 1. A patient data

Pq SI S2 S3 S4

JL~ps (Pq, Si) 1 0 0 0

JLRps (Pq, Si) 0 0 1 0

where, SI, S2, S3, S4 - symptopms,
Pq - patient q,
JL~ps (Pq, Si), JLRps (Pq, Si) are values of the patient data.

From Table 1, the following elementary conjunction of symptoms S; for patient
Pq is construted:

Definition 3. The values JL~ps (Pq, oSi), JLRps (Pq, oSi) of patient data for pa-
tient Pq are defined as follows

JL~ps (Pq, oSi) = JLRps (Pq, Si)
JLRps (Pq, oSi) = JL~ps (Pq, Si)

Definition 4. An elementary conjunction Eq of symptoms S; is defined by

Eq = (CdSl&' ... , &(cm)Sm

(recall the notion (O)Si = oSi, (l)Si = Silo
If for each i, i = 1, ... , m, JLRps (Pq, (ci)Si) = 0 then

JLRps (Pq, Eq) = 0

If there is i, JLRps (Pq, (ci)Si) > 0 then

-i.. (Pq, Eq) = 0

The value of elementary conjunction Eq of symptoms S, is defined

(1)
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Recall that a value J.LR+ (Ei' Dj) in [0,1] used for confirmation of diagnosis, where
SD

the value J.LR+ (Ei' Dj) indicates degree in wich a symptom (or elementary con-
SD

junction of symptoms) E; confirms a diagnosis D], The MaxMin composition of
rules for confirmation of diagnosis is

RtD = Rps 0 RtD (2)

defined by

J.LR+ (Pq, Dj) = MaxE·EsysMin(J.LR+ (Pq, Ei); J.LR+ (Ei, Dj)) (3)
PD • PS SD

We extend CADIAG-2 by a relation RSD defined by J.LR- (Ei' DJ') (Ei is a symp-
SD

tom or elementary conjunction of symptoms) in [0,1], where the value J.LR- (Ei' Dj)
SD

indicates degree in wich a symptom (or elementary conjunction of symptoms) E;
excludes a diagnosis D], Thus, the following MaxMin composition of rules pro-
posed and used to deduce the degree of exclusion of the disease Dj for the patient
Pq from the obeserved symptoms E, is follows:

RpD = Rt s 0 RSD (4)

defined by

J.LR- (Pq, DJ·) = MaxE·EsvsMin(J.LR+ (Pq, Ei); J.LR- (Ei' DJ·)) (5)
PD • - PS SD

where Sys - a set of symptoms Ei.

Definition 5. A rule base e given by J.LR+ (Ei' Dj) and J.LR- (Ei' Dj) consists
SDSD

of rules:

s, - Dj(J.LR+ (Ei' Dj))
SD

E, - -,Dj(J.LR- (Ei' Dj))SD

Assume that J.LR+ (Ei' Dj) = a or J.LR- (Ei' Dj)
SD SD

J.LR- (Ei' Dj) are weights of fuzzy rules in [0,1].
SD

(6)

(7)

a where J.LR+ (Ei' Dj)'
SD

Now we are going define the total degree of confirmation and exclusion of
diagnisis as a combination of degree of confirmation and degree of exclusion. We
shall see that it is more convenient use their difference in the sence of a operation
on (-1,1) than just their difference as reals.

Definition 6. Given a patient data, the total degree for confirmation and exclu-
sion of diagnosis by patient Pq from observed symptom S; is:

J.LRtot (Pq, Dj) = J.LR+ (Pq, Dj) e J.LR- (Pq, Dj)
PD PD SD

(8)
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in [-1,1], where
J.LR+ (Pq, Dj) = MaxE,Min[J.L~ (Pq, Eq'); J.LR~ (Eq', Dj)],PD q PS SD

'J.LR- (Pq, Dj) = MaxE'Min[J.L~ (Pq, Eq'); J.LR- (Eq', Dj)],
PD q PS SD

where E~ varies over all elementary conjunctions of symptoms for which
J.LR+ (Eq', D j) or J.LR- (Eq', D j) is positive.

SD - SD

Remark: note that of the patient data are three-valued, i.e. given by an elementary
conjunction Eq, then this reduces to J.LR+ (Pq, Dj) = MaxE' CE (J.LR+ (Eq', DJ-))SD q- q SD
and it is similar for J.LR- (Pq, Dj).

SD

Let us recall some notions on EDand e on (-1,1) (Hajek et al.; 1992, 1994).
- Operation EDis an odered Abelian group, extended to extremals:

lEDx=l, -IEDx=-1

- The PROSPECTOR group operation EDon (-1,1) is defined as follows:
x+y

x EDy = (9)
1+ xy

- Operation e is a group operation defined by

x e y = x ED-y (10)

Remark: Let recall that we compare the degree of confirmation J.LR+ (Pq, Dj) and
SD

the degree of exclusion J.LR- (Pq, Di) in [0,1] of diagnosis Di for patient Pq. One
SD

can see the representation of these degrees in [-1,1] in Graph 1.

-1 1

°-J.LR- (Pq, Dj) J.LR+ (Pq, Dj)
PD- PD

To this end we represent the exclusion as negative confirmation, so we take
-J.LR- (Pq, Di) in [-1,1] instead of J.LR- (Pq, Di) in [0,1].

PD PD

Definition 7. A conditional weight system f3 consists of f3%n(DiIEq) and
.Bsn(DiIEq) in [0,1] for a set of pairs (Di' Eq). Assume that f3%n(DiIEq) or
.Bsn(DiIEq) = 0, where Eq : elementary conjunction of symptoms Si.

Definition 8. A tolal conditional weight system f3~Ob(DiIEq) for a set pairs
Di E Dise (Dise: a set of Diseases Dj)' Eq E EC(Sym) (Elementary Conjunction
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of Symptoms) is defined as follows:

P~(Djl~)=pb(Djl~)-P~(Djl~) (11)

Definition 9. A conditional weight system P is weakly sound the following holds
for each E~ ~ Eq E EG(Sym) and Dj E Dise: if ptD(DjIEq), PsD(DjIEq),
PtD(DjIE~), PSD(DjIE~) are defined and PtD(DjIE~), PSD(DjIE~) is extremal
(i.e = 1) (one of them takes value 0), then

pb(Djl~)=P~(Djl~)

PSD(Djl~)=P~(Djl~)

(12)

(13)

Theorem. Let P be a weakly sound conditional weight system. Then there is a
rule E> with new weight P,R+ (Si, D, and P,R- (Si, Dj) of fuzzy rules such that

. SD SD

for each patient Pq and each three-valued patient data P,~SD(Pq, Si), P,RSD(Pq, Si)
(theorefore Eq exists)

P,Rtot (Pq, Dj) = P1°f>(DjIEq)
PD

(14)

whenever the right hand side is defined.

Proof. Fix Dj, we define P,R+ (Eq, Dj) and P,R- (Eq, Dj) for pairs (Eq, Dj) such
SD SD

that ptD(Dj IEq), PsD(Dj IEq) are defined.
We proceed by induction on length of Eq•

Case 1: For each Eq such that ptD(DjIEq), PsD(DjIEq) are defined but
PtD(DjIE~), PSD(DjIE~) are underfined for each proper subconjunction E~ of
Eq, we put

P,R+ (Eq, Dj) = ptD(DjIEq)
SD

P,R- (Eq, Dj) = PsD(DjIEq)
SD

(15)

(16)

Case 2: If ptD(DjIEq), PsD(DjIEq) are defined ~nd extremal (i.e = 1), then put

P,R+ (Eq, Dj) = ptD(DjIEq)
SD

(17)

P,R- (Eq, Dj) = PsD(DjIEq) (18)
SD

Case 3: Assume that ptD(DjIEq), PsD(DjIEq) are defined and nonextremal
(i.e =1= 1) and P,RSD+ (Eq, Dj)' P,RSD- (Eq, Dj) are not yet defined, Eq has some·
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proper subconjunctions E~ such that .BtD(DjIE~), .BsD(DjIE~) are defined and
for all such E~, J-tR+ (E~, Dh J-tR- (E~, Dj) have been defined. Collect positiveSD SD
and negative know ledge M+ and M- for Dj under proper subconjunctions E~ of
Eq. Define the total knowledge Mtot = M+ e M- , where M+, M- are defined
as follows:

M+ = MaxE' CE [J-tR+ (Eq', DJo)]q q SD

M- = MaxE'CE [J-tR- (Eq', DJo)]q q SD
We consider the following cases:

a) If Mtot = .B~Oh(DjIEq) then put

(19)

(20)

if .B~oh(o, IEq) < o.
b) If Mtot < .B~Oh(DjIEq) then put

(21)

operation E9 is defined as in (9).
c) If Mtot > fJ~Oh(DjIEq) then put

(22)

operation e is defined as in (10)

and we get (14) for each (Dj, Eq) in the domain fJ.

Proving case 1. One proves by induction on the length of Eq that eventually
J.tR+ (Si, D i), J-tR- (s; D j) are uniquely defined for each Eq such that .Bt D (Si ID j),SD SD 0

,BSD(SiIDj) are defined. We have (by definition of MaxMin composition of CA-
DIAG-2)

J-tR+ (Pq, DJo) = MaxE'CE Min[J-tR+ (Pq, Eq'); J-tR+ (Eq', Dj)]PD q- q PS SD
= MaxE' CE [J-tR+ (Eq', Dj)]q- q SD

(because J-tR~o~(Pq, E~) = 1 from (2.0), if E~ exixts, then J-tRSD (Pq, E~) = 0)
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= Max (MaxE'CE [JLR+ (Eq', Dj)], JLR+ (Eq, Dj)) = Max (0, JLR+ (Eq, Dj)) =
q q SD SD SD

JLR+ (Eq, Dj) = .Btv(DjIEq) .
SD

because MaxE'CE [JLR+ (Eq', Dj)] = 0 (due to JLR+ (Eq', Dj) is unknown, when
q q SD SD

E~ C Eq).
In an analogous, we get

JLR- (Pq, Dj) = JLR- (Eq, Dj) = .Bsv(DjIEq)
PD SD

and thus

JLRtot (Pq, Dj) = JLIi+ (Pq, Dj) e JLR- (Pq, Dj) = .B~Ob(Dj, Eq)
PD PD PD

and the equation (14) holds.

Proving case 2. Given .Btv(D;, Eq) = 1 (or fJsv(Dj, Eq) = 1) we have

JLR+ (Pq, Dj) = MaxE' CE Min[JLR+ (Pq, Eq'); JLR+ (Eq', Dj)]PD q- q PS SD

= MaxE' CE [JLR+ (Eq', D)')]q- q SD

(because JLR+ (Pq, Eq') = 1 from (1), if Eq' exixts, then JLR (Pq, Eq') = 0)
SD SD

= Max [MaxE' CEq [JLR+ (Eq', D,)], JLR+ (Eq, Dj)] = JLR+ (Eq, Dj) = .Btv(Dj IEq)
q SD SD SD

(because JLR+ (Eq, Dj) = 1 by condition).
PS

In an analogous way, we get

JLR- (Pq, Dj) = JLR- (Eq, Dj) = .Bsv(DjIEq)
PD SD

and thus

JLRtot (Pq, Dj) = JLR+ (Pq, Dj) e JLR- (Pq, Dj) = .B~Ob(Dj, Eq)
PD PD PD

and the equation (14) holds.

Proving case 3:
a) When Mtot - atot (D·IE ).- fJSV ) q •

. First we consider the case Mtot = atot (D ·IE ) > 0, . fJSV ) q-

By definition of MaxMin composition of CADIAG-2, we have:

JLR+ (Pq, Dj) = MaxE' CE Min[JL~ (Pq, Eq'); JLR+ (Eq', Dj)]PD q- q PS SD

. = MaxE' CE [JLR+ (Eq', Dj)]q- q SD
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(because J.lR+ (Pq, E~) = 1 from (1))
SD

From definition (17), having

(because J.lR+ (Eq', Dj) = M+ for some E~ > 0)
PS

and by condition, put J.lR+ (Eq, Dj) = /11°b(DjIEq), we get
PS

because Af " > ° Mtot = M+eM- = atot(D·IE) > ° thenM+ > atot (D·IE).- , fJSD } q - , - fJSD } q

In an analogous way, we get

because J.lR- (Eq, Dj = 0, and thus
SD

and the equation (14) holds.

Second, for the case Mtot = /11°b(DjIEq) < 0, the proof is quite similar.
We have

and
J.lR- (Pq, Dj) = Max(M-, /11°b(DjIEq)) = M-

PD

because Af " ~ 0, Mtot = M+eM- = /11°b(DjIEq) < 0, thenM- > /11°b(DjIEq),
weget

and the equation (14) holds

b) When Mtot = M+ e M- < /11°b(DjIEq):
Wehave
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J-tRtot (Pq, Dj) = J-tR+ (Pq, Dj) e J-tR- (Pq, Dj)PD PD PD
= MaxE'CE Min[J-ti (Pq, Eq'); J-tR+ (Eq', Dj)]eq- q PS SD

MaXE'CE Min[J-t+R (Pq, Eq'); J-tR- (Eq', Dj)]q- q PS SD

= MaXE~~Eq[J-tR;s(E~), Dj)] eMaXE~~Eq[J-tR;s(E~), Dj)]

= Max(MaxE'CE [J-tR+ (Eq', Dj)]; J-tR+ ie; Dj))e
q q SD SD

Max(MaXE'CE [J-tR+ (Eq', Dj)]; J-tR- (Eq, Dj))
q q SD SD

Put
J-tRtD (Eq, Dj) = M- EDf3~Ob(DjIEq)

We have now J-tR+ (Eq, Dj) > 0, because 0 ~ M+ < M- ED f3ts}y(DjIEq) and
SD

M- 2: O. We get

J-tR},o~(Pq, Dj) = max[M+, M- EDf3~Ob(Dj, Eq)] e max[M-, 0]

and finally, we have

J-tR~~(Pq, Dj) = (M- EDf3~Ob(Dj, Eq}) eM- = f3~Ob(DjIEq)

Thus·th,e equation (14) holds.

c) When Mtot > f3~°}y(DjIEq)
In similar way, we have

J-tRtot (Pq, Dj) = J-tR+ (Pq, Dj) e J-tR- (Pq, Dj)PD PD PD
. . + , ')]= MaxE' CE Mm[J-tR (Pq, Eq); J-tR+ (Eq, D, e

q- q PS SD

MaxE'cE Min[J-ti (Pq, Eq'); J-tR- (Eq', Dj)]q- q PS SD

= MaxE~~Eq[J-tR;s(E~), Dj)] eMaXE~~Eq[J-tR;s(E~), Dj)]

= Max(MaxE'CEq[J-tR+ (Eq', Dj)]; J-tR+ (Eq, Dj))e
q SD SD

Max(MaxE' CE [J-tR+ (Eq', o,)];J-tR- (Eq, Dj))
q q SD SD

Put
J-tR- (Eq, Dj) = M+ e f3~Ob(DjIEq)

SD
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We have now P,R- (Eq, Dj) > 0, because 0 ~ M- < M+ e f3~Ob(DjIEq) and
SD

M+ z o.
We get

P,R~O;; (Pq, Dj) = max[M+, 0]e max[M-, M+ e f3~Ob(Dj, Eq)]

= M+ 8 (M+ ef3~Ob(DjIEq)) = f3~Ob(DjIEq)

that the equation (14) holds. This complettes the proof of the theorem.
The following example shows that (22) may be undefined for usual subtraction

Let given a conditional weight system f3:
f3,tD(DI8d = 0.3 f3sD(D!8t} = 0
f3,tD(D!82) = 0.4 f3sD(D!82) = 0
f3,tD(D!81/\ 82) = 0 f3sD(D!81 /\ 82) = 0.7

Applying Mobius transform according to case 3:
- From (11), we get:

- Now we calculate Mtot from (19), (20), we get

Mtot = Max(0.3, 0.4) 8 Max(O, 0) = 0.4 eo = 0.4

= 0.4 e -0.7 = 0.4 El7 -( -0.7) = 0.4 El7 0.7

Apply operation El7 in (9), we get

Remark: Now if we use an usual subtraction - for 8, we have

But from Definition 5, P,R-;D (81 /\ 82, D) must be in [0,1]' that means (22) IS

undefined for usual subtraction - in our example.
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More than that the examble shows that if JlRtot (Pq, Dj) were defined in (8) using
SD

- instead of e then we could not construct a rule base e such that JlR~O];(Pq, Dj)
= fl~Ob(DjIEq) for s, = 51, 52, 51 /\ 52.

Now we would have to construct the following new rule base:

51 -t D(0.3), 51 -t -,D(O)

52 -t D(O.4), 52 -t -,D(O)

51/\52 -t D(O), 51/\52 -t -,D(w)

such that
JlR+ (Pq, D) - JlR- (Pq, D) = -0.7 = JlRtot (Pq, D)

PD PD PD

But Jl R+ (Pq, D) = 0.4, Jl R- (Pq, D) ~ w, which gives
PD PD

(23)

0.4 - w = -0.7

w = 1.1, which> 1.

3. SOME EXAMPLES

We discuss the following conditional weight system fl. We apply the above
algorithm to compute new weights using MinMax composition of rules of CADI-
AG-2:

For every example, we apply Mobius transfrom to the given fl of using MaxMin
Composition of CADIAG-2 that we find new weight JlR+ (5i, Dj) and JlR- (Si, Dj)

SD' SD

such that
JlRtot (Pq, Dj) = fl~ob(Dj IEq)PD

In all examples, we assume Jl~ps (Pq, 5d = Jl~ps (Pq, 52) = 1.
We use PROSPECTOR group operation ED and e defined in (9), (10)
Example 1:

fl1D(D15d = 0.7
fltD(DI52) = 0.7
fltD(D151 /\ 52) = 0.7

flSD(DI5d = 0
flSD(DI52) = 0
flSD(DI51 /\ 52) = 0

- Mobious transform for example 1:
a) Calculating Mtot, fl~ob(D151 /\ 52) :

M+ = max (Jlk (Pq, E~) /\ JlR+ (E~, D)) = max(0.7, 0.7) = 0.7
E~CSIAS2 PS SD
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In similar, we get

Then Mtot = 0.7 e 0 = 0.7.
On the other hand,

b) Compare Mtot with f31°Jy(DISl /\ S2):
From results above, having Mtot = f31°Jy(DISl /\ S2) = 0.7 > 0, then put

We receive the following new rule base:

SI -t D(0.7), SI -t -'D(O)

S2 -t D(0.7), S2 -t -,D(O)

SI /\ S2 -t D(0.7), SI /\ S2 -t -,D(O)

such that
J.LRtot (Pq, D) = f31°Jy(DISl /\ S2) = 0.7

PD

c) Verifying (24):
From (6) we have

(24)

J.LRtot (Pq, D) = J.LR+ (Pq, D) e J.LR- (Pq, D)
PD PD PD

= MaxE'cE Min[J.LR+ (Pq, Eq'); J.LR+ (Eq', D)]e
q- q PS SD

MaxE'CE Min[J.LR+ (Pq, Eq'); J.LR- (Eq', D)]
q- q PS SD

= max(0.7, 0.7, 0.7) e max(O, 0, 0) = 0.7 eo = 0.7

thus equation (24) holds.

Example 2:

f3tD(DISd = 0.7
f3tD(DIS2) = 0.7
f3tD(DISI /\ S2) = 0

f3sD(DISd = 0
f3sD(DIS2) = 0
f3sD(DISl /\ S2) = 0.7
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- Mobious transform for example 2:
a) Calculating Mtot, f31°b(DI81 A 82) :

M+ = max (J.Lt (Pq, E~) A J.LR+ (E~, D)) = max(0.7, 0.7) = 0.7
E~CSIAS2 PS SD

In similar, we get

M- = max (J.LR+ (E~, D)) = max(O, 0) = 0
E~CSI AS2 SD

Then Mtot = M+ e M- = 0.780 = 0.7.
On the other hand,

f31°b(DI81 A 82) = f3iD(DI81 A 82) - f3sD(DI81 A 82) = 0 - 0.7 = -0.7

b) Compare Mtot with f31°b(DI81 A 82) :

From results above, having Mtot > f31°b(D181 A 82) then put

J.LR- (81 A 82, D) = M+ e f31°b(DI81 A 52)
SD

= 0.7 e -0.7 = 0.7 EB0.7 = 0.9395. We receive the following new rule base:

81 ~ D(0.7), 81 ~ -,D(O)

82 ~ D(0.7), 82 ~ -,D(O)

81 A 82 ~ D(O), 81 A 82 ~ -,D(0.7 EB0.7)

where 0.7 EB0.7 = 0.9395 (using (9)).
such that

J.LRtot (Pq, D) = f31°b(DI81 A 82) = -0.7
PD

c) Verfying (25):
From (6) we have

(25)

J.LRtot (Pq, D) = J.LR+ (Pq, D) 8 J.LR- (Pq, D)
PD PD PD

= max(0.7, 0.7, 0) e max[O, 0, 0.7 EB0.7) = 0.7 e (0.7 EEl0.7 = -0.7

Thus
. tot

J.LRtot (Pq, D) = f3sD(DI81 A 82) = -0.7
PD
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thus the equation (25) holds.

Example 3:
fJ-tD(DI8d = 0.3
fJ-tD(DI82) = 0.3
fJ-tD(DI81 1\82) = 0.7

fJsD(Dl8d = 0
fJsD(DI82) = 0
fJsD(D181 1\ 82) = 0

- Mobious transform for example 3:
a) Calculating Mtot, fJ1°Jy(DI81 1\82) :

In similar, we get

Then Mtot = M+ eM- = 0.3 8 0 = 0.3.
On the other hand,

b) Compare Mtot with fJ1°Jy(DI81 1\82) :

From results above, having Mtot < fJ1°Jy(DI81 1\82) then put

= 0 E9 0.7 = 0.7. We receive the following new rule base:

81 -t D(0.3), 81 -t -,D(O)

82 -t D(0.3), 82 -t -,D(O)

811\82 -t D(0.7), 811\82 -t -,D(O)

such that
tot .

J.tRtot (Pq, D) = .BsD(DI81 1\82) = 0.7
PD

c) Verfying (26):
From (6) we have

(26)

J.tRtot (Pq, D) = J.tR+ (Pq, D) 8 J.tR- (Pq, D)
PD PD PD

= max(0.3, 0.3, 0.7) 8 max(O, 0, 0) = 0.7 eo = 0.7
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Thus
JlRtot (Pq, D) = f3tsb(DI51 /\ 52) = 0.7

PD

thus the equation (26) holds.

Example 4:

f3tD(DI5d = 0
f3tD(DI52) = 0.3
f3tD(DI51 /\ 52) = 0.7

f3sD(DI5d = 0.3
f3sD(DI52) = 0
f3SD(D151 /\ 52) = 0

- Mobious transform for example 4:
a) Calculating Mtot, f31°b(DI51 /\ 52) :

M+ = max (Jl~ (Pq, E~) /\ JlR+ (E~, D)) = max(O, 0.3) = 0.3
E~CSlI\S2 PS SD

In similar, we get

M- = max (JlR+ (E~, D)) = max(0.3, 0) = 0
E~CSlI\S2 SD

Then Mtot = M+ e M- = 0.3 8 0.3 = 0)
On the other hand,

f31°b(DI51 /\ 52) = f3tD(DI51 /\ 52) - f3sD(DI51/\ 52) = 0.7 - 0 = 0.7

b) Compare Mtot with f31°b(DI51 /\ 52) :
From results above, having Mtot < f31°b(DI51 /\ 52) then put

JlR+ (51/\ 52, D) = M- (B f31°b(DI51/\ 52)
SD

= 0.3 (B 0.7= 0.8264 (using (9)). We receive the following new rule base:

51 ---t D(O), 51 ---t -.D(0.3)

52 ---t D(0.3), 52 ---t -.D(O)

51/\52 ---t D(0.3 (B 0.7), 51/\52 ---t -.D(O)

such that
JlRtot (Pq, D) = f31°b(DI51 /\ 52) = 0.7

PD

c) Verfying (27):

(27)
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From (6) we have

JLRtot (Pq, D) = JLR+ (Pq, D) e JLR- (Pq, D)
PD PD PD

= max(O, 0.3, 0.3 EB0.7) e max(0.3, 0, 0) = (0.3 E90.7) e 0.3 = 0.7

Thus
JLRtot (Pq, D) = t3~O~(DI81/\ 82) = 0.7

PD

thus the equation (27) holds.

Example 5:

t3tD(DI8J) = 0
t3tv(DI82) = 0.3
t3tD(DI81 /\ 82) = 0

t3sD(DI8J) = 0.3
t3sD(DI82) = 0
t3sD(DI81 /\ 82) = 0.7

- Mobious transform for example 5:

a) Calculating u=, t3~O~(DISI/\ 82) :

In similar, we get

Then Mtot = M+ e M- = 0.3 e 0.3 = o.
On the other hand,

b) Compare Mtot with t3~O~(DI81/\ 82) :

From results above, having Mtot > t3~O~(DI81/\ 82) then put

= 0.3 e -0.7 = 0.3 EB0.7 = 0.8264 (using (9)). We receive the following new rule
base:

81 ~ D(O), 81 ~ -,D(0.3)

82 ~ D(0.3), 82 ~ -,D(O)



120 PETR HAJEK and NGUYEN HOANG PHUONG

81/\82 -+ D(O), 81/\82 -+ -,D(0.3 $ 0.7)

where 0.3 $ 0.7 = 0.8264
such that

ILRtot (Pq, D) = f3~Ob(DI81/\ 82) = -0.7
PD

c) Verfying (28):
From (6) we have

(28)

ILRtot (Pq, D) = ILR+ (Pq, D) e ILR- (Pq, D)
PD PD PD

= max(O, 0.3, 0) emax(0.3, 0, 0.3 $ 0.7) = 0.3 e (0.3 $ 0.7) = -0.7

Thus
ILRtot (Pq, D) = f3~Ob(DI81/\ 82) = -0.7

PD

and the equation (28) holds.

Example 6:

f3tD(DI8d = 0.7
f3t D (DI82) = 0.3
f3tD(DI81/\ 82) = 0.7

f3sD(DI81) = 0
f3sD(DI82) = 0
f3SD(D181 /\ 82) = 0

- Mobious transform for example 6:
a) Calculating Mtot, f3~Ob(DI81/\ 82) :

M+ = max (IL~ (Pq, E~) /\ ILR+ (E~, D)) = max(0.7, 0.3) = 0.7
E~CSl/\S2 PS SD

In similar, we get

M- = max (ILR+ (Eq', D)) = max(O, 0) = 0
E~CSl/\S2 SD

Then Mtot = M+ e M- = 0.7 eo = 0.7.
On the other hand,

f3~Ob(DI81 /\ 82) = f3tD(DI81 /\ 82) - f3sD(DI81 /\ 82) = 0.7 - 0 = 0.7

b) Compare Mtot with f3~Ob(DI81/\ 82) :

From results above, having Mtot = f3~Ob(DI81/\ 82) = 0.7 > 0 then put

. ( ) t tILR+ 81/\ 82, D = f3s0D(DI81/\ 82) = 0.7
SD
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We receive the following new rule base:

82 - D(0.3), 82 - .D(O)

811\82 - D(0.7), 811\82 - .D(O)

such that
(29)

c) Verfying (29):
From (6) we have

J.LRtot (Pq, D) = J.LR+ (Pq, D) e J.LR- (Pq, D)
PD PD PD

= max(0.7, 0.3, 0.7) emax(O, 0,0) = 0.7 e 0 = 0.7 .•

Thus
J.LRtot (Pq, D) = .B~Ob(DI811\ 82) = 0.7

PD

and the equation (29) holds.

4. CONCLUSION

In this study, we have described an algorithm using Mobius transform to
compute new rule base for CADIAG-2. We have extended CADIAG-2 by including
fuzzy negative knowledge. To apply Mobius transform for CADIAG-2 means to
find new weights J.LR+ (8i' Dj) and J.LR- (8i' Dj) of fuzzy rules that for each

SD SD

patient Pq whose data J.LR+ (Pq, Si), J.LR- (Pq, 8i) are three-valued (therefore Eq
SD ' SD

exists) such that
J.LRt;~ (Pq, Dj) = .B~ob(Dj lEg)

Thus this algorithm garantees that using generalized MaxMin inference of CA-
DIAG-2 the inference machine will reproduce the expert's stated beliefs as total
degrees of confirmation and exclusion. To illustrate this algorithm, several exam-
ples are examined.
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