FROM A CONVERGENCE TO A REASONING WITH INTERNAL-VALUED PROBABILITY

PHAN DINH DIEU⁽¹⁾ and TRAN DINH QUE⁽²⁾

Abstract. Combining a deduction in a knowledge base of external uncertainty whose semantics has been proposed by N. J. Nilsson with a deduction coming from a convergence of a sequence of operators in a knowledge base of internal uncertainty, we propose a method of reasoning in a knowledge base of the both types of uncertainty.

Let \mathcal{B} an S be such a knowledge base and a goal sentence, respectively. The interval of truth probabilities of S derived from \mathcal{B} can be found by the proposed method.

1. INTRODUCTION

This article presents a method of reasoning from a knowledge base with uncertain information represented in the form interval-valued probability.

Let \mathcal{B} be a knowledge base consisting of \mathcal{B}^E and \mathcal{B}^I in which \mathcal{B}^E is a knowledge base with external uncertainty whose element are given in the form $\langle S, I \rangle$, where S is a sentence and I = [a, b] is a closed subinterval of the unit interval [0, 1]; and \mathcal{B}^I is a knowledge base with internal uncertainty whose elements are given the form

$$\langle S_1, I_1 \rangle \land \dots \land \langle S_n, I_n \rangle \to \langle S_{n+1}, f(I_1, \dots, I_n) \rangle$$

where $S_1, ..., S_n, S_{n+1}$ are sentences; $I_1, ..., I_n$ are interval variables and f: $\mathcal{C}[0, 1]^n \to \mathcal{C}[0, 1]$ is an interval function in which $\mathcal{C}[0, 1]$ is the set of all closed subintervals of the interval [0, 1].

Let S be any given sentence. A semantics, with underlies a method of deducing the interval of truth probabilities of S from \mathcal{B} , will be given.

The article is structured as follows. In Section 2, we will consider a deduction from \mathcal{B}^I and particularly from a directed acyclic knowledge base (DAKB) to any sentence. Section 3 will briefly review a semantics of the probabilistic logic proposed by N.J. Nilsson, i.e., a method of reasoning in a knowledge base of extexnal uncertainty, and then devote mainly to a method of reasoning and conditions for deduction from a knowledge base containing both external and internal uncertainty.

2. INTERNAL UNCERTAINTY

Given a knowledge base $\mathcal{B} = \{J_j \mid j = 1, ..., M\}$, where J_j is a rule of the form:

CNIH

$$J_j = \langle A_{j_1}, I_{j_1} \rangle \wedge \dots \wedge \langle A_{j_{m_j}}, I_{j_{m_j}} \rangle \rightarrow \langle A_{c_j}, f_j(I_{j_1}, \dots, I_{j_{m_j}}) \rangle$$

where $f_j : C[0, 1]^{m_j} \to C[0, 1]$ is an interval function from the Cartesian product $C[0, 1] \times \cdots \times C[0, 1]$ in to C[0, 1].

 $\Gamma = igcup_{J_j \in \mathcal{B}} \Gamma(J_j)$

Let

 m_i times

$$\Gamma(J_j) = \{A_{j_1}, ..., A_{j_{m_j}}, A_{c_j}\}$$

and

the set of all sentences in \mathcal{B} . We define I the set of all mappings from Γ to $\mathcal{C}[0, 1]$. Such a mapping I assigns to each sentence $P \in \Gamma$ an interval $I(P) \in \mathcal{C}[0, 1]$.

For the sake of simplicity, we denote $f_j(I) = f_j(I_{j_1}, ..., I_{j_{m_j}})$, (j = 1, ..., M), where $I \in I$ such that $I(A_{j_i}) = I_{j_i}$, $i = 1, ..., m_j$.

An operator t_B from I to I is defined as follows

$$t_{\mathcal{B}} : I \to I$$

 $t_{\mathcal{B}}(I)(P) = I(P) \cap \bigcap_{j \in E_{P}} f_{j}(I)$

for every $P \in \Gamma$, in which $E_P = \{j \mid A_{c_j} = P\}$ and we assume that $\bigcap_{j \in E_P} f_j(I) = [0, 1]$ where $E_P = \{j \mid A_{c_j} = P\}$ and we assume that $\bigcap_{j \in E_P} f_j(I) = [0, 1]$.

[0, 1], whenever $E_p = \emptyset$. From the above, we can define recursively a sequence $\{t^n_B\}_{n\geq 0}$ as follows:

- (i) $t^{0}_{B}(I) = I;$
- (ii) $t_{B}^{n+1}(I) = t_{B}(t_{B}^{n}(I))$ for every $I \in I$.

For any $I_1, I_2 \in I$, we say that $I_1 \leq I_2$ (respectively, $I_1 < I_2$) iff $I_1(P) \subseteq I_2(P)$ (respectively, $I_1(P) \subset I_2(P)$) for every $P \in \Gamma$. Accordingly, from the definition of the operator t_B , it is easy to see that $t_B^{n+1}(I) \leq t_B^n(I)$, for every $I \in I$ i.e., $\{t_B^n(I)(P)\}$, for any $I \in B$ and $P \in \Gamma$, is a sequence of closed subintervals satisfying the condition $t_B^{n+1}(I)(P) \subseteq t_B^n(I)(P)$, for every n. Therefore, $\{t_B^n(I)\}$ is the convergent sequence under the meaning that $t_B^\infty(I)(P) = I^*(P)$, where $I^*(P)$ is a closed subinterval of the interval [0,1] and it might be empty. Hence, we can define a convergence of the sequence $\{t_B^n\}$. However, it is not the case that for any $I \in I$ there always exits a number n such that

$$t^n_{\mathcal{B}}(I) = t^{n+1}_{\mathcal{B}}(I)$$

FROM A CONVERGENCE TO A REASONING WITH INTERNAL-VALUED PROBABILITY

For instance, let $\mathcal{B} = \{A : [\alpha, \beta] \to A : [\sqrt{\alpha}, \sqrt{\beta}]\}$ and I(A) = [a, 1], (0 < a < 1),then $t^n_{\mathcal{B}}(I)(A) = [a^{\frac{1}{2n}}, 1]$ It is clear that $t^n_{\mathcal{B}} \neq t^{n+1}_{\mathcal{B}}$ for every n.

Suppose now \mathcal{B} is a knowledge base as above. Let Γ be the set of all sentences in \mathcal{B} and $\mathcal{D} = \{D_{j_r} = (A_{j_r}, A_{c_j}) | r = 1, ..., m_j; j = 1, ..., M\}$. Denote $\mathcal{G} = (\Gamma, \mathcal{D})$. We assume that there exist no cycles and loops, i.e., $(A, A) \notin \mathcal{D}$ for every $A \in$ |gamma and no chain $(A_i, A_{i+1}) \in \mathcal{D}, i = 1, ..., r$ such that $A_1 = A_{r+1}$. Remind that a graph is called a *directed acyclic* one iff it is directed and has no cycles and loops.

Therefore, $\mathcal{G} = (\Gamma, \mathcal{D})$ is composed of directed acyclic graphs $\mathcal{G}_i = (\Gamma_i, \mathcal{D}_i)$, i = 1, ..., p, where Γ_i and \mathcal{D}_i are respectively sets of vertices and edges. We denote $\mathcal{G} = \mathcal{G}_1 \cup \cdots \cup \mathcal{G}_p$ and also call \mathcal{G} the graph of \mathcal{B} and $\Gamma = \bigcup_{i=1}^p \Gamma_i$, $\mathcal{D} = \bigcup_{i=1}^p \mathcal{D}_i$ the sets of vertices and edges, respectively; and every \mathcal{G}_i is then called a *component* of the graph \mathcal{G} .

A knowledge base B is called to be the directed acyclic knowledge base (DAKB) iff the graph \mathcal{G} of B is a directed acyclic graph or is composed of directed acyclic graphs \mathcal{G}_i , i = 1, ..., p.

In this article, we restrict our to the case that \mathcal{B} is a DAKB. Suppose that \mathcal{B} is such a knowledge base and $\mathcal{G} = (\Gamma, \mathcal{D})$ is its graph. Let $E_A = \{(B, A) \mid (B, A) \in \mathcal{D}\}$ and $E^A = \{(A, B) \mid (A, B) \in \mathcal{D}\}$, then $|E_A|$ and $|E^A|$ are called the *indegree* and the *outdegree* of A, respectively (where $|\cdot|$ denotes cardinality). We denote $\operatorname{ind}(A) = |E_A|$ and $\operatorname{outd}(A) = |E^A|$.

Three types of vertices playing the important role afterwards will be named particularly:

(1) A vertex A is called the *input vertex* iff ind(A) = 0;

(2) A vertex A is called the *inside vertex* iff $ind(A) \neq 0$ and $outd(A) \neq 0$;

(3) A vertex A is called the *output vertex* iff outd(A) = 0.

The following notion arises naturally from DAKB B when the vertices of its graph are now combined with interval values.

A number n is called the *depth* of a sentence A in Γ w.r.t. $I \in I$ if n is the least number such that $t^n_{\mathcal{B}}(I)(A) = t^{n+1}_{\mathcal{B}}(I)(A)$. We denote $n = \operatorname{depth}_{\mathcal{B}}(A, I)$.

It is clear that the computation of the interval value of a sentence A from \mathcal{B} depends only on the component \mathcal{G}_i containing it, especially on the type of vertex A in \mathcal{G}_i . It is easy to prove the following.

Proposition 1. Let \mathcal{B} be a DAKB and $I \in \mathcal{Z}$. Then

(i) $depth_B(A, I) = 0$ for every input vertex A;

(ii) $depth_{\mathcal{B}}(A, I) \geq \max_{B \in E_A} \{depth_{\mathcal{B}}(B, I)\} + 1, \text{ for every } A \in \Gamma.$

.

Proposition 2. If \mathcal{B} is a DAKB, then there always exists a natural number n such that $t_{\mathcal{B}}^{n}(I) = t_{\mathcal{B}}^{n+1}(I)$ for every $I \in I$.

Proof. Suppose that $\mathcal{G} = (\Gamma, \mathcal{D})$ is the graph of \mathcal{B} , where $\mathcal{G} = \mathcal{G}_1 \cup \cdots \cup \mathcal{G}_p$ is composed of components $\mathcal{G}_i = (\Gamma, \mathcal{D}_i), i = 1, ..., p$ and $\Gamma = \bigcup_{i=1}^p \Gamma_i, \mathcal{D} = \bigcup_{i=1}^p \mathcal{D}_i$. Let

$$U_i^k = \{A \mid A \in \Gamma_i \text{ and } \operatorname{depth}_{\mathcal{B}}(A, I) = k\}$$

where k is the number of iterating times of t. It is clear that there will exist n_i , (i = 1, ..., p) such that $U_i^{n_i} = \Gamma_i$. Taking $n = \max(n_1, ..., n_p)$, we have $t^n(I) = t^{n+1}(I)$. The proposition is proved.

From Proposition 2, we can define an operator $\mathcal{T}_{\mathcal{B}}$ as follows: For any $I \in I$, $\mathcal{T}_{\mathcal{B}}(I) = t^n_{\mathcal{B}}(I)$, where n is the least number such that $t^n_{\mathcal{B}}(I) = t^{n+1}_{\mathcal{B}}(I)$.

Suppose that \mathcal{B} is a directed acylic knowledge base composed of rules and S is any sentence. We denote by Γ the set consisting of S and all sentence occurring in rules J_i of \mathcal{B} . Let I be a mapping which assigns a subinterval of the interval [0,1] for any sentence in Γ . Then $\mathcal{T}_{\mathcal{B}}(I)(S)$ can be considered as the *interval value* for the truth probability of the sentence S derived from the knowledge base \mathcal{B} .

3. REASONING WITH EXTERNAL AND INTERNAL UNCERTAINTY

This section is devoted presenting a method of reasoning in a knowledge base with both forms of uncertaity: external and internal uncertaity. We first recall a semantics of reasoning in a knowledge base with external uncertainty, and then propose a decduction of knowledge base with containing both of uncertainty. Affer that we consider conditions under which the deduction may be obtained.

3.1. A Method of Reasoning

Given a knowledge base B with external uncertainty

$$\mathcal{B} = \{ \langle S_i, I_i \rangle \mid i = 1, ..., L \}$$

Let Γ be the set of all sentences S_i and $I = \{I \mid I : \Gamma \to C[0, 1]\}$. We define an operator \mathcal{R}_B from I to I as follows.

For every $I \in I$, we establish a new knowledge base

$$\mathcal{B}' = \mathcal{B} \cup \{ \langle P, I(P) \rangle \mid P \in \Gamma \}$$

and we take for every $P \in \Gamma$ the interval $I'(P) = \mathcal{F}(P, \mathcal{B}')$, wich is deduced from \mathcal{B}' - a deduction based on the sematics given by N.J. Nilsson (For more detail,

refer to [4,11]). The mapping I' is defined to be the image of I by the operator $\mathcal{R}_B : \mathcal{R}_B(I) = I'$.

It is easy to see that

$$\mathcal{R}^n_{\mathcal{B}}(I) = \mathcal{R}_{\mathcal{B}}(I), \text{ for any } n \geq 1$$

From now on, we consider knowledge bases containing both types of uncertainty: external and internal uncertainty. Let \mathcal{B} be such a knowledge base, we can write $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$, where \mathcal{B}^E consists of knowledge with external uncertainty, and \mathcal{B}^I contains knowledge with internal uncertainty.

Suppose that

$$\mathcal{B}^{E} = \{ \langle S_{i}, I_{i} \rangle | i = 1, ..., L \}$$

 $\mathcal{B}^{I} = \{ J_{j} | j = 1, ..., M \}$

where

$$J_j = \langle A_{j_1}, I_{j_1} \rangle \wedge \dots \wedge \langle A_{j_{m_j}}, I_{j_{m_j}} \rangle \rightarrow \langle A_{c_j}, f_j(I_{j_1}, \dots, I_{j_{m_j}}) \rangle$$

and S is any (target) sentence. Our problem is to compute the interval value for the truth probability of the sentence S from the knowledge base \mathcal{B} .

We put Γ to be the set of all mapping from Γ to $\mathcal{C}[0, 1]$.

Let I_0 be the mapping defined by

$$I_0 = \begin{cases} I_i & \text{if } P = S_i \text{ for some } i = 1, ..., L\\ [0, 1] & \text{otherwise} \end{cases}$$

 I_0 is called the *initial assignment* (of interval values to sentences in Γ).

We now define a sequence of assignments I_n (n = 0, 1...) initiated by I_0 and given recursively as follows

$$I_n = \left\{ egin{array}{ll} \mathcal{R}(I_{n-1}) & ext{if } n ext{ is odd} \ \mathcal{T}(I_{n-1}) & ext{if } n ext{ is positive even} \end{array}
ight.$$

Here \mathcal{R} and \mathcal{T} stand for $\mathcal{R}_{\mathcal{B}^{E}}$ and $\mathcal{T}_{\mathcal{B}^{E}}$, respectively.

Let n be the least number having the property $I_n = I_{n+1} = I_{n+2}$ (if there exists). We denote this I_n by I^* and call it to be the resulting assignment deduced from B to sentences in Γ . The interval $I^*(S)$ is defined to be the interval value for the truth probability of the sentence S derived from the knowledge B. We also write:

$$\mathcal{B} \vdash \langle S, I^*(S) \rangle$$

We will clarify the sematics of deduction by the following example.

Example 1. Suppose that $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$, where \mathcal{B}^E is the set of sentences

$$egin{array}{rll} B o A &:& [1,1] \ A o C &:& [1,1] \ B &:& [.2,.8] \ C &:& [.4,.7] \end{array}$$

and B^{I} is the set of rules the division sub-hyperbolic stations

$$egin{aligned} &J_1 = C \, : \, [x_1, \, y_1] o B \, : \, [\sqrt{x_1}, \, \sqrt{y_1}] \ &J_2 = B \, : \, [x_2, \, y_2] \wedge C \, : \, [x_3, \, y_3] o A \, : \, [x_2, \, y_2] \end{aligned}$$

Calculate the interval of truth probabilities of the sentences A. Step 1. Applying the operator \mathcal{R} , we get

Step 2. The operator \mathcal{T} is applied

$$A : [\sqrt{.4}, \sqrt{.7}]$$

$$B : [\sqrt{.2}, \sqrt{.7}]$$

$$C : [.4, .7]$$

It is easy to see that after iterating \mathcal{R} , then \mathcal{T} , the interval values of A, B, C are not changed. So we get the result $A : [\sqrt{.4}, \sqrt{.7}]$.

3.2. Conditions of Deduction

In general, it is not the case that there always exists a number n such that $I^* = I_n = I_{n+1} = I_{n+2}$. In effect, we consider the following example.

Example 2. Suppose

$$egin{aligned} \mathcal{B}^E &= \{P o Q \, : [1,1], \; P \, : \, [a,1] \} \; \; (0 < a < 1), \ \mathcal{B}^I &= \{Q \, : \, [x,y] o P \, : \, [\sqrt{x},y] \}. \end{aligned}$$

by simply computing, we have

$$I_0(P) = I_1(P) = [a, 1]$$
$$I_n(P) = \left[a^{\frac{1}{2^{n-1}}}, 1\right], \ n \ge 1$$

and therefore $I_n \neq I_{n+1}$ for every $n \leq 1$.

By replacing the part \mathcal{B}^E of the knowledge base \mathcal{B} with

$$\mathcal{B}^E = \{P o Q \, : \, [1, \, 1], \; P \, : \, [a, \, b] \} \; \; (0 < a < b < 1) \; .$$

and then $I_n(P) = [a^{1 \circ ver 2^{n-1}}, b], n \ge 1$. Thus, there exists a number n such that $a^{\frac{1}{2^{n-1}}} > b$ or $I_n(P) = \emptyset$, for some n, i.e., $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$ is inconsistent.

Our problem is now to look for conditions guatanteeing that there exists a number n such that $I_n = I_{n+1} = I_{n+2}$. The following proposition hold obviously.

Proposition 3. If $\mathcal{B} = \mathcal{B}^E \cup \mathcal{B}^I$ is a knowledge base in which $S_i \neq A_{c_j}$ for nay i = 1, ..., L and j = 1, ..., M, then there always exists the resulting assignment I^* from \mathcal{B} .

We call an interval function f_i to be non-increasing (respectively, increasing) if for every $I_1, I_2 \in I$, $I_1 < I_2$ then $f_j(I_1) \supseteq f_j(I_2)$ (respectively, $F_j(I_1) \subset f_j(I_2)$.

Proposition 4. If f_j (j = 1, ..., M) is a non-increasing function, there always exits the resulting assignment I^* from \mathcal{B} .

Proof. We can write

$$I_0 \stackrel{\mathcal{R}}{\mapsto} I_1 \stackrel{\mathcal{T}}{\mapsto} I_2 \stackrel{\mathcal{R}}{\mapsto} \cdots \stackrel{\mathcal{R}}{\mapsto} I_{n-2} \stackrel{\mathcal{T}}{\mapsto} I_{n-1} \stackrel{\mathcal{R}}{\mapsto} I_n \stackrel{\mathcal{T}}{\mapsto} I_{n+1} \stackrel{\mathcal{R}}{\mapsto} \cdots$$

From the definition of the operator t, we have

$$I'_1(P) = t(I_1)(P) = I_1(P) \cap \bigcap_{j \in E_P} f_j(I_1)$$

for every $P \in \Gamma$. In the case that $I'_1(P) = I_1(P)$, for any $P \in \Gamma$, then $I^* = I_1$, as desired; otherwise, again applying the operator t to I'_1 we get

$$t^{2}(I_{1})(P) = t(I'_{1})(P)$$

= $I'_{1}(P) \cup \bigcap_{j \in E_{P}} f_{j}(I'_{1})$
= $I_{1}(P) \cap \bigcap_{j \in E_{P}} f_{j}(I_{1}) \cap \bigcap_{j \in E_{P}} f_{j}(I'_{1})$

By virtue of that $I_1 > I'_1$, we have $f_j(I_1) \subseteq f_j(I'_1)$ Consequently,

$$t^{2}(I_{1})(P) = I_{1}(P) = I_{1}(P) \cap \bigcap_{j \in E_{P}} f_{j}(I_{1}) = t(I_{1})(P)$$

for every $P \in \Gamma$. Therefore, $I_2 = \mathcal{T}(I_1) = t(I_1)$, $\mathcal{R}(I_2) = I_3$. It is clear that from the inclusions

$$I_3(P) \subseteq t(I_1)(P) \subseteq \bigcap_{j \in E_P} f_j(I_1) \subseteq \bigcap_{j \in E_P} f_j(I_3)$$

follows

$$egin{aligned} I_3'(P) &= t(I_3)(P) \ &= I_3(P) \cup igcap_{j \in E_P} f_j(I_3) \ &= I_3(P), ext{ for every } P \in \Gamma \end{aligned}$$

Hence, $\mathcal{T}(I_3) = I_3$ and it is obvious that $\mathcal{R}(I_3)$. So, $I^* = I_3$, as desred. The proof is complete.

Turing to Example 1 in Section 3.1, we see that although the knowledge base \mathcal{B} does not satisfy conditions of proposition 3-4, there exists the resulting assignment I^* from \mathcal{B} . So, it seems that the existence of I^* depends strongly not only on properties of classes of functions $\{f_j\}$, but also on "syntax structure" of sentences in Γ . The problem of finding sufficient and necessary conditions for the existence of decduction and that of handling inconsistency are the subjects of our further work.

REFERNCES

- J. F. Baldwin, Evidential Support Logic Programming. J. Fuzzy Sets and Systems, 24 (1987) 1-26.
- 2. P. D. Dieu, Probabilistic Logic Appoximate Reasoning. In I. Palander, editors, Artificia Interlligence and Information Control Systems of Robots-89, papes 107-112, North Holland, 1989.
- P. D. Dieu, On a Theory of Interval-value Probabilistic Logic. Research Report, NCSR Vietnam, Hanoi, 1991.
- 4. P. D. Dieu and T. D. Que, Reasoning in Knowledge Base with External and Internal Uncertaity. J. Computer Science and Cybernetics, 2 (1994) 1-8.
- 5. P. D. Dieu and P. H. Giang, Interval-valued Probabilistic Logic for Logic Programs. J. Computer Science and Cybernetics, 3 (1994) 1-12.
- R. Fagin, J. Y. Halpern, and N. Megiddo, A Logic for Reasoning about Probabilitis. J. Information and Computation, 87 (1990) 78-128.

FROM A CONVERGENCE TO A REASONING WITH INTERNAL-VALUED PROBABILITY

- 7. A. M. Frish and P. Haddaway, Anytime Deduction for Probabilitis Logic. October 21, 1992 (To appear in Artifical Intellgence).
- L. van der Gaag, Computing Probability Intervals under Independency Constraints. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial intelligence 6, pages 457-466, Elsevier Science Publ., 1991.
- 9. M.R. Genesereth and N.J. Nilsson, Logical Foundations of Artifical Intelligence. Morgan Kaufmann Publ., Los Altos, CA, 1987.
- 10. R. Kruse, E. Schwecke, and J. Heisohn, Uncertainty and Vaguenss in Knowledge Based Systems. Numerical Methods. Spinger Varlag Publ., 1991.
- 11. N. J. Nilsson, Probabilistic Logic. J. Artificial Intellgence, 28 (1986) 71-87.
- 12. Ng. Raymond and V.S. Subramanian, Probabilistic Logic Programming. J. Information and computation, 101 (1992) 150-201.

(1) Institute of Information Technology Nghia Do, Cau Giay, Hanoi, Vietnam.

(2) Department of Mathematics and Computer Science

Hue University, Hue, Vietnam.

Received: January 15, 1997

9

a cao cao biến một
 a cáo cáo quan hệ
 a cáo cáo quan hệ
 a cáo cáo quan hệ
 a cái cáo cáo quan hệ