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FROM A CONVERGENCE TO A REASONING
WITH INTERNAL-VALUED PROBABILITY

PHAN DINH DIEU(1) and TRAN DINH QUE(2)

.
Abstract. Combining a deduction in a knowledge base of external uncertainty whose
semantics has been proposed by N. J. Nilsson with a deduction coming from a convergence
of a sequence of operators in a knowledge base of internal uncertainty, we propose a method
of reasoning in a knowledge base of the both types of uncertainty.

Let 13an S be such a knowledge base and a goal sentence, respectively. The interval
of truth probabilities of S derived from 13can be found by the proposed method.

1. INTRODUCTION

This article presents a method of reasoning from a knowledge base with un-
certain information represented in the form interval-valued probability.

Let 8 be a knowledge base consisting of 8E and 81 in which 8E is a knowledge
base with external uncertainty whose element are given in the form (8, I), where
8 is a sentence and I = [a, b] is a closed subinterval of the unit interval [a, 1]; and
81 is a knowledge base with internal uncertainty whose elements are given the
form

where 81, ... , 8n, 8n+1 are sentences; h, ..., In are interval variables and f :
e[a, l]n ---+ e[a, 1] is an interval function in which e[a, 1] is the set of all closed
subintervals of the interval [o.r].

Let 8 be any given sentence. A semantics, with underlies a method of deducing
the interval of truth probabilities of 8 from 8, will be given.

The article is structured as follows. In Section 2, we will consider a deduc-
tion from 81 and particularly from a directed acyclic knowledge base (DAKB) to
any sentence. Section 3 will briefly review a semantics of the probabilistic log-
ic proposed by N. J. Nilsson, i.e., a method of reasoning in a knowledge base of
extexnal uncertainty, and then devote mainly to a method of reasoning and condi-
tions for deduction from a knowledge base containing both external and internal
uncertainty.

2. INTERNAL UNCERTAINTY

Given a knowledge base 8 = {Jj I J' = 1, ... , M}, where Jj is a rule of the form:
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Jj = (Ait, lit) A ... A (Aj",., Ij",.) - (Acj, Ij (Ijl' ..., Ij",.))
J J J

where Ij : C[O, l]mj - qo, 1] is an interval function from the Cartesian product
e[O, 1] x ... x e[O, 1] in to qo, 1]., v.-----'

mj times
Let

r(Jj) = {Ail, ... , A,,,,., AcJ
J

and
r = U r(Jj)

JjEB

the set of all sentences in B. We define 1the set of all mappings from r to e[O, 1].
Such a mapping I assigns to each sentence PEr an interval I(P) E e[o, 1].

For the sake of simplicity, we denote Ij(1) = Ij(Ij1"'" Ijm.), U = 1, ... , M),
J

where lEI such that I(Aj') = Iii' i = 1, ... , mj.
An operator t B from 1to 1is defined as follows

tB : 1-1

t» (I){P) = I(P) n n Ij(I)
JEEp

for every PEr, in which Ep = U lAc. = P} and we assume that n Ij(I) =
J JEEp

[0, 1], whenever Ep = 0. From the above, we can define recursively a sequence
{ti3 }n~O as follows:

(i) t~ (I) = I;
(ii) t~+I(I) = tB(ti3(I)) for every lEI.
For any II, 12 E 1, we say that It ~ 12 (respectively, II < 12) iff It (P) ~

12(P) (respectively, I1(P) c h(P)) for every PEr. Accordingly, from the
definition of the operator ta, it is easy to see that t~+I(1) ~ ti3(I), for every lEI
i.e., {ti3 (I)(P)} , for any I E Band PEr, is a sequence of closed subintervals
satisfying the condition t~+1 (I)(P) ~ ts (I)(P)} , for every n. Therefore, {ts (I)} is
the convergent sequence under the meaning that t'B(I)(P) = I*(P), where I*(P)
is a closed subinterval of the interval [0,1] and it might be empty. Hence, we can
define a convergence of the sequence {ts}' However, it is not the case that for any
lEI there always exits a number n such that

ts (1) = t~+1 (I)
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For instance, let 8 = {A : [a, ,B] --+ A : [va, J71]} and I(A) = [a, 1], (0 < a < 1),
then t8(I)(A) = [at;, 1] It is clear that t8 i= t8+1 for every n.

Suppose now 8 is a knowledge base as above. Let r be the set of all sentences
in 8 and V = {Djr = (Ajr' AcJ Ir = 1, ... , mj; j = 1, ... , M}. Denote 9 = [I', V).
We assume that there exist no cycles and loops, i.e., (A, A) tt. V for every A E
Igamma and no chain (Ai, Ai+l) E V,i = 1, ... , r such that Al = Ar+1• Remind
that a graph is called a directed acyclic one iff it is directed and has no cycles and
loops.

Therefore, 9 = [I', V) is composed of directed acyclic graphs SJi = (ri, Vi),
i = 1, ... , p, where ri and Vi are respectively sets of vertices and edges. We denote

p p

9 = 91 U ... u 9p and also call 9 the graph of 8 and r = U r., V = U Vi the
i=1 i=l

sets of vertices and edges, respectively; and every 9i is then called a component of
the graph 9.

A knowledge base 8 is called to be the directed acyclic knowledge base (DAKB)
iff the graph 9 of 8 is a directed acyclic graph or is composed of directed acyclic
graphs 9i, i = 1, ..,p.

In this article, we restrict our to the case that 8 is a DAKB. Suppose that 8 is
such a knowledge base and 9 = (r, V) is its graph. Let EA = {(B, A) I (B, A) E
V} and EA = {(A, B) I (A, B) E V}, then lEAl and lEAl are called the in degree
and the outdegree of A, respectively (where I . I denotes cardinality). We denote
ind(A) = lEAl and outd(A) = lEAl.

Three types of vertices playing the important role afterwards will be named
particularly:

(1) A vertex A is called the input vertex iff ind(A) = 0;
(2) A vertex A is called the inside vertex iff ind(A) i= 0 and outd(A) i= 0;
(3) A vertex A is called the output vertex iff outd(A) = O.
The following notion arises naturally from DAKB 8 when the vertices of its

graph are now combined with interval values.
A number n is called the depth of a sentence A in r w.r.t. I E I if n is the

least number such that t8(I)(A) = ta+1(I)(A). We denote n = depthB(A, I).
It is clear that the computation of the interval value of a sentence A from 8

depends only on the component 9i containing it, especially on the type of vertex
A in 9i. It is easy to prove the following. .

Proposition 1. L,et 8 be a DAKB and I E Z. Then
(i) depths (A, 1) = 0 for every input vertex Ai
(ii) depths (A, I) ~ max {depthB (B, In + 1, for every A E r.

BEEA
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Proposition 2. If 8 is a DAKB, then there always exists a natural number n
such that ta (I) = t~+1 (I) for every I E I.

Proof. Suppose that 9 = [I', V) is the graph of 8, where 9 = 91 U ... u 9p is
p p

composed of components 9i = (r, Vi), i = 1, ... , p and r = U ri, V = U Vi. Let
i=1 i=l

Ui
k = {A I A E r, and depth g lA, I) = k}

where k is the number of iterating times of t. It is clear that there will exist
ni, (i = 1, ... , p) such that uti = ri. Taking n = max(nl' ... , np), we have
tn(I) = tn+1(I). The proposition is proved.

From Proposition 2, we can define an operator T8 as follows: For any I E I,
T8(I) = ta(I), where n is the least number such that ta(I) = t~+l(I).

Suppose that 8 is a directed acylic knowledge base composed of rules and S is
any sentence. We dentone by r the set consisting of S and all sentence occurring
in rules J, of 8. Let I be a mapping which assigns a subinterval of the interval
[0,1] for any sentence in r. Then T8(I)(S) can be considered as the interval value
for the truth probability of the sentence S derived from the knowledge base 8.

3. REASONING WITH EXTERNAL AND INTERNAL UNCERTAINTY

This section is devoted presenting a method of reasoning in a knowledge base
with both forms of uncertaity: external and internal uncertaity. We first recall a
semantics of reasoning in a knowledge base with external uncertainty, and then
propose a decduction of knowledge base with containing both of uncertainty. Affer
that we consider conditions under which the deduction may be obtained.

3.1. A Method of Reasoning

Given a knowledge base 8 with external uncertainty

8 = {(Si, Ii) Ii= 1, ..., L}

Let r be the set of all sentences S; and I = {I I I : r ~ e[O, I]}. We define an
operator R.8 from I to I as follows.

For every I E I, we establish a new knowledge base

8' = 8 u {(P, I (P)) I PEr}

and we take for every PEr the interval I'(P) = l(P, B'), wich is deduced from
B' - a deduction based on the sematics given by N. J. Nilsson (For more detail,
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refer to [4,11]). The mapping I' is defined to be the image of I by the operator
R B : R B (1) = I'.

It is easy to see that

R B (I) = R B (1), for any n ~ 1

From now on, we consider knowledge bases containing both types of uncertainty:
external and internal uncertainty. Let B be such a knowledge base, we can write
B = BE UBI, where BE consists of knowledge with external uncertainty, and B I
contains knowledge with internal uncertainty.

Suppose that
BE = {(8i' Ii) Ii= 1, ..., L}
BI = {Jj Ij = 1, ..., M}

where

and 8 is any (target) sentence. Our problem is to compute the interval value for
the truth probability of the sentence 8 from the knowledge base B.

We put r to be the set of all mapping from r to qo, 1].
Let 10 be the mapping defined by

{
I-

I - '
a - [0,1]

if P = S, for some i = 1, ... , L
otherwise

10 is called the initial assignment (of interval values to sentences in I'].
We now define a sequence of assignments In (n = 0, 1...) initiated by 10 and

given recursively as follows

if n is odd
if n is positive even

Here Rand T stand for R B E and TB E, respectively.
Let n be the least number having the property In = In+l = In+2 (if there

exists). We denote this In by 1* and call it to be the resulting assignment deduced
from B to sentences in r. The interval 1* (8) is defined to be the interval value
for the truth probability of the sentence 8 derived from the knowledge B. We also
write:

B f- (8, 1* (8))

We will clarify the sematics of deduction by the following example.
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Example 1. Suppose that 8 = 8E U 81, where 8E is the set of sentences

B - A: [1,1]
A - c . [1,1]

B: [.2, .8]
C: [A, .7]

:,

and 81 is the set of rules

J1 = C

J2 = B

[x}, yd - B : [Ft, JYl]
[i2' Y2]/\ C : [X3, Y3] - A : [X2' Y2]

Calculate the interval of truth probabilities of the sentences A.

Step 1. Applying the operator R, we get

A : [.2, .7]
B : [.2, .7]
C : [A, .7]

Step 2. The operator T is applied

A : [VA, v.7]
B : [v.2, v.7]
C : [A, .7]

It is easy to see that after iterating R, then T, the interval values of A, B, Care
not changed. So we get the result A : [vA, Pl.
3.2. Conditions of Deduction

In general, it is not the case that there always exists a number n such that
1* = In = In+l = In+2• In effect, we consider the following example.

Example 2. Suppose

8E = {P -'+ Q : [1, 1], P : [a, I]} (0 < a < 1),
81 = {Q : [x, y]- P : [y'x, y]}.
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by simply computing, we have

Io(P) = I1(P) = [a, 1]
In(P) = [a2n~l, 1], n 2: 1

and therefore In =I- I n+ 1 for every n ~ 1.
By replacing the part 8 E of the knowledge base 8 with

8E = {P -t Q : [1, 1], P : [a, b]} (0 < a < b < 1)

and then In(P) = [alover2n-l, b]' n 2: 1. Thus, there exists a number n such that
I

a2n-1 > b or In(P) = 0, for some n, i.e., 8 = 8E U 81 is inconsistent.
Our problem is now to look for conditions guatanteeing that there exists a

number n such that In = In+l = In+2. The folowing proposition hold obviously.

Proposition 3. If 8 = 8E U 81 is a knowledge base in which S; =I-·ACj for nay
i = 1, ..., Land j = 1, ..., M, then there always exists the resulting assignment 1*
from 8.

We call an interval function fi to be non-increasing (respectively, increasing)
if for every 11,12 E 1, II < 12 then fj(It} ;2 Ij(I2) (respectively, Fj(It} C Ij(I2).

Proposition 4. If Ij U = 1,..., M) is a non-increasing function, there always
exits the resulting assignment 1* from B.

Proof. We can write

R. T R. R. T R. T R.10 f--+ h f--+ h f--+ ••• f--+ In-2 f--+. In-1 f--+ In f--+ In+l f--+ •••

From the definition of the operator t, we have

I~ (P) = t(h)(P) = t,(P) n n Ij (It}
JEEp

for every PEr. In the case that I~(P) = h(P), for any PEr, then 1* = h, as .
desired; otherwise, again applying the operator t to I~ we get

t2(h)(P) = t(I~)(P)

= IUP) u n Ij(ID
JEEp

= I1(P) n n Ij(Id n n Ij(In
JEEp JEEp
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By virtue of that II > Ii, we have fj(It} ~ fj(ID Consequently,

t2{h)(P) = t,(P) = h{P) n n fj(Id = t{h)(P)
JEEp

for every PEr. Therefore, h = T{Id = t{Id, R(I2) = Ig. It is clear that from
the inclusions

Ig{P) ~ t{Id{P) ~ n fj{Id ~ n fj(Ig)
JEEp JEEp

follows

I~{P) = t(Ig){P)
= Ig(P) U n fj(Ig)

JEEp

= Ig(P), for every PEr

Hence, T (Ig) = Ig and it is obvious that R{Is). So, I* = Is, as desred. The proof
is complete.

Turing to Example 1 in Section 3.1, we see that although the knowledge base B
does not satisfy conditions of proposition 3-4, there exists the resulting assignment
I* from B. So, it seems that the existence of I* depends strongly not only on
properties of classes of functions {fj}, but also on "syntax structure" of sentences
in r. The problem of finding sufficient and necessary conditions for the existence
of decduction and that 0: handling inconsistency are the subjects of our further
work.
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