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SOME COMPUTATIONAL PROBLEMS RELATED
TO NORMAL FORMS

vu Due THI

Abstract. In the relational database theory the most desirable normal form is the Boyce-
Codd normal form (BCNF). This paper investigates some computational problems con-
cerning BCNF relation scheme and BCNF relations. We give an effective algorithm finding
a BCNF relation r such that r represents a given BCNF relation scheme s (i.e., K; = Ks,
where K; and Ks are sets of all minimal keys of T and s). This paper also gives an effec-
tive algorithm which from a given BCNF relation finds a BCNF relation scheme such that
K; = K8• Based on these algorithms we prove that the time complexity of the problem
that finds a BCNF relation T representing a given BCNF relation scheme s is exponential
in the size of s and conversely, the complexity of finding a BCNF relation scheme s from
a given BCNF relation T such that T represents s also is exponential in the number of
attributes.

We give a new characterization of the relations and the relation schemes that· are
uniquely determined by their minimal keys. It is known that these relations and the
relation schemes are in the BCNF class. From this characterization we give a polynomial
time algorithm deciding whether an arbitrary relation is uniquely determined by its set
of all minimal keys. In the rest of this paper some new bounds of the size of minimal
Armstrong relations for BCNF relation scheme are given. We show that given a Sperner
system K and BCNF relation scheme s a set of minimal keys of which is K, tl.l.enumber
of antikeys (maximal nonkeys) of K is polynomial in the number of attributes iff so is the
size of minimal Armstrong relation of s.
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1. INTRODUCTION

In the relation datamodel, one of the important concepts is the functional
dependency (FDs). Several types of families of FDs which satisfy some conditions
are known under the name normal forms (NFs). The Boyce-Codd normal form
has been investigated in a lot of papers. It is shown [4] that every set of attributes
with an associated set of FDs has a decomposition into third NF which has the
loss-less-join property and preserves FDs. However, for BCNF this doesn't always
exists. The key is an interesting concept in the relational datamodel. In this
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paper we present some computational problem related to connections between
sets of minimal keys, relation schemes and relations in BCNF class.

Let us give some necessary definitions and results that are used in the next
section.

Definition 1. Let R = {aI, ..., an} be a nonempty finite set of attributes, r =
{hI, ..., hm} be a relation over R, and A, B ~ R

Then we say that B functionally depends on A in r (denoted A 1... B) iff
. r

(Vhi' hi E r)((Va E A)(hi(a) = hi(a)) => (Vb E B)(hi(b) = hi(b)).

Let r, = {(A, B) : A, B ~. R, A .L, B}. r; is called the full family of functional
r

dependencies of r. W'here we write (A, B) or A --t B for A 1... B when r, I are
r

clear from the context.

Definition 2. A functional dependency over R is a statement of the form A --t B,
where A, B ~ R. The FD A -+ B holds in a relation rif A 1... B. We also say that

r
r satisfies the FD A -+ B.

Clearly, F; is a set of all FDs that hold in r.

Definition 3. Let R be a nonempty finite set, and denote P(R) its power set. Let
y ~ P(R) x P(R). We say that y is an I family over R iff for all A, B, C, D ~ R

(1) (A, A) E y,
(2) (A, B) E y, (B, C) E Y => (A, C) E y,
(3) (A, B) E v, A ~ C, D ~ B => (C, D) E v.
(4) (A, B) E v, (C, D) E y => (A U C, BUD) E y.

Clearly F; is an I-family over R.
It is known [1] that if y is an arbitrary I-family, then there is a relation rover

R such that F; = y.

Definition 4. A relation scheme 8 is a pair (R, E) I where R is a set of attributes,
and F is a set of FDs over R. Let F+ be a set of all FDs that can be derived from
F by the rules in Definition 3. Denote A+ = {a : A -+ {a} E F+}. A+ is called
the closure of A over s. It is clear that A -+ B E F+ iff B ~ A+.

Clearly, if s = (R, F) is a relation scheme, then there a relation rover R such
that F; = F+ (see [1]). Such a relation is called an Armstrong relation of s. It is
obvious that all FDs of 8 hold in r.

Definition 5. Let r be a relation, 8 = (R, F) be a relation scheme, y be an
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I-family over R and A ~ R. Then A is a key of r (a key of s, a key of y) if A L R
r

(A -t R E F+, (A, R) E y). A is a minimal key of r(s, y) if A is a key of r(s, y),
and any proper subset of A is a key of r(s,y). Denote K; (Ks, Ky) the set of all
minimal keys of r( s, y) .

Clearly, K«, Ks, Ky are Sperner systems over R (i.e. A, B E K; implies
Ag B).

Definition 6. Let K be a Sperner system over R. We define the set of antikeys
of K, denoted by K-1, as follows:

K-1 = {A c R : (B E K) => (B g A) and (A C C) => (3B E K)(B ~ Cn.

It is easy to see that K-1 is also a Sperner system over R.

It is known [6] that if K is an arbitrary Sperner system over R then there is
a relation scheme s such that K; = K.

In this paper we always assume that if a Sperner system plays the role of the
set of minimal keys (antikeys), then this Sperner system is not empty of algorithms.
Thus, if we assume that subsets of R are represented as sorted lists of attributes,
then a Boolean operation on two subsets of R requires at most IRI elementary
steps.

Definition 1. Let I ~ P(R), REI, and A, BEl => An BEl. Let M ~ P(R).
Denote M+ = {M' : M' ~ M}. We say that M is a generator of I iff M+ = I.
Note that R E M+ but not in M, since it is the intersection of the empty collection
of sets.

Denote N = {A E I : A =1= n{A' E I :A C A'}}.
In [6] it is proved that N is the unique minimal generator of I. Thus, for any

generator N' of I we obtain N ~ N'.

Definition 8. Let r be a relation over R, and E; the equality set of r , i.e.
E; = {Eij : 1 ~ i < J ~ Irl}, where Eij = {a E R : bi(a) = bj(an. Let
T; = {A E P(R) : 3Eij = A, ,8Epq : A C Epq}. Then T; is called the maximal
equality system of r.

Definition 9. Let r be a relation, and K a Sperner system over R. We say that
r represents K iff K r = K.

The following theorem is known ([8]).

Theorem 1. Let K be a non-empty Sperner system and r a relation over R. Then
r represents K iff K-1 = Tr, where T; is the maximal equality system 01 r.
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Let s = (R, F) be a relation scheme over R, K; is a set of all minimal keys
of s, Denote K;I the set of all antikeys of s, From Theorem 1 we obtain the
following corollary.

Corollary 1. Let s = (R, F) be a relation scheme and r a relation over R. We
say that r represents s If K; = Ks. Then r represents s iff K;I = T; is the
maximal equality system of r .

In [7] we proved the following theorem.

Theorem 2. Let r = {hI, ... , hm} be a relation, and F an f -family over R. Then
F; = F iff for every A E P(R)

HF(A) = { ~C;;nAOjE,;
if 3Eij E e. :A ~ Eij

otherwise,

where HF(A) = {a E R: (A, {a}) E F} and E; is the equality set of r.

We say that a relation scheme s = (R, F) (a relation r) is in BCNF if \f A ~ R
either A+ = A or A+ = R (HFr (A) = A or HFr (A) = R).

2. RESULTS

All relation and relation schemes investigated in this section are in BCNF.
First we construct two combinatorial algorithms concerning minimal keys of rela-
tions and relation schemes. We estimate these algorithms. After that we presents
two problems the worst-case time complexity of which are exponential.

Let s = (R, F) be a relation scheme over R. From s we construct Z(s)
{X+ : X ~ R}, and compute the minimal generator N; of Z(s). We put

r, = {A E Ns :7JB E Ns : A C B}

It is known [1] that for a given relation scheme s there is a relation r such that
r is an Armstrong relation of s, On the other hand, by Corollary 1 and Theorem
2 the following proposition is clear.

Proposition 1. Let s = (R, F) be a relation scheme over R. Then

K;I = Ts.
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Definition 10. Let s = (R, F) be a relation scheme. We say that s is a k-relation
scheme over R if F = {K1 - R, ... , Km - R}, where {KI' ... , Km} is a Sperner
system over R. It is easy to see that K; = {KI' ..., Km}.

Clearly, if s = (R, F) is in BCNF then using the algorithm for finding a
minimal cover in polynomial time we can construct a k-relation scheme s' = (R, F')
such that F+ = F'+, see [10]. Conversely, it can be seen that an arbitrary k-
relation scheme is in BCNF. Consequently, we can consider a relation scheme in
BCNF as a k-relation scheme.

Remark 1. It is known [10] that s = (R, F) is in BCNF iff its minimum cover
is a k-relation scheme. Consequently, the BCNF property of S is polynomially
recognizable.

Let r be a relation over R. From r we compute E«. We construct the maximal
equality system T; of r. By Theorem 1we obtain T; = K;l. Denote elements of
Tr by AI, ..., At.

Set M; = {Ai - a: a E R, i = 1, ... , t}. Denote elements of M; by BI' ... , Bs.
We construct the relation r' = {ho, hI, ... , hs} as follows:

For all a E R, ho(a) = 0, for each i = 1, ... , s hi(a) = ° if a E Bi, in the
converse case we set hi( a) = i.

By [10] r' is BCNF and K; = Kr' (1). It is easy to see that M; and r' are
constructed in polynomial time in the size of r.

Set HFr(A) = {a E R: (A,{a}) E Fr}, ZFr = {A: HFr(A) = A}. Denote by
Nr, the minimal generator of ZFr'

Based on definition of BCNF relation and from (1) we can see that a relation
r is in BCNF iff N r, = N'p.r

l
' Because for an arbitrary relation r N r. is computed

in polynomial time, the BCNF property of r can be tested in polynomial time.

We give the following algorithm that from a given relation scheme s constructs
a relation r such that r represents s.

It is known [15] that there is an algorithm that finds a set of all antikeys from
a given Sperner system.

Algorithm 1 (Finding a set of antikeys).
Input: Let K = {BI' ... , Bm} be a Sperner system over R.
Output: K-1.

Stepl: We set KI = {R - {a} : a E BI}. It is obvious that KI = {BI}-l.
Step q+l (q < m): We assume that Kq = FqU{XI' .. " Xtq}, where Xl, ..., Xtq

containing Bq+l and Fq = {A E Kq : Bq+l tJ. A}. For all i (i = 1, ... , tq) we
construct the antikeys of {Bq+ 1 on Xi in an analogous way as K 1. Denote them
by Ai, ..., A~i (i = 1, ... , tq). Let
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Kq+l = Fq U {A~ : A E Fq => A~ ~ A, 1 ::; i ::;tq, 1 ::; P ::; rd·
We set K-I = Km.

Theorem 3 [15]. For everyq (1::; «< m), Kq = {EI, ..., Eq}-l, i.e. Km = K-I.

It can be seen that K and K-1 are uniquely determined by one another and
the determination of K-I based on our algorithm does not depend on the order
of EI' ... , Em. Denote Kq = Fq U {Xl, ... , Xtq} and let lq (1 ::; q::; m - 1) be the
numbe~ of elements of Kq.

Proposition 2 [15]. The worst-case time complexity of Algorithm 1 is

m-l

O(IRI2 L lquq) ,
q=l

where
u _ { lq - tq - q

1
%f lq > tq

zf lq = tq

Clearly, in each step of our algorithm Kq is a Sperner system. In the cases for
which lq ::; lm (q = 1, ... , m - 1) it is easy to see that the time complexity of our
algorithm is not greater than O(IRI2IKIIK-112). Thus, in these cases Algorithm
1 finds K-I in polynomial time in IRI, IKI, and IK-11. It can be seen that if
the number of elements of K is small then Algorithm 1 is very effective. It only
requires polynomial time in IRI.

By Algorithm 1 we construct an algorithm that finds a relation such that this
relation represents a given relation scheme. By Remark 1 it is simple that we can
consider an arbitrary relation scheme in BCNF as a k-relation scheme.

Algorithm 2.
Input: s = (R, F = {KI ~ R, ..., Km ~ R}) be a k-relation scheme.
Output: A BCNF relation r such that K; = Ks.
Step 1: From K = {KI' ... , Km} we construct K-I = {EI' ... , Bt} by Algo-

rithm 1.
Step 2: Set M = {Ei - a : a E R, i = 1, ... , t}.
Step 3: Denote elements of M by AI, ... , At, construct a relation r = {ho, hI, ... , J

as follows: For all a E R : ho(a) = O. For i = 1, ... , l we set hi(a) = 0 if a E Ai, in
the converse case hi (a) = i.

By Remark 1, Corollary 1 we obtain K; = Ks, and r is a BCNF relation.
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Clearly, set M and relation r are constructed in polynomial time in the size of

( m-l )K-I. Consequently, the time complexity of this algorithm is 0 IRI3 L lquq ,
q=l

for meanings of tq, uq see Proposition 2. In many cases this algorithm requires
polynomial time in the size of s (see Proposition 2).

Now we construct an algorithm which finds a BCNF relation scheme such that
a given BCNF relation represents this relation scheme. First we give the following
algori thm.

Algorithm 3. [8] (Finding a minimal key from a set of antikeys)
Input: Let K be a Sperner system, H a Sperner system, and C = {bl, ..., bm} ~

R such' that H-I = K and 3B E K : B ~ C.
Output: D E H.
Step 1: Set T(O) = C.
Step i-l-L: Set T = T(i) - bi+l

Ti+l = { ~(i)
if VB E K: T ~ B
otherwise

We set D = T(m).

Lemma 1 [8]. If K is a set of antikeys, then T(m) E H.

Lemma 2 [8]. Let H be a Sperner system over R, and H-I = {BI' ... , Bm} be a
set of antikeys of H, T ~ H. Then T c H, T =1= 0 zf and only zf there is a B ~ R
such that B E T-1, B tf- B, (Vi: 1 ::; i ::;my.

Based on Lemma 2, Algorithm 3 we have the following algorithm.

Algorithm 4. (Finding a set of minimal keys from a set of antikeys)
Input: Let K = {BI' ... , Bk} be a Sperner system over R.
Output: H such that H-I = K.
Step 1: By Algorithm 3 we compute an AI, set K(1) = AI.
Step i-l-L: If there exists a B E Ki-

l such that B ~ Bj (VJ·: 1 ::; i ::;k),
then by Algorithm 3 we compute an Ai+l' where Ai+l E H, Ai+l ~ B. Set
K(i + 1) = K(i) U Ai+l. In the converse case we set H = K(i).

Proposition 3 [16]. The time complexity of Algorithm 4 is o(n( :~ll(klq +

ntquq) + k2 + n)), where IRI = n, IKI = k, IHI = m, for meanings of lq, tq, Uq
see Proposition 2.
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Clearly, in cases for which lq ~ k (Vq : 1 ~ q ~ m - 1) the time complexity of
our algorithm is O(IRI2IKI2IHI). It is easy to see that in these cases Algorithm 4
finds the set of minimal keys in polynomial time in the sizes of R, K, H. If IHI
is polynomial in IRI and IKI, then our algorithm is effective. It can be seen that
if the number of elements of H is small then Algorithm 4 is very effective.

Algorithm 5.
Input: Let r be a 'BCNF relation over R.
Output: A BCNF relation scheme s such that K; = K»,
Step 1: From r compute E«.
Step 2: From E; compute the maximal equality system T«.
Step 3: By Algorithm 4 we construct a set of all minimal keys H of r.
Step 4: Denoting elements of H by AI, , Am we construct a relation scheme

as follows: s = (R, F), where F = {AI -t R, , Am -t R}.

Based on Theorem 1, Algorithm 4 and Definition 10 we have K; = K»: It is
clear that the time complexity of this algorithm is the time complexity of Algorithm
4. In many case this algorithm is very effective (see Proposition 3).

Theorem 4 [14]. Let K be a Sperner system over R. Denote s(K) = min{m :
Irl = m, tc. = K}. Then (2IK-II)I/2 ~ s(K) ~ IK-II + 1.

Remark 2. Let us take a partition R = Xl U ... U Xm U W, where IRI = n,
m = [n/3]' and IXil = 3 (1 ~ i ~m).

We set
H = {B : IBI = 2, B ~ Xi for some i} if IWI = o.
H = {B : IBI = 2, B ~ Xi for some i :1 ~ i ~m - 1 or B ~ x.; U W} if

!WI = 1,
H = {B : IBI= 2, B ~ XSor some i :1 ~ i ~m or B = W} if IWI = 2.
It is easy to see that
H-I = {A : IA n Xii = 1, Vi} if IWI = O.
H-I = {A: IAnxil = 1 (1 ~ i ~m-l) and IAn(XmuW)1 = I} if IWI = 1,

H-I = {A : IA n Xii = 1 (1 ~ i ~m) and IA n WI = I} if IWI = 2.
If set K = H-I-I, i.e. H-I is a set of minimal keys of K, then we have
K = {C : ICI = n - 3, C n Xi = 0 for some i} if IWI = 0,
K = {C : ICI = n - 3, C n Xi = 0 for some i (1 ~ i ~m - 1) or ICI = n - 4,

C n (Xm U W) = 0} if IW I = 1,
K = {C : ICI = n - 3,C n Xi = 0 for some i (1 ~ i ~m) or ICI = n - 2,

C n W = 0} if IW I = 2.
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It is clear that n - 1 :::;IHI :::;n + 2, 3[n/4] :::; IH-ll, IKI :::;m + 1. Based on
this partition, Theorem 4 and algorithms 2, 5 we obtain the following theorem.

Theorem 5. In the BCNF class of and relation schemes, the time complexity
of finding a relation r from a given relation scheme s such that r represents s is
exponential in the size of s.

Proof: We have to prove that:
(1) There is an algorithm finding a BCNF relation r from a given BCNF

relation scheme s such that r represents s and the time complexity of this algorithm
is exponential time in the size of s.

(2) There exists a BCNF relation scheme s = (R, F) such that the number of
rows of any BCNF relation representing s is exponential in the size of s.

For (1): We have Algorithm 2.
For (2): According to Theorem 4 we have (2IK-l)1/2 :::; s(K). We construct

a k-relation scheme s = (R, F), where F = {B ~ R : B E H}. It is obvious
that H-I = K;I. Hence, (2l/23[n/8]) :::; s(Ks) holds. It can be seen that BCNF
relation r that is constructed in Algorithm 2 has the number of rows at most
IUIIH-il + 1. Thus, we always can construct a BCNF relation scheme s such that
the number of rows of any BCNF relation representing s is exponential in the size
of s. The proof is complete.

Theorem 6. In BCNF class of relations and relation schemes over R, the time
complexity of finding a relation scheme s from a given relation r such that K; = K;
is exponential in the number of attributes.

Proof: It is clear that the worst-case time complexity of Algorithm 5 is exponential
in the size of R. In Remark 2 we have IKI :S m + 1. We set M = {C - a: Va, C:
a E R, C E K}. Denote elements of M by Cl, ..., Ct. Construct a relation
r = {ho, hI, ... , hd as follows: For all a E R ho(a) == O. For i = 1, ... , t hi(a) = 0
if a E Ci, in the converse case hi(a) = i. Clearly, Irl :::;(m + l)IRI + 1 holds.
We construct a relation scheme s = (R, F) with F = {A ~ R : A E H-l}. It is
obvious that 3[n/4! :::; IFI, and K; = Ks. Clearly, a minimum cover of any BCNF
relation scheme is a k-relation scheme. Thus, we always can construct a BCNF
relation scheme s = (R, F) such that K; = Ks. The.number of elements of F is
exponential in the number of attributes. Our proof is complete.

It is known that in the BCNF class a relation r represents a relation scheme
s iff r is an Armstrong relation of s. Consequently, our two algorithms and two
problems are still true when r is an Armstrong relation of s.

Proposition 4. Let s = (R, F) be a relation scheme. Then s tS in BCNF iff
VB E K;I, a E B : (B - a)+ = B - a.
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Proof: It is easy to see that if s is in BCNF then (B - a)+ = B - a for B E K;l
and a E B.

Conversely, assume that s is not in BCNF. Consequently, there is an A -t

{a} E F+, where A+ i- R and a t/:. A. By Proposition 1 there is a B E K; 1 such
that A+ ~ B. Clearly, a E B and A ~ B - a. Hence, (B - a)+ = B holds. The
proof is complete.

Proposition 4 was independently discovered in [17].

Definition 11. Let K be a Sperner system over R. We say that K is unique if K
uniquely determines a relation scheme s = (R, F), i.e. for every relation scheme
s' = (R, F') such that Kst = K we have F+ = F'+.

It is easy to see that s is a BCNF relation scheme.

It is known [6] that for give a Sperner system K there exists a relation scheme
s (a relation T, respectively) is unique if K, = K (Kr = K, respectively). We say
that s (r, respectively) is unique if K s (K r, respectively) uniquely determines s
(r, respectively) i.e. K, (Kr, respectively) is unique.

Now we give a necessary and sufficient condition for a given relation scheme
to be unique.

Theorem 7. Let s = (R, F) be a relation scheme over R. Then s is unique iff for
all a E A, A E «;: :A - a = n{B E tc;: : (A - a) C B} holds.

Proof: It is known [5] that a Spernersystem K is unique iff for all B ~ A, A E K-1,

B is an intersection of antikeys. Denote Ps = {A - a : A E K;l, a E A}.
It can be seen that if s = (R, F) is unique then B E P, implies B is an

intersection of antikeys, i.e. B = n{A E «;' :B ~ A}.
Conversely, assume that for every B E P, we have B = n{A E «;: :B ~ A}

(*). By Proposition 4 and according to Proposition 1 we have Ns ~ ir, U K;l).
It can be seen that s in BCNF. Based on definition of N; and Proposition 1
K;l ~ N; holds. According to (*) we obtain K;l = Ni: Because s is in BCNF
we can see that for all B ~ A, A E K;l : B+ = B holds. Thus, B is an intersection
of antikeys of s. The proof is complete.

Theorem 7 immediately implies.

By a polynomial time algorithm finding a set of all antikeys of a given relation
(see [14]) and according to Theorem 7 we obtain the followwing proposition.

Proposition 5. There exists an algorithm deciding whether a given relation r is
unique. The time complexity of this algorithm is polynomial in the size of Rand
r.
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Corollary 2. Let K be a Sperner system over R. Then there exists a polynom£al
time alqorithm decidinq whether a Sperner system H is unique, where H-1 = K.

The size of minimal Armstrong relation was investigated in some papers (see
[2, 5, 6, 12, 14]). Now we present some new bounds for the size of Armstrong
relation.

Definition 12 (Minimal Armstrong relation). Let F be an I-family over R. Let
M(F) = min{m: irl = m, F; = F}.

Denote HF(A) = {a E R: (A, {a}) E F}, and Z(F) = {A : HF(A) = A}.

Proposition 6 [6]. Let F be an I -family over R. Then

(2IN(F) I) 1/2 < M(F) ~ IN(F) I + 1,

where N (F) is the minimal generator of Z (F).

According to the definition of unique Sperner system and based on Theorem
7 we have the following.

Proposition 7. Let s = (R, F) be a relation scheme. Then if K; is unique then

Theorem 8. Let K be a Sperner system, s = (R, F) a BCNF relation scheme
over R. Let

M(F+) = min{m : Irl = m, F; = F+, s = (R, F) a relation scheme};
K* = K-1u{B-a: B E K-l, a E B, B-a i- n{c: C E K-1, B-a C C}}.
Then zf «,= K then (2IK* 1)1/2 < M(F+) < IK* I + 1 (*).

Proof: For an arbitrary Sperner system K we can construct a BCNF relation
scheme s = (R, F = {A -+ R : A E K}) such that K; = K. According to
definition of BCNF relation scheme we can see that for all BCNF relation scheme
s' = (R, F') such that Ks' = K, F+ = F'+ holds.

Denoting the elements of K* by AI, ..., At we construct a relation
r = {ho, hl, ... , ht} as follows:

For all a E R, ho(a) = O. Vi = 1, ... t

if a E A
otherwise

By Proposition 4 we obtain K; = K and r is in BCNF. According to defintion
of BCNF we have F; = F+. Hence, N (Fr) = N (F+) holds. According to Theorem
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2 we have N(Fr) ~ Er. Based on Proposition 4 and the construction of K* , and
N(Fr) = {B E Er : B i= n{B' E Er : B c B'}}, we obtain N(Fr) = K*.
According to Proposition 6 we have (2IK* I) 1/2 < M(F+) :::;IK* I + 1. The proof
is complete.

Let K be a Sperner system over R. We say that an attribute a is prime of K
if it belongs to an element of K, and nonprime otherwise.

Based on Proposition 7 and Theorem 8 we obtain the following.

Proposition 8. Let K be a Sperner system over R = {aI, ..., an}. Let K-l =
{AI, ... , Ad and Kn = {ail' ... ' ai.} be a set of nonprime attributes of K. Then
for every BCNF relation scheme s = (R, F) such that K; = K then

k(s + 1) :::; IN(F+)I :::;kn (**)

Proof: Clearly, if B E K-l then IBI :::;n - 1. Hence, in Theorem 8 IK*I :::;kn.
By the proof of Theorem 8 K'" = N(F+) holds. Thus, N(F+) :::;kn holds.
It is known [7] that Kn is the intersection of elements of tc+. According to
definition of minimal generator we can see that if B E K-l then for every a E
Kn : B - a E N(F+). Clearly, if B E K-l then B E N(F+). Consequently, we
have k(s + 1) :::;IN(F+)I :::;kn. The proof is complete.

According to Theorem 8 and Proposition 8 we can see that for all BCNF
relation scheme s .:...-(R, F) such that K, = K, IK-il is polynomial in the number
of attributes if and only if the size of minimal Armstrong relation and the number
of elements of the minimal generator N(F+) (sometimes it is denoted by GEN(s))
of s also polynomial in IR I.

It can be seen that the bounds (*) and (**) are especially interesting when
the number of antikeys of antikeys of K is polynomial in the number of attributes.
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