
T?-p chi Tin.h<;>cva Dieu khi€n hoc, T. 13, S.l (1997) (6-10)

AN ITERATIVE METHOD FOR SOLUTION
OF NONLINEAR OPERATOR EQUATION

NGUYEN BUONG

Abstract. In the note, for finding a solution of nonlinear operator equation of Ham-
merstein's type an iterative process in infinite-dimensional Hilbert space is shown, where
a new iteration is constructed basing on two last steps. An example in the theory of
nonlinear integral equations is given for illustration.

1. INTRODUCTION

Let H be a real Hilbert space with the norm and scalar product denoted by
II II and (., .), respectively.

Let Fi, i = 1,2, be nonlinear monotone operators in H, i.e.

(Fi(X) - Fi(Y),X - y) ;::::0, \:;Ix,y E D(Fi) == H, i = 1, 2.

The operator equation of Hammerstein's type

x + F2F!(x) = fo, fo E H (1.1)

was considered by several authors (see [1], [2], [4-7], [12-17]and bibliography there).
In [10], an iterative process was given for solving (1.1) with the linear property
of F2• In [6], the author proposed an method of regularization for the solution of
(1.1) in the case, where both the operators F; are nonlinear and monotone.

In the note, basing on our result in [6] and the idea of iterative regularization
proposed by A. Bakyshinski (see [3]), we give a two-step iteration method for
solving (1.1) in infinite-dimensional Hilbert space H. The result is illustrated by
an example in the theory of nonlinear integral equations.

Note that, recently, the problem of approximating a solution of (1.1) is in-
vestigated extensively because of its importance in applications (see [8]' [9], [11],
[16]).
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2. MAIN RESULT

Let xl and x2 be two arbitrary elements of H. The iteration procedure is
defined by

xn+2 = cp~+l (xn+l) + f3n+1 [cp~ ((xn+l - cp~(xn))/ f3n ) -f3nxn l, (2.1)

n = 1,2, ...

where

cpi(x) = x - f3n (Fi(X) + anx + ado), i = 1, 2,
al = 0, a2 = -1,

(2.2)

and {an} and {f3n} are two sequences of positive numbers. Later, we see, as in [3],
that an plays the role of regularization and f3n, the role of iteration parameter.

Theorem. If (1.1) has a solution and there exist the constants L; > 0 such that

then iteration process (2.1) converges to a solution of (1.1) under the condition

Proof. Put

(2.3)

Then from (2.1) and (2.2) we have

yn+l = (xn+2 _ cp~+I(xn+I))/f3n+1

= cp~(yn) _ f3nxn

= yn - f3n(F2(yn) + Xn + anyn - fo).

On the other hand, from (2.3) and (2.2) we also obtain

xn+l = cp~(xn) + f3nyn

= xn - f3n(Fdxn) - Yn + anxn), n = 1, 2, ...
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In the Hilbert space HI = H x H with the scalar product denoted by (ZI, Z2) 1 =
(XbX2) + (Yl,Y2), where z; = [Xi,Yi], Xi,Yi E H, we can write

Zn+l = zn -.Bn (,(zn) + anzn - fo),

1(zn) = [Ft{xn),F2(yn)] + [_yn,xn],
zn = [xn, yn], 70 = [8,/0],

(2.4)

where the 8 denotes the zero element in H. It is easy to verify that in the Hilbert
space HI, 1is a monotone operator. However, without any difficulty we can see
that 1satisfies the condition

111(z)11 :::; v'2 max Li(l + Ilzllt},
where 11.11t is the norm of HI generated by ("')1'

Applying Theorem 5.1 (p. 144) in [3] to the process (2.4), we can conclude
that the sequence {zn} converges in HI to Zo = [xo,Ft{xo)], one solution of the
equation

1(z) = T;
Therefore, the sequence {xn} converges in H to Xo, as n -t 00. Theorem is proved.

Remarks. 1. The sequence .Bn = (1 + n)-1/2 and an = (1 + n)-P, 0 < p < 1/2,
satisfy all the conditions in the theorem.

2. If Fi are Lipschitz continuous with a Lipschitz constants Li, then 1also
is Lipschitz continuous with Lipschitz constant £ = 2Ymax{1,L1,L2}. Applying
Theorem 5.2 in [3], we obtain the result that the iteration process (2.1) converges
in H to a solution of (1.1), if

-I' a (1+ a~) 2
Imn->oo iJn < 1'2'an J..,

In this case, we can chose the sequence .Bn = 8an,
2

an = (1 + n)-P, 0 < p < 1/2, 8 < (1 + ao)2 £2 .

3. APPLICATION

Consider the nonlinear integral equation of Hammerstein's type

cp(t) + 11k(t,S)/(CP(S))ds = lo(t), t E [0,1], ip E L2[0,1], (3.1)
01
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where lo(t) E L2[O, 1], k(t, s) 2: ° is continuous and I(t) is a nondecreasing and
bounded function satisfying the condition I/(t)1 ~ ao + boltl, t E R. Then,

(F1CP)(t) = I(cp(t)), cp(t) E L2[O, 1],

(F1e)(t) = fa1 k(t,s)e(s)ds, e(t) E L2[O,1].

Since k(t, s) 2: ° and I(t) is nondeacreasing, then Fi, i = 1,2, are monotone.
The continuity of k (t, s) implies that F2 is bounded. It is not difficult to prove
that F; satisfy the conditions of the main theorem. Therefore, in order to obtain
approximate solution for (3.1) we can apply the process (2.1) with defined above
F; and an, (3n in the remark 1.
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