
T~p chi Tin h<}cva men khi€n boc, T.14, S.4 (1998) (73-80)

SQL QUERY EXPRESSED IN RELATiONAL CALCULUS

HO THUAN, TRAN THIEN THANH

Abstract. In this paper, we present some results on the equivalence between SQL queries and relation
calculus expressions. These results are used to translate SQL queries into equivalent expressions of
relational algebra.

I. INTRODUCTION

Stefano Ceri and Georg Gottlob, in [1] presented a translator from a subset of SQL queries into
relational algebra. We have extended the results in [1]for subqueries with GROUP BY clause which
can be nested at any level of a SQL query, and some extensions to condition of HAVING clause.
This work is a basis step for this translation. In this paper, we have proved some results on the
equivalence between SQL query and relational calculus expression.

11.BASIS KNOWLEDGE

1. Relational calculus

A relational calculus expression is of the form

{t((components) ItP(t)},
where

• t is a tuple variable;
• components is a list of components of the form:

+ Ai - is an attribute,
+ R.Ai - R is a relation name, Ai is an attribute of R;

• tP(t) is a formula building from the atoms and collection of logical operators.

In order to use aggregate function in relational calculus, we extended the components to accept
the form Fi[Ai], where Fi is a function and Ai is an attribute, and other extensions to the atoms
of formula tP of some types such that: Fi[Aj](s) 9 u[Ai], Fi[Aj](s) 9 a, where Fi[Aj](s) is value of
function F; computed on attribute Aj for the tuple s, a is a constant, and e E {=, =1=, >, ~, <, ::;}.

2. Structured Query Language (SQL)

a. Syntax of SQL query

SELECT (selector) 1* FROM (relation_list) [WHERE (predicate)]
[GROUP BY (gb_attr) [HAVING (hav_condition)]l

b. The meaning of clauses
The SELECT clause indicates attributes and functions are selected. The asterisk denote for all
attributes of (relation_list).
The FROM clause indicates relations used for query.
Note: Every SQL query must have at least the SELECT clause and the FROM clause.

The WHERE clause indicates condition used to select tuples, only select tuples that satisfying the
condition.
The GROUP BY clause indicates attributes, those used to group the tuples.

74 HO THUAN, TRAN THIEN THANH

The HAVING clause indicates condition used to select groups, only select groups satisfying the
condition.

c. The operators

The operators used to combining results of SQL queries: INTERSECT, UNION, MINUS.

3. Notation and relations used to illustrate

oNotation

• car(list of relational expressions) indicates the Cartesian product of all the relational expres-
SIOns.

• attr(list of relations) is the set of the attributes in the attributes schema of the specified
relations.

• attr(relational expressions) is the set of attributes occurring in the results produced by the
evaluation of a relational expression.

• rels(list of attributes) is the set of relations having the specified attributes.
• rels(relational expression) is the set of the relations, whose attributes appear in the relational

expression.
• extrattr(predicate) is the set of attributes which appear in the predicate.
• extrels(predioote) is the set of relations whose attributes appear in the predicate.
• meaning(Q) is the relation results of query Q.

o The relations used to iIlustrate

To illustrate, we use the database relations in Date's book [21.

- Relations S - Suppliers

SCODE SNAME STATUS CITY

SI Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

- Relation P - Products

PCODE PNAME COLOR WEIGHT CITY

PI Nut Red 12 Lodon
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London

- Relation SP - Supplier-Product

seODE PCODE QTY

SI PI 300
SI I P2 200
SI I P3 400
S2 PI 300
S2 P2 400
S3 P2 400

Ill. SQL QUERIES EXPRESSED IN RELATIONAL CALCULUS

1. Notation and definition

Let Q be a SQL query of the form:

SQL QUERY EXPRESSED IN RELATIONAL CALCULUS 75

SELECT (selector) FROM (relarion_list) WHERE (predicate)
GROUP BY (gb_attr) HAVING (hav_condition)

• Q.(component) denotes the corresponding components of Q,
• Q.(componenL 1).(componenL2) denotes the corresponding component of Q.(componenL 1),

• Q.(selector).(attrs) is list of attributes in Q.(selector),
• Q.(selector).(function_list) is list offunctions in Q.(selector).

In this paper we assume Q.(selector).(function_list) = {FdAj]}, i = 1, ... , k, Fi[Aj] is a function
Fi computed on attribute Aj•

Example: Let R be relation, R has the schema R(A, B). Q be a SQL query of the form SELECT
R.A, R.B, SUM(R.A) FROM R, then

Q.(selector) = {R.A, R.B, SUM(R.A)}
Q.(selector).(attrs) = {R.A, R;B}
Q.(selector).(function_list) = {SUM(R.A)}

• FdRj U'; Aj](t) (where R is a relation, U is a subset of attr(R)' Aj is a attribute of R, Aj fj. U,
t is a tuple in R): is the value of function Fi computed on attribute Aj of relation R with
group-attribute U for tuple t of R.·

Note: The values of FdAj] are same with tuples in a group (Fig. 1).
'<It,t' E R, if t'(U) = t(U) then FdRj u,Aj](t') = FdR; tt,Aj](t)

... U F.-[R· U' A .]• , , J

rl gl It
r2 gl It
r3 g2 [z

r4 g2 h
rs g2 h

Fig. 1

Definition 1. Let Q be a SQL query and E be a relational calculus expression, we say that Q is
equivalent to E iff the results of Q and E are the same when we substitute the same relations for
identical name in the two expressions.
When Q is equivalent to E, we say that Eis Q expressed in relational calculus and denoted Q = E.

Definition 2. Let Q, Q' be SQL queries. We say that Q is equivalent to Q', denoted Q = Q', iff
when we substitute the same relations for identical name in the two expressions, we get the same
result.
Wehave Q = Q' {:> meaning(Q) = meaning(Q').

2. The top level query

Let Q be a SQL query of the form:

SELECT (selector) FROM (relation_list) WHERE (predicate)
GROUP BY (gb_attr) HAVING (hav_condition)

Based on the meaning of Q, we have:

Q = {t(Q.(selector)) 13t'(R(t') t\ t(Q.(selector).(attrs)) =
t'(Q.(selector).(attrs)) t\ F(t') t\ '<Ir(R(r) t\ (r(Q.(gb_attr)) =

t'(Q.(gb_attr)) -t H(r))) t\ (t(FdAj]) = FdR"j Q.(gb_attr)j Aj](t') i = 1, ... , k)} (1)
where

76 HO THUAN, TRAN THIEN THANH

R = car(Q.(relation_list)),
F(t) IS predicate Q.(predicate),
H(t) is condition Q.(hav._condition),
R' = {t I R(t) /\ F(t)} - set of tuples of R, those are satisfying Q.(predicate),
R" = {t I R'(t) /\ Vt'(R'(t') /\ (t'(Q.(gb_attr)) = t(Q.(gLattr)) -+ H(t')))}.

We rewrite equation (1):

Q = {t(Q.(selector)) 13t'(R"(t') /\ t(Q.(selector).(attrs)) =
t'(Q.(selector).(attrs)) /\ (t(Fi[AiD = F;[R"j Q.(gb_attr)j Ai](t') i = 1, ... , k)} (2)

3. The subquery

The sub queries may be used in conjunction with the IN, ALL, EXISTS, ... operators.

Example. Find the name of suppliers, those do not supply product Pl .
Q= SELECT SNAME FROM S WHERE "PI" NOT IN

(SELECT PCODE FROM SP WHERE SCODE=S.SCODE)
We consider the subquery:

Q' = SELECT PCODE FROM SP WHERE SCODE=S.SCODE

Remark.

1) The sub query Q' is dependent on S.SCODE of S.

2) To have meaning (Q), we need to have meaning (Q').

Definition 3 (External relation, External attribute of subquery).
Let Q be a sub query, R be a relation, if there exists attribute(s) of R appear in Q, but R not in
Q.(relation_list) then R is called external relation of Q.
Every attribute of Q's external relation is called external attribute of Q.
The set of all external attributes of Q is denoted by Other(Q).

Definition 4 (The relation result of subquery).
Let Q be a sub query, Other(Q) is set of all external attributes of Q. S = car(rels(other(Q))).
For each sE S, Q(s) is a sub query, it is obtained by replace each attribute Ai E Other(Q) by S(Ai).
Let R. = meaning(Q(s)).

S I Other(Q) I RSl I Q.(selector) I RS2 Q.(selector) RS3 Q.(selector)

r2
r4
r5

S1
S2
S3

R'3 = 0
r1

r3

R Q.(selector) Other(Q)
r1 S1
r2 S1
r3 S1
r4 S2
r5 S2

Fig. 2. Relation result of subquery

Definition: The relation result of subquery Q is defined by expression:

{(r, s) I S(s) /\ R.(r)} (3)

SQL QUERY EXPRESSED IN RELATIONAL CALCULUS 77

Example: Let Q be a subquery
SELECT PCODE FROM SP WHERE SCODE=S.SCODE

Other(Q) = {SCODE, SNAME, STATUS, CITY}

.'!l = (SI, Smith,20,London)

.'!2 = (S2, Lones,10,Paris)

.'!3 = (S3, Blake,30,Paris) .

PCODE R.,

PI
P2
P3

PCODE

PI
P2

The relation result of sub query Q

R PCODE S.SCODE SNAME STATUS CITY

PI SI Smith 20 London
P2 SI Smith 20 London
P3 SI Smith 20 London
PI S2 Jones 10 Paris
P2 S2 Jones 10 Paris
P2 S3 Blake 30 Paris

By equation (1), we have:

R. = {t(Q.(.'!elector)) 13t'(R:(t') t\ t(Q.(selector).(attrs)) =

t'(Q.(selector).(attrs)) t\ (t(FdAj]) = FdR:j Q.(gb_attr)j Aj](t') i = 1, ... ,k))},

where

R; = {r I R(r) r. F(r,s) t\ 'v'r'(R(r') t\ F(r',s) t\ (r(Q.(gb_attr)) = r'(Q.(gb_attr)) -+ H(r', s)))}

IV. RESULTS

Theorem 1. Let Q be a subquery of the form
SELECT (selector) FROM (relation_list) WHERE (predicate) GROUP BY (gb_ attr)
HAVING (hav_ condition)

then

Q = {t(Q.(selector) U Other(Q)) 13(PFH(p) t\ t(Q.(selector).(attrs) U Other(Q)) =
p(Q.(selector).(attrs) U Other(Q))t\
(t(FdAj]) = Fi[PFHjQ.(gLattr) UOther(Q)jAjj(p)i = 1, ... ,k))}

where
P = car(Q.(relation_list) U rels(Other(Q))L
PF = {p I P(p) t\ F(p)},
PFH =
{p IPF(p) t\ 'v'P'(PF(P') t\p'(Q.(gb_attr) U Other(Q)) = p(Q.(gb_attr) U Other(Q)) -+ H(p'))} ..

Define P* = {(t, s) IS(s) t\ R:(t)}. The proof of Theorem 1 is based on Lemma 1, and Lemma 2.
We omit here the proof of these lemmas.

78 HO THUAN, TRAN THIEN THANH

Lemma 1. We have P" = PFH.

Lemma 2. For every pEP·, p = (t, s], where s E 8, t E R:. Let Fi be a function, Ai E
attr(Q.(relation_list)) we have:

FdR:j Q.(gLattr)j Ai](t) = FdP*j Q.(gb_attr) U Other(Q)j Ai](p) (*)

Proof of Theorem 1. By equation (3)we have the equivalence of Q with the expression E defined
by:

E = {t(Q.(selector) U Other(Q)) 13s (8(s) /\ t(Other(Q)) = s /\ 3r (R.(r) /\ t(Q.(selector)) = r))}
= {(r,s) 1 S(s) /\ R.(r)},

where

R. = {t(Q.(selector)) 13t'(R:(t') /\ t(Q.(selector).(attrs))) =

t'(Q.(selector).(attrs)) /\ (t(Fi[Ail = Fi[R;j Q.(gb_attr)j Ai](t') i = 1, ... , k))}.

Let
E' = {t(Q.(s~lector) U Other(Q)) 13p(PFH(p)/\

t(Q.(selector).(attrs) U Other(Q)) = p(Q.(selector).(attrs) U Other(Q))/\
(t(Fi[AiD = Fi[PFHj Q.(gLattr) U Other(Q)j Ai](p)i = 1, ... , k))}.

By Lemma 1, we have

E' = {t(Q.(selector) U Other(Q)) 13p(P*(p)/\
t(Q. (selecto'r) .(attrs) U Other(Q)) = p(Q.(selector).(attrs) U Other(Q))/\

(t(FdAiD = FdP*jQ.(gb-attr) UOther(Q)jAi](p)i = 1, ... ,k))}.

We show that E = E'

a) First we show that E' ~ E
Vt E E' ~ 3p E P* .
t(Q.(selector).(attrs) U Other(Q)) = p(Q.(selector).(attrs) UOther(Q))
t(Fi[AiD = FdP*j Q.(gLattr) U Other(Q)j Ai](p) i = 1, ... , k.

Since pE P* then p = (r, s) where sE S, rE R:.
We have t(Other(Q)) = p(Other(Q)) = s E S

t(Q.(selector).(attrs)) = p(Q.(selector).(attrs)) = r(Q.(selector).(attrs))
t(Fi[AiD = FdP*j Q.{gb_ attr) U Other(Q)j Ai](p) Vi = 1, ... , k,

By Lemma 2, we have t(Fi[AiD = Fi[R:j Q.(gb_attr)j Ai](t) Vi = 1, ... , k,

Let t' = t(Q.(selector)) then
t'(Q.(selector).(attrs)) = t'(Q.(selector).(attrs)) = r(Q.(selector).(attrs))

and t'(FdAiD = Fi[P*jQ.(gb_attr) UOther(Q)jAi](P) = Fi[R:jQ(gb_attr)jAi](r)Vi = 1, ... ,k so
t' ER •.
Clearly t = (t', s) ~ t E EsoE' ~ E (*)
b) Now we have to show that E ~ E'

Vt E E ~ t = (r,s) where sE S, rE R •.

SQL QUERY EXPRESSED IN RELATIONAL CALCULUS 79

Since rE R. then 3t' E R: , r(Q.(selector}.(attrs}) = t'(Q.(selector}.(attrs}) and
r(Fi[AiD = FifR:j Q.(gb_attr}j AiJ(t') Vi = 1,...,k.
Let p = (t', s], we have pEP· and

t(Q.(selector}.(attrs}) = r(Q.(selector}.(attrs}) = t'(Q.(selector} . (attrs))
= p(Q.(selector}.(attrs})
t(Fi[AiD = r(FdAiD = Fi [R:; Q.(gb_ attr}; AiJ(t') Vi = 1, ... , k

By Lemma 2, we have
t(Fi[AiD = Fi[P*; Q(gLattr} U Other(Q); AiJ(P) Vi = 1, ... , k so tEE' ~ E' ~ E (**)

From (*) and (**) ~ E = E' 0

By Theorem 1, we have the following remark:

Remark 1. Let Q be a query of the form
SELECT (selector) FROM (relation_list) WHERE (predicate) GROUP BY (gb_attr)
HAVING (hav_ condition)

then Q is equivalent to the query Q' of the form
SELECT Q.(selector} U Other(Q) FROM Q.(relation_list} U rels(Other(Q))
WHERE Q.(predicate} GROUP BY Q.(gb_attr} U Other(Q) HAVING Q.(hav_condition}.

Theorem 2. Let Q be a query of the form
SELECT (selector) FROM (relation,.list) WHERE (predicate) GROUP BY (gb_ attr)
HAVING (hav_ condition)

then we have

Q = {t(Q.(selector} U Other(Q)) 13r(R*(r) 1\ t(Q.(selector).(attrs) U Other(Q)) =
r(Q.(selector).(attrs) U Other(Q))1\
(t(Fi[AiD = Fi[R*; Q.(gb_attr) U Other(Q); AjJ(r) i = 1, ..., k))}

where Q.(ngLquery)* denotes the query of the form
SELECT * FROM Q.(relation_list) WHERE Q.(predicate)
R = car(meaning(Q.(ngb_ query)*) U (rels(Other(Q)) - rels(meaning(Q.(ngb_ query)*))
R* = {r IR(r)I\Vr'(R(r')I\(r'(Q.(gb_attr)uOther(Q)) = r(Q.(gb_attr)UOther(Q)) -+ H(r')))}.

Theorem 2 allows to express queries with GROUP BY clause by the result of queries without
GROUP BY clause.

The proof of Theorem 2 is based on the Lemma 3. As above, we omit here the proof of Lemma
3.

Lemma S. We have R ~. {p I P(p) 1\ F(p)}.

Proof of Theorem 2.
By Lemma 3 we have R* = PF H.

By Theorem 1 clearly

Q = {t(Q.(selector) U Other(Q)) 13r(R*(r)1\
t(Q ..(selector).(attrs) U Other(Q)) = r(Q.(selector).(attrs} U Other(Q))1\
(t(Fi[AiD = Fi[R*; Q.(gb_attr) UOther(Q).j AiJ(r) i = 1,..., k))}. 0

By Theorem 2, we have the following remark:

80 HO ~HUAN, TRAN THIEN THANH

Remark 2. Let Q be a query of the form
SELECT (selector) FROM (relation_list) WHERE (predicate) GROUP BY (gb_ attr)
HAVING (hav_ condition)

then the following queries are equivalent:
i) Q
ii) Q' = SELECT Q.(selector) U Other(Q) FROM TEMPt GROUP BY Q.(gb_attr} UOthe,(Q),
where TEMPl = meaning(Q*)
with Q* = SELECT • FROM Q.(relation_list} WHERE Q.(predicate} GROUP. BY Q.(gb_attr)

HAVING Q.(hav_condition).
iii) Q" = SELECT Q.(selector) U Other(Q.(ngb _query}) FROM TEMP2 GROUP BY Q.(gb_attr)

, uOther(Q.(ngLquery)) HAVING Q.(hav_condition},
where TEMP2 = meaning(Q.(ngb_query)*).

REFERENCES

[1] S. Ceri, G. Gottlob, Translating SQL into Relational Algebra: Optimization, Semantics, alid I

Equivalence of SQL Queries, IEEE Trans. Comput., Vol. SE-H, No.4 (1985) 324-345.
[2] C. J. Date., An introduction to Database System, 2nd ed., Addision-Wesley Publishing Company

1997. (The translation to Vietnamese by Ho Thuan, Nguyen Quang Vinh, Nguyen Xuan Hu~J,
[3] R. F. Lans., Introduction to SQL, Addision-Wesley Publishing Company, 1988.
[4] J. Paredaens, P.~. Bra, M. Gyssen, D. V. Gucht., The structure of the Relational Databa~e

Model, Springer Verlag, 1989.
[5] J. Ulman, Principles of Database Systems, Computer Science Press, 1980.

Tom tlt. Trong bai bao nay chUng toi trlnh bay m9t s5 kgt qu! ve st! tirong dirong gifra nhU':.lg
c3.UhOi cda SQL va bi~u thu-c trong phep tinh quan h~, m9t s5 tfnh ch't cda cau h&i trong:FtH ..
Nhfrng k~t qui nay dU'qc sd- dung cho vi~c chuy~n dich cau hOi cda SQL vao dai s() quan h~._

1 r~ •
[_.

Received: March 11, lllfH

(1) Institute of Information Technology.
(f) Pedagogical Institute of Quy Nhon,

AI.:'

