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ON THE CONNECTIONS BETWEEN RELATIONS,
RELATION SCHEMES AND KEYS

VU DUC THI

Abstract. The relation, relation scheme, keys and antikeys are essential concepts in the relational
datamodel. In this paper, we present some computational connections between relations, relation
schemes and sets of minimal keys.

Some another combinatorial results connecting them also are given.

1. INTRODUCTION
Now we start with some necessary definitions, and in the next section we formulate our results.

Definition 1.1. Let R = {hy,..., h,} be a relation over U, and A, B C U. Then we say that B
functionally depends on A in R (denoted A % B) iff

(Vhi, hj € R) (Ya € A) (hi(a) = h;(a) = (Vb € B) (hs(b) = h;(b)).

Let Fr = {(A,B)}: A,BCU, A % B}. Fp is called the full family of functional dependencies
of R. Where we write (A, B) or A — B for A % B when R, f are clear from the next context.

Definition 1.2. A functional dependency over U is a statement of the form A — B, where

A, BCU. The FD A — B holds in a relation R if A % B. We also say that R satisfies FD A — B.

Definition 1.8. Let U be a finite set, and denote P(U) its power set. Let Y C P(U) x P(U). We
say that Y is an f-family over U iff for all A, B, C, D CU

(1) (4, 4) €Y,
(2) (A, B)eY, (B,C)eY = (4,C)eY,
(3) (A,B)eY, ACC, DCB=(C,D)eY,
(4) (A, B)eY, (C,D)eY = (AUC,BUD) €Y.
Clearly, Fg is an f-family over U.
It is know [1] that if Y is an arbitrary f-family, then there is relation R.over U such that
Fr=Y. .

Definition 1.4. A relation scheme S is a pair (U, F). Where U is a set of attributes and F is a
set of FDs over U. Let F't be a set of all FDs that can be derived from F by the rules in Definition
1.3.

Clearly, in [1] if S = (U, F) is relation scheme, then there is a relation R over U such that Fr = Ft.
Such that relation in called an Armstrong relation of S.

Definition 1.5. Let be a relation, S = (U, F) be a relation scheme, YY be an f-family over U,

and ACU. ThenAisakeyofR(a.keyofS,akeyon)ifA—}fEU(A—vUEF'*,(A,U)EY).

A is a minimal key of R(S,Y) if A is a key of R(S, Y) and any proper subset of A is not a key of
R(S, Y). Denote Kg (Kgs, Ky) the set of all minimal keys of R(S, Y).
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Clearly, Kr, Kg, Ky are Sperner systems over U.

Definition 1.6. Let K be a Sperner system, over U. We define the set antikeys of K, denote by
K1 as follows:

K'={AcU:(BeK)=> (B¢ K)and (AcC) = (3B€ K)(BC C)}.
It is easy to see that K~ ! is also a Sperner system over U.

It is know [4] that if K is an arnitracy Sperner system plays the role of the set of minimal keys
antikeys, then this Sperner system is not empty (does’t contain U). We also regard the comparison
of two attributes to be the elementary step of algorithms. Thus, if we assume that subsets of U are
represented s sorted list of attributes, then a Boolean operation on two subsets of requires at most
|U| elementary steps.

Definition 1.7. Let I CPU),Uecl,and A,Bel=>ANnB €I Let M C P(U). Denote
M*t = {nM': M' C M}. We say that M is a generator of I iff M* = I.
Note that U € M but not in M,-since it is the intersection of the empty collection of sets. Denote

N={AeIl:A#n{A'€I: Ac A'}}. In (6] it is proved that N is the unique minimal generator
of I. Thus, for any generator N' of I we obtain N C N'.

Definition 1.8. Let R be a relation over U, and Eg the equality set of R, i.e. Ep = {E;; : 1 <
+ < 7 < |R|}, where E;; = {a € U : hi(a) = hj(a)}. Let Tr = {A € P(U):3E;; = A, BE,, : E;; C
Ey;}. Then Tk is called the maximal equality system of R. :

Definition 1.9. Let R be a relation, and K a Sperner system over U. We say that R represents K
iff Kp = K.

Definition 1.10. Let K be a relation, and K a Sperner system over U. We say that R present K
iff K~! = Tg, where Ty is the maximal equality system of R.

2. RESULTS

It is known that the minimal keys play important roles for the logical and structural investigation
of relational datamodel. It is clear that there are relation schemes S; = (U, Fy), So = (U, F3) for
which Ks, = K, but Fj" # F;.

Now we present the following problems to relate relations, relation schemes and sets of minimal
keys.

(1) Constructing relation for key: Given relation scheme S. Construct a relation R such that
Kp = Ks.

(2) Constructing relation scheme for key: Let R be a relation. Construct a relation scheme S for
which K R= K S-.

Let R be a relation and S a relation scheme over U, then
(3) FD-relation key-implication problem: Decide whether Kr C Ks.

(4) FD-relation key-equivalence problem: Decide whether Kr = K.

It can be seen that by Theorem 2.11, and based on (1) and (2) of Proposition 2.12 in [19] we
obtain

Proposition 2.1. The fist problem has ezponential complezity in the number of attributes.

It can be seen that there are a relation R and a relation scheme S = (U, F) such that Fr C F*,

but Kr ¢ Ks. Conversely, we also known that there are a relation R and a relation scheme S for
which Kr C Kg, but Fp ¢ F*.

From (1), (2) of Proposition 2.12 in [19], we also obtain
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Proposition 2.2. The second problem 1s polynomaially equivalent to finding a relation scheme S of
a given Sperner system K such that K = K;l.

Clearly, by (1), (3), (9), (10) and (11) of Proposition 2.12 in [19] we can construct the exponential
time algorithms solve three last problems. However, it is still unknown that the time complexities
of these problems are polynomially or not. For us these problems are the interesting open problems
and there are not the polynomial algorithms that solve them.

Theorem 2.3 [4]. Let K be a Sperner system over U. We say that K 1s saturated if for any AZ K,
{A} U K s not a Sperner system. If K is a saturated Sperner system them K = Kp uniquely
determines F', where Kr 1s the set of all minimal keys of an f-family F.

By examples we see that there is K (K ~!) such that K (K~1!) is saturated, but K~! (K) is
not saturated.

Now we define the following notion

Definition 2.4. Let K be a Sperner system over U. We say that K is inclusive if for every A € K
there is a B € K~! so that B C A we call K is embedded if for every A € K there exists a B€ H
such that A C B, where H~! = K.

In [10] we proved that

Theorem 2.5. Let K be a Sperner system over U. Denote H a Sperner system for which H™! = K.
The following facts are equivalent:

(1) K 1is saturated.
(2) K= is embedded.
(8) H 1s inclusive.

Definition 2.6. Let S = (U, F) be a relation scheme. We say that S is a k-relation scheme over U
if F={X,—U,.., K,, = U}, where {Kj, ..., K,,} is a Sperner system over U.

Clearly, if S = (U, F) is in Boyce-Codd normal form then use the algorithm for finding a minimal
cover polynomial time we can a construct a k-relation scheme §' = (U, F) such that F* = F'* see
[11]. Conversely, we can see that an arbitrary k-relation scheme is BCNF. Now we give a class of
relations and relation scheme for which above problems are solved in polynomial time.

Theorem 2.7. Let S = (U, F) be a k-relation scheme, and R an arbitrary relation over U. Then

(1) If K = {K,,..., K;,} 1s saturated then the fist, fourth problem are solved in polynomial time
in |U], |K].

(2) If KEI 1s saturated then the second, third, fourth problem solved on polynomsial time in the
size of R.

Proof. For (1) we assume that K = {Ky,..., K,,} is saturated. We set M = {K; — {a} : a €
K;,i=1,..,m}and L={A€ M : A= A"}, where A" is closure of A. Denote elements of L by
A, ..., A;. We construct a relation R{hg, hy, ..., h¢}, as follows: For each a € U, ho(a) = 0. For
1= 1,...,thi(a) =0, if a € B;, in the converse case h;(a) = 1. By Theorem 2.5, Definition 2.4 and
Kl=L= Kgl. Hence, K = Kr holds. It can be seen that R is constructed in polynomial time
in the size of S. For problem 4 we compute Kgl of a given relation R in polynomial time. We
compare Kgl with L. We decide whether Kp = K.

For (2): From R we compute K5' in polynomial time in |R|. We set P = {TU{a} : a €
UTeKg'YandQ=({E€ P:(E,U)€ FRp,YA=E—a: A€ E, (A U)¢& Fr}. Denote
elements of Q by Ei, ..., E;. Clearly, Q is constructed in polynomial time. We set S = (U, F)
with F = {E; — U,..., E;, — U}. By Theorem 2.5 and Definition 2.4 we obtain Q = Kpr. Hence,
Ks = Kg holds.
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It be seen that for problems 3 and 4 we compare Q with the farﬁily K = {Ky,..., K,}. We
decide whether Kr C Kg, and Kr = Kg. The theorem is proved.

Let R be a relation, and S a relation scheme over U, Denote by Lr (Lg) the family of all keys
of R (S).

It is easy to see that there are relation R and relation scheme S = (U, F) such that Lp C Lg
(Ls € Lg), but Fgr ¢ F* (F* ¢ Fg). In [20] we showed the following algorithm

Algorithm 2.8.

Input: Let R be relation, S = (U, F) a relation scheme over U.

Output: Decide whether Lg C Lg.

Step 1: From R we compute the equality set Eg.

Step 2: Construct the maximal equality system Tg = (T},..., Tm} from Eg.

Step 3: By algorithm finding a closure for every T; (: = 1, ..., t) we compute T, if Vi = 1,..., ¢ :
T;" # U then Lg C Lk holds. In the converse case Ls ¢ Lg holds.

It is known [13] that the subset delimiter complementarity (SDC) problem is co-NP-complete.

Lemma 2.9 [13]. The following problem is co-NP-complete: Given a finite set T, a family Py, ..., P,
of subsets of T, and a family Q, ..., Q,, of subsets of T. Decide whether for al A C T there ezists
P;: P, C A or there 1s Q; : AC Q;, where <1 <5< m.

In [13] it is proved that if Qy,..., Qm is Sperner system over T, then SDC problem 1s co-NP-
complete. .

In [20] we showed that deciding whether Lr C Lg for given a relation R and a relation scheme
S is co-NP-complete, but we don’t prove this results. In this Section we prove concretely it.

We show that the SDC problem is polynomially reducible to our problem.

Theorem 2.10. The following problem is co-NP-complete:
Give a relation R, and a relation scheme S = (U, F), decide whether Lr C Lg.
Proof. It can be seen that for A C U we can test that A is or is not a key of S.
Consequently, we nondeterministically choose a subset A of U such that A is a key of R, but

is not a key of S. It is obvious that this algorithm is nondeterministically polynomial. Thus, our
problem lies in co-NP.

Now we see the SDC problem containing a set T and two families Py,..., P, and Q, ..., @,
where Q, ..., @,, is a Sperner system over T'.

It can be seen that denote P = { Py, ..., P}, @ = {Q1, ..., @} and
_ P! = {P; € Pos APpCRgS =iilypas, w; 3= 1,...,, n}.

Clearly, P’ is a set of minimal elements of P and P’ is Sperner system over T. From P we
compute P’ in polynomial time in |P| and |T|. It is easy to see that {7, P’, Q} is an equivalent
_ instance of {T, P, Q}. From this we can assume that P is a Sperner system over T". We shall prove
that the SDC problem is polynomial reducible to our problem.

We set U =T, S = (U, F), where F = {P, — U, ..., P, - U}.

Set M = {Qi—a : ¢« =1,.,mand a € U} = {My,..., M;}. We construct a relation
R = {ho, hy, ..., ht}, as follows:

For alla € U, hg(a) =0, forz = 1,..., ¢
0 if ae M;
1 otherwise

hi(a) = {

Clearly, R, S are constructed in polynomial time in |T|, |P|, |Q|. It can be seen that Fr and
S = (U, F) are in Boyce-Codd normal form.
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Because S is in BCNF, for all A C U we have AT = A or AT = U. By the definition of key, for
each key A of S there exists a P; such that P; C A, where 1 <2 < n.

It can be seen that Q is a set of antikeys of R. Because Fg is in BCNF, we seen that for each
ACU, HFR(A) =U or HFR(A) = A, where HFR(A) == {A eU: (A, {a}) = FR}.

By the definition of antikey of R, we known that A is a key of R if and only if for all 2 =
1,....,mA Z Q;.

Consequently, Lr C Lg if and only if forevery AC T : Vi = 1,.., m A € Q; then there is
P; so that P; C A. From this we see that the SDC problem is polynomially reducible our problem.
The theorem is proved.

It is easy to see that in proof of Theorem 2.10 we construct relation R and relation scheme
S which are in BCNF. Clearly, in the class of BCNF relations R and BCNF relation schemes
S = (U, F), then F* = Fg iff Ly = Lr. We can prove that in this class the FD-relation implication
problem lies in co-NP-complete.

Thus, from the proof of the Theorem 2.10 we obtain a result which stronger the result is proved
[13].

Corollary 2.11. In BCNF class of relations and relation schemes the FD-relation implication
problem 1s co-NP-complete.
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. Tém tXt. Quan hé, so d5 quan hé, khéa vi phin khéa 13 nhitmg kh4i niém nén ting trong mé hinh

dir lifu quan hé. Trong bai bio ndy, ching t6i trinh bdy mdt s6 mdi lién hé tinh todn giira quan
hé, s d5 quan hé va tip céc khéa t8i ti€u. Mot s8 két quid t8 hop khic lién quan téi ching ciing
dwoc trinh bay.

Recetved: October 1, 1997
Institute of Information Technology

National Centre for Natural Sciences and Technology of Vieinam.



