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ON THE CONNECTIONS BETWEEN RELATIONS,

RELATION SCHEMES AND KEYS

vu Due THI

Abstract. The relation, relation scheme, keys and antikeys are essential concepts in the relational
datamodel. In this paper, we present some computational connections between relations, relation
schemes and sets of minimal keys.
Some another combinatorial results connecting them also are given.

1. INTRODUCTION

Now we start with some necessary definitions, and in the next section we formulate our results.

Definition 1.1. Let R = {ht, ... , hn} be a relation over U, and A, B ~ U. Then we say that B

functionally depends on A in R (denoted A ~ B) if[

'('v'hi' hi E R) ('la E A) (hi(a) = hi(a)) => (Vb E B) (hi(b) = hi(b)).

Let FR = {(A, B)} : A, B ~ U, A f B}. FR is called the full family offunctional dependencies

of R. Where we write (A, B) or A -+ B for A ~ B when R, I are clear from the next context.

Definition 1.2. A functional dependency over U is a statement of the form A -+ B, where

A, B ~ U. The FD A -+ B holds in a relation R if A ~ B. We also say that R satisfies FD A -+ B.

Definition 1.3. Let U be a finite set, and denote P(U) its power set. Let Y ~ P(U) X P(U). We
say that Y is an I:-family over U iff for all A, B, e, D ~ U
(1) (A, A) E Y,
(2) (A, B) E Y, (B, C) E Y => (A, C) E Y,
(3) (A, B) E Y, A ~ c, D ~ B => (e, D) E Y,
(4) (A, B) E Y, (e, D) E Y => (AUe, BUD) E Y.

Clearly, FR is an I-family over U.
It is know [11 that if Y is an arbitrary I-family, then there is relation R, over U- such that

FR=Y.

Definition 1.4. A relation scheme S is a pair (U, F). Where U is a set of attributes and F is a
set of FDs over U. Let F+ be' a set of all FDs that can be derived from F by the rules in Definition
1.3.

Clearly, in [11 if S = (U, F) is relation scheme, then there is a relation Rover U such that FR = F+.
Such that relation in called an Armstrong relation of S.

Definition 1.5. Let be a relation, S = (U, F) be a relation scheme, YY be an I-family over U,

and A ~ U. Then A is a. key of R (a key of S, a key of Y) if A ~ U (A -+ U E F+, (A, U) E V).

A is a minimal key of R(S, Y) if A is a key of R(S, Y) and any proper subset of A is not a key of
R(S, V). Denote KR (Ks, Ky) the set of all minimal keys of R(S, V).
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Clearly, KR' Ks, Ky are Sperner systems over U.

Definition 1.6. Let K be a Sperner system, over U. We define the set antikeys of K, denote by
K-1 as follows:

K-1 = {A C U: (B E K) =? (B rt K) and (A C C) =? (3B E K) (B ~ C)}.

It is easy to see that K-1 is also a Sperner system over U.

It is know [4] that if K is an arnitracy Sperner system plays the role of the set of minimal keys
antikeys, then this Sperner system is not empty (does't contain U). We also regard the comparison
of two attributes to be the elementary step of algorithms. Thus, if we assume that subsets of U are
represented s sorted list of attributes, then a Boolean operation on two subsets of requires at most
IUIelementary steps.

Definition 1.7. Let I ~ P(U), U E I, and A, BEl =? An BEl. Let M ~ P(U). Denote
M+ = {nM' : M' ~ M}. We say that M is a generator of I iff M+ = I.
Note that U E M+ but not in M,-since it is the intersection of the empty collection of sets. Denote
N = {A El: A i= n{A' El: A C A'}}. In [6] it is proved that N is the unique minimal generator
of I. Thus, for any generator N' of I we obtain N ~ N'.

Definition 1.8. Let R be a relation over U, and ER the equality set of R, i.e. ER = {Eij : 1 ~
i < j ~IRIl, where Eij = {a E U : hi(a) = hj(a)}. Let TR = {A E P(U) : 3Ei; = A, IJEpq : Ei; C
Epq}. Then TR is called the maximal equality system of R.

Definition 1.9. Let R be a relation, and K a Sperner system over U. We say that R represents K
iff KR = K.

Definition 1.10. Let K be a relation, and K a Sperner system over U. We say that R present K
iffK-1 = TR' where TR is the maximal equality system of R.

2. RESULTS

It is known that the minimal keys play important roles for the logical and structural investigation
of relational datamodel. It is clear that there are relation schemes 81 = (U, F1), 82 = (U, F2) for
which KSl = KS2 but Ft i= Ft·

Now we present the following problems to relate relations, relation schemes and sets of minimal
keys.
(1) Constructing relation for key: Given relation scheme 8. Construct a relation R such that
KR = K«.
(2) Constructing relation scheme for key: Let R be a relation. Construct a relation scheme 8 for
which KR = K«.

Let R be a relation and 8 a relation scheme over U, then
(3) FD-relation key-implication problem: Decide whether KR ~ Ks.
(4) FD-relation key-equivalence problem: Decide whether KR = Ks.

It can be seen that by Theorem 2.11, and based on (1) and (2) of Proposition 2.12 in [19] we
obtain

Proposition 2.1. The fist problem has exponential complexity in the number of attributes.

It can be seen that there are a relation R and a relation scheme 8 = (U, F) such that FR ~ F+,
but KR rt Ks. Conversely, we also known that there are a relation R and a relation scheme 8 for
which KR ~ Ks, but FR rt F+.

From (1), (2) of Proposition 2.12 in [19], we also obtain
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Proposition 2.2. The second problem is polynomially equivalent to finding a rel~tion scheme S of
a given Sperner system K such that K = Ks 1.

Clearly, by (1), (3), (9), (10) and (11) of Proposition 2.12 in [19]we can construct the exponential
time algorithms solve three last problems. However, it is still unknown that the time complexities
of these problems are polynomially or not. For us these problems are the interesting open problems
and there are not the polynomial algorithms that solve them.

Theorem ~.3 [4].Let K be a Sperner system over U. We say that K is saturated if for any A ft. K,
{A} U K is not a Sperner system. If K is a saturated Sperner system them K = KF uniquely
determines F, where KF is the set of all minimal keys of an f -family F.

By examples we see that there is K (K-I) such that K (K-I) is saturated, but K-I (K) is
not saturated.

Now we define the following notion

Definition 2.4. Let K be a Sperner system over U. We say that K is inclusive if for every A E K
there is aB E K-I so that Bc A we call K is embedded if for every A E If there exists aB E H
such that A cB, where H-I = K.

In [10] we proved that

Theorem 2.5. Let K be a Sperner system over U. Denote Ha Sperner system for which H-I = K.
The following facts are equivalent:

(1) K is saturated.
(2) K-I is embedded.
(S) H is inclusive.

Definition 2.6. Let 8 = (U, F) be a relation scheme. We say that 8 is a k-relation scheme over U
if F = {Xl --> U, ... , Km --> U}, where {KI' ... , Km} is a Sperner system over U.

Clearly, if 8 = (U, F) is in Boyce-Codd normal form then use the algorithm for finding a minimal
cover polynomial time we can a construct a k-relation scheme 8' = (U, F) such that F+ = F'+, see
[11]. Conversely, we can see that an arbitrary k-relation scheme is BCNF. Now we give a class of
relations and relation scheme for which above problems are solved in polynomial time.

Theorem 2.7. Let S = (U, F) be a k-relation scheme, and R an arbitrary relation over U. Then

(1) If K = {KI' ... , Km} is saturated then the fist, fourth problem are solved in polynomial time
in 1UI, IKI·

(2) If Kill is saturated then the second, third, fourth problem solved on polynomial time in the
size of R.

Proof. For (1) we assume that K = {KI' ... , Km} is saturated. We set M = {Ki - {a} : a E
Ki' i = 1, ... , m} and L = {A EM: A = A+}, where A+ is closure of A. Denote elements of L by
AI'"'' At. We construct a relation R{ho, hI,"" ht}, as follows: For each a E U, ho(a) = 0. For
i = 1, ... , thda) = 0, if a E Bi' in the converse case hi(a) = i. By Theorem 2.5, Definition 2.4 and
K-I = L = KR I. Hence, K = KR holds. It can be seen that R is constructed in polynomial time
in the size of 8. For problem 4 we compute Kill of a given relation R in polynomial time. We
compare KRI with L. We decide whether KR = K.

For (2): From R we compute KRI in polynomial time in IRI. We set P = {T U {a} : a E
U, T E KRI} and Q = {E E P : (E, U) E FR' 'v'A = E - a : A E E, (A, U) ft. FR}. Denote
elements of Q by El, ... , El. Clearly, Q is constructed in polynomial time. We set 8 = (U, F)
with F = {El --> U, ... , El --> U}. By Theorem 2.5 and Definition 2.4 we obtain Q = KR. Hence,
Ks = KR holds.
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It be seen that for problems 3 and 4 we compare Q with the family K = {KI' ... , Km}. We
decide whether KR ~ Ks, and KR = Ks. The theorem is proved.

Let R be a relation, and S a relation scheme over U, Denote by LR (Ls) the family of all keys
of R (S).

It is easy to see that there are relation R and relation scheme S = (U, F) such that LR ~ Ls
(Ls ~ LR), but FR et F+ (F+ et FR). In [20] we showed the following algorithm

Algorithm 2.8.
Input: Let R be relation, S = (U, F) a relation scheme over U.
Output: Decide whether Ls ~ LR.
Step 1: From R we compute the equality set ER.
Step 2: Construct the maximal equality system TR = (TI' , Tm} from ER.
Step 3: By algorithm finding a closure for every To (i = 1, , t) we compute Ti+, if Vi = 1, ... , t :

T/ i= U then Ls ~ LR holds. In the converse case Ls et LR holds.
It is known [13] that the subset delimit er complementarity (SDC) problem is co-NP-complete.

Lemma 2.9 [13]. The following problem is co-NP-complete: Given a finite set T, a family PI, ... , Pn
of subsets of T, and a family Q, ... , Qm of subsets of T. Decide whether for al A ~ T there exists
Pi : Pi ~ A or there is o, :A ~ Qj, where q ~ i ~J' s m.

In [13] it is proved that if QI, ... , Qm is Sperner system over T, then SDC problem IS co-NP-
complete.

In [20] we showed that deciding whether LR ~ Ls for given a relation R and a relation scheme
S is co-NP-complete, but we don't prove this results. In this Section we prove concretely it.

We show that the SDC problem is polynomially reducible to our problem.

Theorem 2.10. The following problem is co-NP-complete:
Give a relation R, and a relation scheme S = (U, F), decide whether LR ~ Ls.

Proof. It can be seen that for A ~ U we can test that A is or is not a key of S.
Consequently, we nondeterministically choose a subset A of U such that A is a key of R, but

is not a key of S. It is obvious that this algorithm is nondeterministically polynomial. Thus, our
problem lies in co-NP.

Now we see the SDC problem containing a set T and two families PI, ... , Pn and QI, ... , Qm,
where QI, ... , Qm is a Sperner system over T.

It can be seen that denote P = {PI' ... , Pn}, Q = {QI, ... , Qn} and

P' = {Pi E P : 3Pj C Pi, i = 1, .... , n, i = 1, ... , n}.
Clearly, P' is a set of minimal elements of P and P' is Sperner system over T. From P we

compute P' in polynomial time in IPI and ITI. It is easy to see that {T, P', Q} is an equivalent
instance of {T, P, Q}. From this we can assume that P is a Sperner system over T. We shall prove
that the SDC problem is polynomial reducible to our problem.

We set U = T, S = (U, F), where F = {PI -+ U, ..., Pn -+ U}.
Set M = {Qi - a : i = 1, ... , m and a E U} = {MI' ..., Md. We construct a relation

R = {ho, hI, ... , ht}, as follows:
For all a E U, ho(a) = 0, for i = 1, ... , t

h;(a) = { ~
ifaEMi

otherwise

Clearly, R, S are constructed in polynomial time in ITI, IPI, IQ I· It can be seen that FR and
S = (U, F) are in Boyce-Codd normal form.
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Because S is in BCNF, for all A ~ U we have A + = A or A + = U. By the definition of key, for
each key A of S there exists a Pi such that Pi ~ A, where 1 ~ i ~n.

It can be seen that Q is a set of antikeys of R. Because FR is in BCNF, we seen that for each
A ~ U, HFR(A) = U or HFR(A) = A, where HFR(A) = {A E U : (A, {a}) E FR}.

By the definition of antikey of R, we known that A is a key of R if and only if for all i =
1, ... , mA et Qi.

Consequently, LR ~ Ls if and only if for every A ~ T : Vi = 1, ... , m A g Qi then there is
Pi so that Pi ~ A. From this we see that the SDC problem is polynomially reducible our problem.
The theorem is proved.

It is easy to see that in proof of Theorem 2.10 we construct relation R and relation scheme
S which are in BCNF. Clearly, in the class of BCNF relations Rand BCNF relation schemes
S = (U, F), then F+ = FR iff Ls = LR. We can prove that in this class the FD-relation implication
problem lies in co-NP-complete.

Thus, from the proof of the Theorem 2.10 we obtain a result which stronger the result is proved
[13].

Corollary 2.11. In BCNF class of relations and relation schemes the FD-relation implication
problem is co-NP-complete.
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T6m t~t.Quan h~, so' d'O quan h~, kh6a va phan kh6a la nhimg khai ni~m n'en tang trong mf hlnh
dif li~u quan h~. Trong bai bao nay, chUngtoi trlnh bay m9t s($m5i lien h~ tinh toan gin quan
h~,so' d'O quan h~ va t~p cac kh6a t5i ti~u. M9t s5 k~t qui t~ hop kha.c lien quan too clning cling
dU'qc trlnh bay.
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