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ON THE RELATIVELY PSEUDO-COMPLEMENT OPERATION

IN FINITE RHAs

HO ANH MINH, HUYNH VAN NAM

Abstract. Refined hedge algebras were introduced and investigated by Ho & Nam in [6-9]. It is
known [9] that every refined hedge algebra (RHA, for short) with a chain of the primary generators
is a distributive lattice. In this paper we restrict our consideration to finite version of RHAs (see
[7,9]). It is shown that every finite RHA is a Heyting (pseudo-Boolean) algebra. Furthermore, some
computing results for the relatively pseudo-complement operation in these algebras will be exhibited.

1. INTRODUCTION

In the research program initiated by Ho & Wechler in [10], an algebraic approach to the natural
structure of domains of linguistic variables was given. The main aim of the investigation is to find
out an appropriate algebraic structure for fuzzy linguistic logic and approximate reasoning (Zadeh
[18,19]).

On this approach, every linguistic domain can be interpreted as an algebraic structure called
hedge algebra, say X = (X, G, H, <), where (X, :::;)is a poset, G is a set of the primary generators
and H is a set of unary operations representing linguistic hedges' under consideration.

It is well known that Boolean algebras, Heyting algebras, MV -algebras and so on, are algebraic
versions of Boolean logic, Godellogic, Lukasiewicz logic and other non-classical logic systems (see,
e.g., [15-17,3-5]). In this direction, the idea of connecting abstract algebras with fuzzy logic becomes
a natural demand and to play a useful role. This is by no means new (see, e.g., [12-14]). However,
previous efforts to develop this idea have concentrated on investigating [0, l]-valued fuzzy logics,
i.e. the algebraic versions of the unit interval [0, 1]. Our motivation is different. We have tried to
find a mathematical method for manipulating immediately linguistic terms, which were interpreted
by fuzzy sets in the research on fuzzy linguistic logic and approximate reasoning started by Zadeh
[18,19]. Therefore, our focus has been based on natural structure of linguistic domains.

This research project was initiated by Ho & Wechler in [10] and further developed in a series
of papers [2,11,6-9]. Supporting for this research direction has based on the fact that domains of
linguistic variables can be embedded into a relatively well-known algebraic structure: distributive
lattice.

Refined hedge algebras were introduced by Ho & Nam in [6]. It is known [8,9] that every RHA
with a chain of the primary generators is a distributive lattice. Further, in [7,9]' symmetrical RHAs
were introduced and fundamental properties of these structure were examined. In this work we will
restrict ourselves to finite versions of RHAs. It is shown that every finite RHA is a Heyting algebra,
i.e. in these algebras we are able to define the relatively pseudo-complement operation satisfying
some certain properties. Furthermore, some computing results for the relatively pseudo-complement
operation in these algebras will be exhibited.

* The authors would like to thank Prof. Nguyen Cat Ho for his valuable suggestions and encourgement
in their investigation.

* The research was supported in part by The National Program for Basic Research in Natural Sciences
of Vietnam.
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2. PRELIMINARIES

Let A be a lattice. For a, b E A, an element c E A is said to be the pseudo-complement of a
relative to b (or: modulo b) if c is the greatest element such that an c ::; b, where n stands for meet
in A. The pseudo-complement of a relative to b is denoted, if it exists, by a=> b. By definition, for
any x E A, x::; a => b if and only if a n x::; b. If for any a, s e A, there exists the element a=> b in
A, then A is called to be a Brouwerian lattice.

It is known that every Brouwerian lattice has the unit element (see, e.g., [16]). However, it
does not, in general, have the zero element. A Brouwerian lattice with the zero-element is called
a Heyting (pseudo-Boolean) algebra. Further, every Brouwerian lattice is distributive (see, e.g.,
[1,16]). It is also known [1] that if A is a finite lattice then

(*) A is a Brouwerian lattice iff A is a distributive lattice.

Now, let us consider RHAs. In the paper we attempt to keep our notation and conventions as
in the previous papers [6-9]. For more details on RHAs we refer the reader to [6,7,9].

Let X = (X, C, LH, ::;) be an RHA constructed from PN-homogeneous hedge algebra (H(C),
G, H, :S), where G is a set of the primary generators, H is a set of unary operations representing
linguistic hedges under consideration, and H(C) is the set of all elements generated from G by
means of hedge operations in H.

It is known that H can be decomposed into two disjoint subsets H+ and H- such that H+ + I
and H- + I are finite modular lattices satisfying the chain condition on their grades defined by
the height function (see [6]), where I is the identity, i.e. Ix = x for every x in X, and is their
zero-element.

As constructed in [6], LH+ + I and LH- + I are distributive lattices generated from H+ + I
and H- + I, respectively, and LH = LH+ u LH- u {I}. For simplicity of notation, in the sequel
by "c" we mean either "r+" or "::". With this notation we have

1(H"+I)

LHc + I = U LHi,
i=O

where l(HC + I) denotes the length of HC + I.

Recall that for i = 1, ... , l(HC + I) - 1, if o(Hf) > 1 then o(Hi_tl = o(Hi+1) = 1, where o(Hf)
denotes the number of elements of Hr Furthermore, for any hE LH?, k E LH'j and i < i, then
h < k. Let

I" = {a, 1, ... , l(HC + In and sr = {i E I" 1 o(Hn > 1}.

It is known that, for any i E SIc, LH? is the free distributive lattice generated by incomparable
elements of the grade H? in HC + I, and, is also a sublattice of LHC + I.

For any h, k E LH, if x ::; hx iff x ~ kx for every x in X then hand k are said to be converse,
or h is converse to k and vice-versa. If x ::; hx iff x ::; kx for every z in X then hand k are said to
be compatible.

For the sake of convenience we repeat the relevant material from [7,9] without proofs.

For any x E X, let LH[x] = {hx 1h E LH}, LH(x) = {8x 18 E LH*}, where LH* denotes the
set of all strings of elements in LH.

Theorem 2.1. Let X = (X, C, LH, ::;) be an RHA. If C is a chain then X is a distributive lattice.
Moreover, for any two incomparable elements x and y in X, then there exist two compatible hedge
operations hand k in LH and an element w in LH(a), for an element a E C, such that both hand
k together belong to LH? for an index i E S le and x = 8hw, y = 8'kw, where 8, 8' E LH*, and

{
8(h V k)w u 8'(h V k)w, if hw > w

xUy=
8(h 1\ k)w u 8'(h 1\ k)w, lfif hw < w
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{
o(h 1\ k)w n o'(h 1\ k)w,

x n v = o(h V k)w n o'(h V k)w,
if hw > w
if hw < w

where U and n stand for join and meet, respectively, in X while V and 1\ stand for join and meet,
respectively, in LHc + I.

Proposition 2.1. \Ix E X, LH[x] and LH(x) are distributive sublatiices of X.

Proposition 2.2. \lh, k E LH[ for some i E SIC, \Ix E X such that hx =I kx. Then LH(hx) tS

lattice-isomorphic with LH(kx).

3. RESULTS

Here and subsequently, X stands for the RHA X = (X, G, LH, ~) considered as in the previous
section, in which G is a finite chain. Furthermore, the underlying set X is defined as follows.

First, define LH[G] = U LH[a]. Then, define LHn[G] for n ~ 0 by
aEG

LHo[G] = G, LHn+1[G] = LH[LHn[Gll.

Notice that by convention made upon the identity I (see [9]), it follows that

G ~ LHdG] ~ LH2[G] ~ ... ~ LHn[G] ~ ...

Let p be an arbitrary but fixed positive integer. For any x E LHp[G] and x f/. LHp-dG], we
define hx = z for every h E LH. Let X = LHp[G]. Clearly, X is well-defined and, is a complete
distributive lattice. Furthermore, it is known [16] that X is a Heyting (pseudo-Boolean) algebra.

To simplify notation, we write PA instead of the relatively pseudo-complement operation defined
on Browerian lattice A. That is, for any x, yEA, PA(X,y) = max{z EA IXl\z ~ y}. In addition, if
A is a complete lattice then we denote by lA and OA the unit and zero element, respectively, in A.~ ~
Similarly as in [1], we shall denote by A the dual of A in the category of posets, and ~ the converse~ ~
of the ordering relation ~' Then A is also a lattice with the ordering relation ~'

By definition, it is easily seen that the following holds.

Proposition 3.1. Let A be a Brouwerian lattice. For any x, yEA, we have

(i) x ~ y if! PA (x, y) = lA.

(ii) PA(X,y) ~ y.

(iii) Ifx > y and PA(X,y) > Y then x and PA(X,y) are incomparable and XnpA(X,y) = y.

(iv) If z and y are incomparable then so are x and PA (x, y) and x n PA (x, y) < y.

We are now ready to establish some fundamental results for the relatively pseudo-complement
operation in X.

Proposition 3.2. Let x = b-. ... h1a, y = km ... k1b be two canonical representations of x and y
with respect to a and b, respectively, in X, where a, bEG and a =I b. Then

(i) If a> b then x > y and pr (x, y) = y.

(ii) If a> b then x < y and pr(x, y) = 1r.
Proof: The proof is straightforward.

The following theorem gives us a recursive formular for computing of the pseudo-complement
operation in a sublattice LH(xj) of X, for some Xj of X. Note that, according to (*) in Section

2, it is legitimate to consider the operations PLH(x), PLH~, P - defined on LH(x), LH.c, LH'j• LHC .
respectively, for any x of X and i E S le. •

~
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Theorem 3.1. Let » = hn ••• h1a, y = km ... k1a be two canonical representations of » and y with
respect to a, where a E G, and :z; 1::. y. Then, there exists an index i :5 min{n, m} + 1 such that
h; = k; for all i < i and

IPLH(Xj) (x, y) =

if ,lli E SIC such that hi, ki E LHi,
if 3i E SIC such that hi, ki E LHi

and hixi > xi ,

IPLH('h.Xj)(hn ... hi+1'hxi, km ••. ki+1'hxi), if 3i E SIC such that hi,ki E LHi

y,
IPLH(hXj) (hn ... hi+1hxi' km ... ki+1hxi)'

and hixi < Xi ,

where Xi = hi-I'" h1a, and

{

IPLH+(h,., ki),
h= •

In (h· k·)'r:LH-:- 3' 3 ,·
if i E SI+

if i E SI-

and
v {IPLH+(hi,ki),
h= •

. IPLH-:-(hi' ki),·
if i E SI+

ifi E SI-

~
Notice that LHi is a sublattice of LHc + I, while LH'f is a sublattice of LHC + I.

Proof: Let i be the least index such that hi 1= ki. IT ,lli E SIc such that hi, ki E LHi then it implies
that x and y are comparable, and hence x> y and hixi > kixi, since x 1::. y. Assume that hi E LHio
for some io E IC. IT IPLH(xj)(X,y) > Y then it follows from (iii) of Proposition 3.1 that x and
IPLH(xj) (x, y) are incomparable. Thus, there exists h' E LHto such that IPLH(xj) (x, y) E LH(h'Xi)'
Hence, there exists h" E LHio such that (x n IPLH(Xj) (x, y)) E LH(h"Xi)' Since ki tf. LH[o and
hixi > kixi,it follows that XnIPLH(xj) (x, y) > y, which is impossible. So we infer IPLH(xj) (x, y) = y.

Now suppose that there exists i E sr such that hi, ki E LH[ and hixi > Xi' By the prop-
erties of X, it is easily seen that IPLH(Xj) (x, y) E LH(h'xi) for some h' E LHt- Assume that
IPLH(xj) (x, y) = 5h'xi for some 5 E LH*. Then we have 5h'xi n z :5 y, i.e. Sh' Xi n hn ... hixi :5
km ... kixi' It follows from Theorem 2.1. that

(1)

Hence, it implies that (h' 1\ hi)xi :5 kixi' Again by Theorem 2.1 we obtain h'xi n hixi :5 kixi' Let

_ { IPLHt (hi, ki), if i E SI+

h - IPLH-:-(hi' ki), if i E SI-
•

then by the definition of h and the last inequatily we infer

h'Xi :5 hXi' (2)

On the other hand, we have

5hxi n x = 5(h 1\ hi)xi n b« ... hi+1(h 1\ hi)xi'

From Proposition 2.2 and (1) it is easy to check that

(3)

(4)
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Once again, since (h 1\ hi)xi 5 kixi, it follows from Proposition 2.2 and (4) that

6(h 1\ hi)xi n hn ... hi+1 (h 1\ hi)xi 5 km ... ki+1(h 1\ hi)Xi 5 km··· kiXi'

From the last inequalities and (3), we obtain 6hxi n x 5 y, and hence 6hxi 5 6h'Xi' Thus, we
have hXi 5 h'xi' Since Xi does not be a fixed point and by (2) it implies h' = h. Further, it follows
again by Proposition 2.2 and (4) that

6hxi n b« ... hi+1hxj 5 km ... ki+1hxj.

Therefore, we have

<PLH(Xj)(x, y) = 6hxj 5 <PLH(hXj)(hn ... hi+1hxj, km ... kj+1hxj). (5)

Now assume that <PLH(hxj) (hn ... hj+1hxj, km ... kj+1hxi) = 6'hXj, for some 6' E LH*. Since
6' hXj n hn ... hj+1hxi 5 km ... kj+1hxj, we have

6'(h 1\ hj)xj n hn ... hj+1(h 1\ hj)xj 5 km ... ki+1(h 1\ hj)xi'

or 6'hxi n hn ... hixi 5 km ... ki+dh 1\ hi)xj 5 km ... kjxj,

and hence 6' hXi n x 5 y. We thus get

6' hXj 5 6hxj = <PLH(xj)(x, y). (6)

From (5) and (6), we obtain the desired equality

<PLH(Xj)(x, y) = <PLH(hx;)(hn ... hi+1hxj, km ... kj+1hxj).

The proof for the remain case can be obtained by a similar argument. Consequently, the proof is
complete.

Now the main result is this. The following theorem establishes a recursive formula for computing
the pseudo-complement operation in X.

Theoretn 3.2. Under the same hypothesises and notation as in Theorem 3.1, we have

<PLH(Xj)(x, y), if hi E U LH~ for any i 5 j - 1,
aE(Ic\SIc),cE{ +,-}

<PLH(hx,)(hn ... hjhi-l ... ht+1hxt, km ... kihi-l ... ht+1hxt}, if there exists the
<pr (x, y) = < least index t such that ht E LH[j for some it E SIC and htxt > Xt,

<PLH(h.xtl(hn ... hihi-l ... ht+1hxt, km ... kihi-l ... ht+1hxt), if there exists the

least index t such that ht ~ LH[j [orsome it E SIC and htxt < Xt,

where Xt = ht-I ... h1a, and

h= {lLH~'
ifit E SH+

and

°LH:-' ifit E st:
°t

h = { OLH~'
if it E SH+

lLH:-' if it E st:
°t
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Proof: For the case where h. E U LH~ for any i ::::;i ., 1, it is easy to check that
.EW\SIC). cE{ +.-}

'Px (x, y) = IPLH(xj) (x, y), by the assumptions made upon elements x and y and the definition of
RHA.

In the opposite case, let t be the least index satisfying t ::::;i - 1 such that ht E LHi., for some
it E SIc. Assume first that htxt > Xt, then we have hXt ~ htxt. By the assumption that x 1:. yand
Proposition 2.2 we get

hn ... ht+lhXt 1:. km ... kt+lhxt,

with a notice that h. = k; for any i such that t + 1 ::::;i ::::;i - 1.

Let IPLH(hx,) (hn ... ht+lhXt, km·.· kt+lhxt) = 6hxt. It follows immediately from Theorem 2.1
that

(7)

since htxt > Xt. In addition, since

it implies by Proposition 2.2 that
x n 6htxt ::::;y.

We infer from (7) and (8) that x n 6hxt ::::;y. This shows that

(8)

IPx (x, y) ~ 6hxt . (9)

On the other hand, by the definition of RHA and Proposition 3.1, it can easily be seen that
IPx(x,y) E LH(kxt) for some k E LHi .: Let IPx(x,y) = 6'kxt. By (9) and the definition of h,
it is easy to check that h = k, Further, by definition we have x n 6'hXt ::::;y. This shows that

(10)

by Theorem 2.1. From (10) and Proposition 2.2 we infer

or
6' hXt ::::;6hxt = IPLH(hxtl (hn ... ht+lhxt, km ... kt+lhxt). (11)

Thus IPx(x,y) IPLH(hxt)(hn ... ht+lhxt,km ... kt+lhxt}, by (9) and (11). For the case where
htxt < Xt, the proof is similar. Consequently, the theorem is completely proved.
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Tom tlt. D€ xay dung mc?t eo' s& d~i so cho logic mer theo nghia ciia Zadeh, dai so gia td- mjn
hoa da diroc gi6i. thi~u va nghien ciru trong [6-9]. Trong [9], cac tac gie\.da chirng minh rhg dai
s<5gia tli- min h6a v6i. day chuyen cac phh tli- sinh nguyen thtty la. mc?t dan phan ph<5i. Trong bai
bao nay cluing toi han cM xem xet tren cac dai s<5gia td- min h6a hiru han. Khi d6 dai s<5gia tli-
min hoa tr& thanh m9t dai so Heyting, tu-c la. trong cac d<;J.iso gia tli- min hoa hiru han cluing ta eo
th€ dinh nghia toan td- t,!a pHn bU ttrong doi thoa man m9t so tfnh chat xac dinh (xem [1,16]).
Chung toi cling dira ra cac kgt qua tfnh toan cho toan tli- d6 trong cac dai s5 gia tli- min h6a hiru
han,
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