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ON THE RELATIVELY PSEUDO-COMPLEMENT OPERATION
IN FINITE RHAs

HO ANH MINH, HUYNH VAN NAM

Abstract. Refined hedge algebras were introduced and investigated by Ho & Nam in [6-9]. It is
known [9] that every refined hedge algebra (RHA, for short) with a chain of the primary generators
is a distributive lattice. In this paper we restrict our consideration to finite version of RHAs (see
[7,9]). It is shown that every finite RHA is a Heyting (pseudo-Boolean) algebra. Furthermore, some
computing results for the relatively pseudo-complement operation in these algebras will be exhibited.

1. INTRODUCTION

In the research program initiated by Ho & Wechler in [10], an algebraic approach to the natural
structure of domains of linguistic variables was given. The main aim of the investigation is to find
out an appropriate algebraic structure for fuzzy linguistic logic and approximate reasoning (Zadeh
(18, 19]).

On this approach, every linguistic domain can be interpreted as an algebraic structure called
hedge algebra, say X = (X, G, H, <), where (X, <) is a poset, G is a set of the primary generators
and H is a set of unary operations representing linguistic hedges under consideration.

It is well known that Boolean algebras, Heyting algebras, MV -algebras and so on, are algebraic
versions of Boolean logic, Godel logic, Lukasiewicz logic and other non-classical logic systems (see,
e.g., [15-17,3-5]). In this direction, the idea of connecting abstract algebras with fuzzy logic becomes
a natural demand and to play a useful role. This is by no means new (see, e.g., [12-14]). However,
previous efforts to develop this idea have concentrated on investigating [0, 1]-valued fuzzy logics,
i.e. the algebraic versions of the unit interval [0, 1]. Our motivation is different. We have tried to
find a mathematical method for manipulating immediately linguistic terms, which were interpreted
by fuzzy sets in the research on fuzzy linguistic logic and approximate reasoning started by Zadeh
[18,19]. Therefore, our focus has been based on natural structure of linguistic domains.

This research project was initiated by Ho & Wechler in [10] and further developed in a series
of papers [2,11,6-9]. Supporting for this research direction has based on the fact that domains of
linguistic variables can be embedded into a relatively well-known algebraic structure: distributive
lattice.

Refined hedge algebras were introduced by Ho & Nam in [6]. It is known [8,9] that every RHA
with a chain of the primary generators is a distributive lattice. Further, in [7, 9], symmetrical RHAs
were introduced and fundamental properties of these structure were examined. In this work we will
restrict ourselves to finite versions of RHAs. It is shown that every finite RHA is a Heyting algebra,
i.e. in these algebras we are able to define the relatively pseudo-complement operation satisfying
some certain properties. Furthermore, some computing results for the relatively pseudo-complement
operation in these algebras will be exhibited.
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2. PRELIMINARIES

Let A be a lattice. For a, b € A, an element ¢ € A is said to be the pseudo-complement of a
relative to b (or: modulo b) if ¢ is the greatest element such that aNc¢ < b, where N stands for meet
in A. The pseudo-complement of a relative to b is denoted, if it exists, by a => b. By definition, for
anyz € A, z<a=bif and only if anz < b. If for any a, b € A, there exists the element a = b in
A, then 4 is called to be a Brouwerian lattice.

It is known that every Brouwerian lattice has the unit element (see, e.g., [16]). However, it
does not, in general, have the zero element. A Brouwerian lattice with the zero-element is called
a Heyting (pseudo-Boolean) algebra. Further, every Brouwerian lattice is distributive (see, e.g.,
[1,16]). It is also known [1] that if 4 is a finite lattice then

(*) A is a Brouwerian lattice iff 4 is a distributive lattice.

Now, let us consider RHAs. In the paper we attempt to keep our notation and conventions as
in the previous papers [6-9]. For more details on RHAs we refer the reader to [6,7,9].

Let X = (X, G, LH, <) be an RHA constructed from PN-homogeneous hedge algebra (H(G),
G, H, <), where G is a set of the primary generators, H is a set of unary operations representing
linguistic hedges under consideration, and H(G) is the set of all elements generated from G by
means of hedge operations in H.

It is known that H can be decomposed into two disjoint subsets H* and H™ such that HT + T
and H™ + I are finite modular lattices satisfying the chain condition on their grades defined by
the height function (see [6]), where I is the identity, i.e. Iz = z for every z in X, and is their
zero-element.

As constructed in (6], LH™ + I and LH~ + I are distributive lattices generated from H* + [
and H~ + I, respectively, and LH = LH* U LH~ U {I}. For simplicity of notation, in the sequel

by ““" we mean either “*” or “~". With this notation we have
H(H+I)
LE°+I= |J LH;,
=0

where |(H® + I) denotes the length of H® + I.

Recall that for ¢ = 1,..., I(H® + I) — 1, if o( Hf) > 1 then o(H{_;) = o(H{,,) = 1, where o(H)
denotes the number of elements of Hf. Furthermore, for any h € LH{, k € LH; and 1 < j, then
h < k. Let

I'={0,1,.,l[(H°+ 1)} and SI°={i € I°|o(H) > 1}.

It is known that, for any «+ € SI¢, LH{ is the free distributive lattice generated by incomparable

elements of the grade HY in H® + I, and, is also a sublattice of LH® + I.

For any h, k€ LH, if z < hz iff £ > kz for every z in X then h and k are said to be converse,
or h is converse to k and vice-versa. If £ < hz iff z < kz for every z in X then A and k are said to
be compatible.

For the sake of convenience we repeat the relevant material from [7,9] without proofs.

For any z € X, let LH|z] = {hz|h € LH}, LH(z) = {6z|6 € LH*}, where LH* denotes the
set of all strings of elements in LH.

Theorem 2.1. Let X = (X, G, LH, <) be an RHA. If G is a chain then X s a distributive lattice.
Moreover, for any two tncomparable elements £ and y in X, then there exist two compatible hedge
operations h and k in LH and an element w in LH(a), for an element a € G, such that both h and
k together belong to LH{ for an indez i € SI¢ and = Shw, y = 6'kw, where 6, ' € LH*, and
‘ y {6'(hvk)wu6’(hvlc)w, if hw > w
FEYE s(hAR)wUS (R AK)w, mf hw < w
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- { §(hAk)wNé'(hAk)w, if hw>w

Tl ShvEwNE(hVE)w, if hw<w

where U and N stand for join and meet, respectively, in X while v and A stand for join and meet,
respectively, in LH® + I.

Proposition 2.1. Vz € X, LH|z| and LH(z) are distributive sublattices of X .

Proposition 2.2. Vh, k € LH{ for some i € SI°, Vz € X such that hz # kz. Then LH(hz) 1s
lattice-isomorphic with LH (kz).

3. RESULTS

Here and subsequently, X' stands for the RHA X = (X, G, LH, <) considered as in the previous
section, in which G is a finite chain. Furthermore, the underlying set X is defined as follows.

First, define LH|G] = |J LH|a]. Then, define LH,[G]| for n > 0 by
aELGHO[G] =G, LH,:1[G)= LH|LH,[G]].

Notice that by convention made upon the identity I (see [9]), it follows that
G C LH,|G] C LH,|G| C - C LH,[|G] C ---

Let p be an arbitrary but fixed positive integer. For any z € LH,[G| and z ¢ LH,_,[G|, we
define hz = z for every h € LH. Let X = LH,|G|. Clearly, X is well-defined and, is a complete
distributive lattice. Furthermore, it is known [16] that X is a Heyting (pseudo-Boolean) algebra.

To simplify notation, we write ¢4 instead of the relatively pseudo-complement operation defined
on Browerian lattice 4. That is, for any z, y € 4, p4(z,y) = max{z € 4|z Az < y}. In addition, if
A is a complete lattice then we denote by 14 and O4 the unit and zero element, respectively, in A.

Similarly as in [1], we shall denote by .4 the dual of A in the category of posets and < the converse
of the ordering relation <. Then .4 is also a lattice with the ordering relation <

By definition, it is easily seen that the following holds.

Proposition 3.1. Let A be a Brouwerian lattice. For any z,y € A, we have
(v) z < y iff pal(z,y) = 14.
(%) palz,y) > y.
(1) If > y and pq(z,y) > y then z and p4(z,y) are incomparable and 2N pq(z,y) = y.
(1v) If z and y are incomparable then so are = and p4(z,y) and zN p4(z,y) < y.

We are now ready to establish some fundamental results for the relatively pseudo-complement
operation in X.

Proposition 8.2. Let z = h,,...h1a, y = ky, ...k1b be two canonical representations of z and y
with respect to a and b, respectively, in X, where a, b € G and a # b. Then

(i) If a > b then =z > y and px(z,y) = y.

() If a > b then z < y and px(z,y) = 1x.
Proof: The proof is straightforward.

The following theorem gives us a recursive formular for computing of the pseudo-complement
operation in a sublattice LH(z;) of X, for some z; of X. Note that, according to (*) in Section

2, it is legitimate to consider the operations @1y (), PLH{) 07, defined on LH(z), LHf, LH¢
respectively, for any z of X and 7 € SI°. '
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Theorem 8.1. Let £ = hy, ... h1a, y = kp, ... k1o be two canonical representations of z and y with
respect to a, where a € G, and z £ y. Then, there ezists an indez 7 < min{n,m} + 1 such that
h; = k; for all1 < 5 and

Y, if A€ SI° such that hj, k; € LHY,
‘PLH(hzj) (h,,...h,-+1hz,-, km...kj+1h$1‘) ) if T € SI° such that hJ‘, IC_-,' (S LII‘c
PLH(z,) (2 ¥) = and hjz; > z;,

P (hay) (hn--hsi1hTs, k.. ki1ha;), if 3 € SI° such that hy, k; € LHS

and hjz; < z;,
where ; = hj_1...hja, and

‘PLHT"(h‘J':kJ')’ if i€ SI*
N SOL'HI (hj, ki), feeSI™

and

e { PL‘;{?(hJ':kj): ifiesSrt
PLu- (hj k), fieSI™

Notice that LHY is a sublattice of LH® + I, while L\}If is a sublattice of LH® + I.

Proof: Let j be the least index such that h; # k;. If A1 € SI°¢ such that hj, k; € LHY then it implies
that z and y are comparable, and hence z > y and h;z; > k;z;, since z £ y. Assume that h; € LHZ,
for some 49 € I°. If pry(s;)(2,y) > y then it follows from (iii) of Proposition 3.1 that z and
©LH(z,)(%,y) are incomparable. Thus, there exists h' € LH{ such that pry(s;)(z,y) € LH(h'z;).
Hence, there exists h" € LH{ such that (z N pLy(s;)(2,y)) € LH(h"z;). Since k; ¢ LH{ and
hjz; > kyzj, it follows that 2N g (4;) (7, y) > y, which is impossible. So we infer 1,5 (5 ;) (2, y) = y.

Now suppose that there exists : € SI¢ such that h;,k; € LHf and hjz; > z;. By the prop-
erties of X, it is easily seen that ¢y (s,)(2,y) € LH(h'z;) for some h' € LHf. Assume that
©LH(z;) (%, y) = 6h'z; for some § € LH*. Then we have §h'z; Nz < y, ie. 6h'z; Nhy, ... hjz; <
km ...k;jz;. It follows from Theorem 2.1. that

§(h' A hj)z; Nhn..hjy1(h ARy)zj < k.o kjzs (1)
Hence, it implies that (k' A h;)z; < kjz;. Again by Theorem 2.1 we obtain h'z; Nhjz; < kjz;. Let

oo+ (hirk;), ifieSIt
- _(Rhj,k;), ifieSI™

*

Cru
then by the definition of h and the last inequatily we infer
h'z; < hz;. ()

On the other hand, we have
bhz; Nz =68hAhj)z; Nhy...hji1(h Ahj)z;. (3)
From Proposition 2.2 and (1) it is easy to check that

8k;zi Ohpy ... hjprk;z; < k.. iz (4)
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Once again, since (h A hy)z; < kjz;, it follows from Proposition 2.2 and (4) that

§(hAh)z; by hjsy (A AR)Z; < koo bjs(h Az < k... kjz;.

From the last inequalities and (3), we obtain §hz; Nz < y, and hence 6hz; < 6h'z;. Thus, we
have hz; < h'z;. Since z; does not be a fixed point and by (2) it implies A’ = h. Further, it follows
again by Proposition 2.2 and (4) that

Sha; O hy...hjr1ha; < kpookjy1ha; .

Therefore, we have
PLH(z,) (2 Y) = 6hz; < OLH(hz;)(hn---hj+1hT5, km. .k 1hT5) . (5)

Now assume that o (ha,)(hn .- -hj+1hZ5, km ... kj41hz;) = 6'hz;, for some 6' € LH*. Since
8'hz; N hyp...hjr1hz; < k... kjt1hz;, we have

8'(h Ahj)z; O hpoohjyy (b A By)Zj < pewkjyr (R A Bj)j

or 6'hz; O\ hy.ohjzi < k.. kjr1(h A b))z < k.o kjzs

and hence §'hz; Nz < y. We thus get
§'hz; < 6hz; = OLH(s;) (2, Y) - (6)
From (5) and (6), we obtain the desired equality

©LH(z;)(%,Y) = OLH(hz;) (hn---hi+1hZ5, km...kj+1hT;5) .

The proof for the remain case can be obtained by a similar argument. Consequently, the proof is
complete.

Now the main result is this. The following theorem establishes a recursive formula for computing
the pseudo-complement operation in X.

Theorem 38.2. Under the same hypothesises and notation as in Theorem 8.1, we have

§ PLH(xj)($1y)) 1'fht € U LH: fOT anyzS]_ly
s€(Ic\SI¢),ce{+,-}

OLH (hzs)(hn--hjhi_1...hey1hEe, k.. kjhji_1...hey1hze), of there exists the
ex(z,y) = least index t such that hy € LHf‘ for some 1, € SI° and hizy > z¢

CL (hze) (hneehshs 1o heg 1Rty ko kshio1.hey1har), of there exists the
\ least indez t such that hy € LH{, for some iy € SI° and hyzy < 3¢,

where 2z = hy—1...hia, and

1, y+, i €SH?
h= '
Opyg-, i, €8I
and - @
¥ { OLH:’ ifi, € SH

1,4-, ifi €SI
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Proof: For the case where h; € U LH" for any ¢ < j — 1, it is easy to check that
s€(I°\SI®), c€{+,—

vx (2,9) = ©LH(s,)(%,y), by the assumptions ma.de upon elements z and y and the definition of

RHA.

In the opposite case, let ¢ be the least index satisfying ¢ < 7 — 1 such that hy € LH{ , for some
14 € SI°. Assume first that h;z; > z;, then we have hz; > hyz;. By the assumption that z £ y and
Proposition 2.2 we get

hp...hiy1hze L k.. kg1 hze
with a notice that h; = k; for any 2 such that t+1<: <7 — 1.

Let @11 (hay)(hn --- he+1hTt, km - .. ke 1hzt) = 6hze. Tt follows immediately from Theorem 2.1
that

zNéhzy = zNhyzy (7

since h;z; > z;. In addition, since
hn...ht+1hz, n 6h‘$t S km...kt+1h$¢ f

it implies by Proposition 2.2 that
zNéhizy < y. (8)

We infer from (7) and (8) that z N 6hzy < y. This shows that

ox(z,y) > 6hz:. (9)

On the other hand, by the definition of RHA and Proposition 3.1, it can easily be seen that
¢x(z,y) € LH(kz,) for some k € LH{. Let px(z,y) = 6'kz,. By (9) and the definition of h,
it is easy to check that A = k. Further, by definition we have z N §'hz; < y. This shows that

Iﬂb"hﬁﬂt S Y, (10)
by Theorem 2.1. From (10) and Proposition 2.2 we infer
hn"-ht—f-lhxt N 6,h$t < km...kt+1h$t ;

or
5'h:l:t < 5hxt SOLH(ha:g) (hn...ht+1h$t, km...kt+1h27g) . (11)

Thus ©x (2,y) = ©LH(hae)(Pn .- ht+1hZt, k. . key1hae), by (9) and (11). For the case where
hizy < z¢, the proof is similar. Consequently, the theorem is completely proved.

REFERENCES

[1] G. Birkhoff, Lattice Theory, Providence, Rhode Island, 1973.

[2] N. Cat Ho, A method in linguistic reasoning on a knowledge base representing by sentences
- with linguistic belief degree, Fundamenta Informaticae 28 (3,4) (1996) 247-259.

[3] N. Cat Ho, H. Rasiowa, semi-Post algebras and their representability, Studia Logica 48 (4)
(1989) 509-530.

[4] N. Cat Ho, H. Rasiowa, LT-Fuzzy sets, Fuzzy Sets and Systems 47 (1992) 323-339.

[5] N. Cat Ho, H. Rasiowa, LT-Fuzzy Logics, in L. A. Zadeh and J. Kacprzyk, Eds., Fuzzy Logic
for Management of Uncertainty, Wiley, New York, 1992.

[6] N.Cat Ho, H. Van Nam, A refinement structure of hedge algebras, Proc. of the NCST of Vietnam
9 (1) (1997) 15-28. ”



g
18 HO ANH MINH, HUYNH VAN NAM

[7] N. Cat Ho, H. Van Nam, Symmetrical RHA and its application to fuzzy logic, to appear in
Proc. of the NCST of Vietnam.

[8] N. Cat Ho, H. Van Nam, Refinement structure of hedge algebras: An algebraic basis for a
linguistic-valued fuzzy logic, Presented at Inter. Conf. on Discrete Mathematics and Allied
Topics, 10-13 Nov. 1997, India.

[9] N. Cat Ho, H. Van Nam, A theory of refinement structure of hedge algebras and its application
to linguistic-valued fuzzy logic, In D. Niwinski & M. Zawadowski, Eds., “Logic, Algebra and
Computer Science” (Banach Center Publications, PWN - Polish Scientific Publishers, Warszawa,
1998).

[10] N. Cat Ho, W. Wechler, Hedge algebras: An algebraic approach to structure of sets of linguistic
truth values, Fuzzy Sets and Systems 85 (1990) 281-293.

[11] N. Cat Ho, W. Wechler, Extended hedge algebras and their application to fuzzy logic, Fuzzy
Sets and Systems 52 (1992) 259-281.

(12] D. Dumitrescu, Fuzzy conditional logic, Fuzzy Sets and Systems 68 (1994) 171-179.

[13] E. P. Klement, Some mathematical aspects of fuzzy sets: Triangular norms, fuzzy logics, and
generalized measures, Fuzzy Sets and Systems 90 (1997) 133-140.

[14] H.T. Nguyen, V. Kreinovich, Fuzzy logic as applied linear logic, BUSEFAL (1996) (IRIT, Uni.
P. Sabatier, Toulouse, France).

[15] H. Rasiowa, An Algebraic Approach to Non-classical Logic, North-Holland, Amsterdam - New
York, 1974.

[16] H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, second edition, Polish Scientific
Publ., Warszawa, 1968.

[17] R. Sikorski, Boolean Algebras, third edition, Springer-Verlag, Berlin-Heidelberg- New York,
1969.

(18] L. A. Zadeh, A theory of approximate reasoning, in: J. E. Hayes, D. Mitchie, and L. I. Mikulich,
Eds., Machine Intelligence, Vol.9, Wiley, New York, 1979, 149-194.

[19] L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning
(I) & (11), Inform. Sci. 8 (1975) 199-249 & 8 (1975) 310-357.

Tém tdt. DE xiy dung mét co s& dai s8 cho logic md theo nghia cda Zadeh, dai s8 gia ti& min
héa da dwoc gii thiéu va nghién ciru trong [6-9]. Trong [9], cic t4c gid i chéng minh rdng dai
3 gia ti min héa véi diy chuyén cic phin ti sinh nguyén thiy 13 mot dan phan phdi. Trong bai
b4o niy ching t5i han ché xem xét trén cic dai s gia ti min héa hitu han. Khi‘dé dai s8 gia ti&
min héa trd thanh mét dai s6 Heyting, tirc 13 trong cdc dai s gia t& min héa hiru han ching ta cé
thé dinh nghia todn td twa phin bu twong ddi thda man mot s8 tinh chit xdc dinh (xem [1,16]).
Chiing t6i ciing dwa ra cic két qud tinh todn cho todn ti dé trong cic dai s§ gia td min héa hiru
han.
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