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ON LISKOVETS APPROACH FOR NONLINEAR
ILL-POSED PROBLEMS UNDER ARBITRARILY
PERTURBATIVE OPERATORS!

NGUYEN BUONG

Abstract. The purpose of this paper is to present a modification of Liskovets’s approach of
solution of nonlinear ill-posed problems involving monotone operators in real reflexive Banach
space under arbitrarily perturbative operators. The aspect of convergence of Tikhonov regu-
larization is considered in combination with finite-dimensional approximations of the space.

1. INTRODUCTION

Let X be a real reflexive Banach space having property: X and X* are strictly convex
and weak convergence and convergence of norms of any sequence in X follow its strong
convergence, where X* denotes the dual space of X. For the sake of simplicity norms of X
and X* will be denoted by one symbol | - ||. We write (z*, z) instead of z*(z) for z* € X*
and z € X. Let A be a monotone, continuous and bounded operator with domain D(A4) = X
and range R(A4) C X*.

Many problems arising not only in mathematical analysis but also in practice (see
[6,10,12]) can be written in the form of operator equation of the first kind

A(z) = fo, fo € R(A) (1.1)

Without additional conditions on the structure of A, as strongly or uniformly monotone
property, this equations is one of ill-posed problems. By this we mean that the solutions
of (1.1) do not depend continuously on the data (A4, fo). To solve it we have to use stable
methods. A widely used and effective method is Tikhonov regularization that consists
of minimizing some functional depending on a small parameter (see [11]). For the class
of problem involving monotone operators there exists another more convenient version of
Tikhonov regularization in form of operator equation

An(z) +aU*() = fs, (12)
where (A, f5) are approximations for (4, fo) such that 4, are monotone,

| 4n(2) = A=)l < hg(lll), V=€ X, [fs - fol <6,

with the well known levels (6, A) — 0 and bounded, continuous and nondecreasing function
g(t); the parameter « is called the parameter of regularization and U® is the dual mapping
of X satisfying the condition

(U*(2), 2} = ll=]l*, [U° (@) = ll=]I""", s >2.

In the case of Hilbert space U*(z) = I, I denotes the identity operator, the algorithm (1.2)
was studied in [1]. If s = 2, it was investigated in [3,8]. If s is an arbitrary number such
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algorithm was studied in [2,4] under the conditions

(U(z) —U’(y), z—y) 2 m|z—y||°, m>0, (1.3)

If A, are not monotone, Equation (1.2) does not always have solution. So in (7] O.A.
Liskovets constructed regularized solutions z* which are the solutions of the following vari-
ational inequalities

(An(z¥) + aU®(z¥) — f5, z — 2¥) 2 —eg(||z“|)||lz — =¥, Vz€ X, e>h, a>0 (1.4)

under the additional condition
0< g(t) < M; + Nit, My, N; > 0.

It is sill open the question about the case when g(t) does not possess the last property,
i.e. g¢(t) increases faster than ¢, as ¢t — +oco. In this note, we answer this question in
the case of Banach space X. More precisely, in Section 2, we present a modification of
Liskovets approach and consider it in combination with finite-dimensional approximations
of the Banach space X.

Below, the symbols — and — denote weak convergence and convergence in norm, re-
spectively.

2. MAIN RESULTS

Let there exists a convex, closed and bounded subset G of X such that ||z|| < M,z e G
and Int S§ # @, where S§ := So N G, S, is the set of solution of (1.1) and M is a positive
constant.

Instead of (1.4) we consider the following inequality

(An(z) + U (z) — fs5, 2 — z6) + (9(M)e + 6)||z — z¢|| 2 0, 2z, EG, VZEG, a >0, e > h. (2.1)
Lemma 2.1. For every fized a > 0, e > h and § the set S, of solutions of (2.1) is nonempty
convez and closed.

Proof. Let z, € G be a unique solution of the following variational inequality (see [9])
(A(z) + aU*(z) — fo, z —za) 20, VZ €G.

Then  (4,(2) + aU*(2) = f5, 2 = za) + (9(M)e + 6) |z = za|| = (An(z) — A(2), z — za)
+ (A(2) + aU*(z) — fo, z — o) + (fo — f5, = — Za) +.(g(M)e: +68) ||z — zq|
> (g(M)e + 6) ||z — z4|| — (9(M)h + 6) ||z — 4| > 0.

ie., S, # 0. The closed and convex property is verified by usiﬁg (2.1).

Theorem 2.2. The sequence {z,} converges to z§ € S§ : ||z§| = min{||z|, z € S§'}, as
e/, §/a and a tend to zero, where z, € S, s chosen arbitrarily for every fized a > 0.

Proof. Indeed, since G is bounded the sequence {z,} is bounded, too. Let z, — %. Then
% € G, because each convex and closed set in X also is weakly closed in X. On the other
hand, from (2.1) we have
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(A(z) = fs5, 2 — zu) + a(U*(z), = — za) + 2M(g(M)e + 8)||z — zu]| 20, Vz € G.
After passing ¢, § and a to zero in this inequality we have got

(A(z) = fo, z— %) 20, Vz€QG. (2.2)
If z € IntG, then A(Z) = f by Minty’s lemma (see [13]). Let

G’ ={z'€G: (A(z) - fo, z— ') >0, Vz € G}.

Evidently, S§ ¢ G°. Let z € G° but % ¢ S§. If # € IntG°, then z € S. It means that
z € Fr G°, the frontier of G. It is impossible, since the sets G° and S are both closed and
Int G° = Int S§*. Consequently, from (2.2) we have z € S§.

Replacing z by tz + (1 —t)z,, t € (0, 1) in (2.1 and after dividing both hand sides of the
obtained inequality by ¢ and then tending t to zero we get
(An(zw) + U (z0) = f5,  — 2u) + (9(M)e + 8) ||z — zu|| > 0, Vz € G.

Therefore, using (1.3) we obtain

mllz—z,||* < (U*(2), 2 — zu) + 2(g(M)e + 6) ||z — zu] /2, Vz € 82 .

From this inequality it implies that the sequence {z,} converges strongly to Z and

(U*(z), z—%) >0, Yz € S§.

We shall prove that # = z§. Since S§ is convex and U* is hemicontinuous (because of
strictly convex property of X* see [11]) the last inequality is equivalent to

(U*(3),z—%) >0, Vz € S5

. Hence ||Z|| < ||z||, Vz € S§. Because of the strictly convex property of X z = z§.

Now, we can approximate the inequality (2.1) by the sequence of finite-dimensional
problems

(AR (z") + U™ (") = f7') 2" = zun) + (9(M)e + 6) 2" — zun] 20,

Zun € Gp, V2" € G, = P,G, 2" = Pz, 2 €G. (2.3)
where A} = P, A, P,, U, = P, U* P,, f? = P, f; and P, denotes the linear projection form
X on its subspace X,, satisfying the condition

Xn C Xps1, Paz— 2, n— 400, VzE X
and P; is the adjoint of P,, |P,|| < C, C is the positive constant (C > 1). The existence of
solution z,, of (2.3) is proved by the similar way as for (2.1) .
We establish whether

lim zyn =z5.
a,h,6§ =0 wrn L
n—-+oc

Obviously, the answer for this question depends on the relation between h, «, § and n.
Applying the idea of W. Engl and C. Groetsch in [5] we are going to answer this question.
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Theorem 2.3. Assume that following conditions hold:
(i) A is Fréchet differentiable in some neighbourhood Oy of So s — 1 - times if s = [s], the

integer part of s, [s] - times of s # [s].

(i) There ezists a constant L > 0 such that

|A®) (z) = A® (y)]| < L]z - yll, ¥z € So, y €O,

k=s—114fs=]s|, k=[s] if s #[s], and if [s] > 3, then AP (z) =... = A¥)(z) = 0.

(#%i) a = a(n) — 0 such that

(W (=) + (I - P,,):r:||[’l)¢:z"1 —0, Vz € S8y,

as n — +oo, where v,(z) s defined by v,(z) = || A'(z)(] — P.)z|-

Then the sequence {z,,} converges to z§ .

Proof. As in the proof of Theorem 2.2, from (2.3) we can obtain the inequality

(AR (Zwn) + aU™(zwn) — 3, 2" — ZTun) + (g(M)s + 5) |z"* — zwnl|| >0, V2" € G,,.

Thus
am [um = 2 * < ((M)e + ) [un — 2" + &{U*(2"), " — zun)
+ (An(zun) — A(zwn) — A(z") + A(z") — A(z) + fo — f5, 2" — Tun),
z€S§, " = P.x.
Since | A (zun) — A(zun) |l < hg(l|zunll),
(A(zun) — A(z"), 2" — 2un) <0, [[fo— fsl <6,
we obtain

am |zun — 2" | < (26(M)e + 6) + | A(") = A@)]) Ilun — "]l + @ (U* (2"), 2" — Zum) . (24)

If s = [s], we can write A(z") = A(z) + A'(z)(z" — z) +

with L
lIrall < 10T = Pa)=*.

Therefore, from (2.4) it is easy to see that

nis L 8 n
am||zn — 27" < (2g(M)e + 8) + |4/ @I - Pa)z]l + S (I = Pa)all*) 2un — 2"
+ a (U*(z"), 2" — Tun), Yz € SF, 2" = P,z.
Obviously, this inequality gives us the boundedness of the sequence {z,,}. Without loss of

generality, suppose that z,, — z; € X, as n — +oo and ¢, §, « — 0. Then z; € G because
Z¢n € G for every n. From (2.3) it follows

((a") = fo, 2" = Zwn) + @ (U*(z"), 2" — 2un) + 2(9(M)e + 6) 2" — zun| 2 0.

o
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After passing n — +oo in this inequality, the continuity of A and the weak convergence of
the sequence {z,,} give us

(A(z) = fo,z—2,) >0 Vz€QG.

Now, by the similar way, as in the proof of the Theorem 2.2 we can conclude that the
sequence {z,,} converges to zo. Theorem is proved.

Note that the condition of defining the number M is presented in [13].
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Tém tdt. Muc dich cia bai bio niy 13 trinh bdy mét sia d8i t8t hon cho ti€p cin cia Liskovet
dé gidi bai todn khéng chinh quy phi tuyén véi toén ti don diéu trong khéng gian Banach phin
xa vé&i todn td nhifu bit ky. Sy héi tu cda nghiém hiéu chinh dwgc xét dén trong méi twong quan
véi xap xi hiru han chiéu cho khéng gian dé.
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