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ON LISKOVETS APPROACH FOR NONLINEAR
ILL-POSED PROBLEMS UNDER ARBITRARILY

PERTURBATIVE OPERATORS 1

NGUYEN BUONG

Abstract. The purpose of this paper is to present a modification of Liskovets's approach of
solution of nonlinear ill-posed problems involvingmonotone operators in real reflexive Banach
space under arbitrarily perturbative operators. The aspect of convergence of Tikhonov regu-
larization is considered in combination with finite-dimensional approximations of the space.

1. INTRODUCTION

Let X be a real reflexive Banach space having property: X and X· are strictly convex
and weak convergence and convergence of norms of any sequence in X follow its strong
convergence, where X· denotes the dual space of X. For the sake of simplicity norms of X
and X" will be denoted by one symbol 11·11. We write (x", x) instead of x·(x) for x· EX"
and x E X. Let A be a monotone, continuous and bounded operator with domain D(A) = X
and range R(A) S; X".

Many problems arising not only in mathematical analysis but also in practice (see
[6,10,12]) can be written in the form of operator equation of the first kind

A(x) = fo, fo E R(A). (1.1)

Without additional conditions on the structure of A, as strongly or uniformly monotone
property, this equations is one of ill-posed problems. By this we mean that the solutions
of (1.1) do not depend continuously on the data (A, fo). To solve it we have to use stable
methods. A widely used and effective method is Tikhonov regularization that consists
of minimizing some functional depending on a sma.ll parameter (see [11]). For the class
of problem involving monotone operators there exists another more convenient version of
Tikhonov regularization in form of operator equation

Ah(x) + a U'(x) = h,
where (An. f6) are approximations for (A, fo) such that Ah are monotone,

(1.2)

11Ah(X) - A(x)11 ::; hg(lIxll), '1x E X, 1116- foil::; {i,

with the well known levels ({i, h) -> 0 and bounded, continuous and nondecreasing function
g(t)j the parameter a is called the parameter of regularization and U' is the dual mapping
of X satisfying the condition

(U'(x)' x) = IIxll', IW'(x)1I = IIxll,-1, S ~ 2.

In the case of Hilbert space U'(x) = I, I denotes the identity operator, the algorithm (1.2)
was studied in [1]. If s = 2, it was investigated in [3,8]. If s is an arbitrary number such
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algorithm was studied in [2,4] under the conditions

(U"(x) - U"(y), x - y) ~ m IIx - yll", m> 0, (1.3)

If Ah are not monotone, Equation (1.2) does not always have solution. So in [7] O. A.
Liskovets constructed regularized solutions XW which are the solutions of the following vari-
ational inequalities

(Ah(XW) + aU"(xW) - Ifll x - XW) ~ -eg(IIxWIDllx - xW, \Ix E X, e ~ h, a> 0 (1.4)

under the additional condition

o s g(t) s u, + N1t, Ml' s, > o.

It is sill open the question about the case when g(t) does not possess the last property,
i.e. g(t) increases faster than t, as t -+ +00. In this note, we answer this question in
the case of Banach space X. More precisely, in Section 2, we present a modification of
Liskovets approach and consider it in combination with finite-dimensional approximations
of the Banach space X.

Below, the symbols ~ and -+ denote weak convergence and convergence in norm, re-
spectively.

2. MAIN RESULTS

Let there exists a convex, closed and bounded subset G of X such that IIxll ~ M, x E G
and Int Sf =1= 0, where Sf := So n G, So is the set of solution of (1.1) and M is a positive
constant.

Instead of (1.4) we consider the following inequality

(Ah(X) + aU"(x) - fti, X - x.) + (g(M)e + 6) IIx - x.1I ~ 0, Xw E G, \Ix E G, a> 0, e ~ h. (2.1)

Lemma 2.1. For every fixed a > 0, e ~ hand 6 the set Sw of solutions of (2.1) is nonempty
convex and closed.

Proof. Let Xa E G be a unique solution of the following variational inequality (see [9])

(A (x) + aU"(x) - 10, x - xa) ~ 0, \Ix E G.

Then (Ah(X) + aU"(x) - fr" x - xa) + (g(M)e + 6)lIx - xall = (Ah(X) - A(x), x - xa)
+ (A(x) + aU"(x) - 10, x - xo) + (to - fr" x - xa) + (g(M)e + 6)llx - xall

~ (g(M)e + 6) Ilx - Xa 11- (g(M)h + 6) Ilx - Xa 11~ o.

i.e., Sw =1= 0. The closed and convex property is verified by using (2.1).

Theorem 2.2. The sequence {xw} converges to xff E Sf : 11xff 11= min{llxll, x E Sf}, as
e]«, 6/a and a tend to zero, where Xw E Sw is chosen arbitrarily for every fixed a > o.
Proof. Indeed, since G is bounded the sequence {xw} is bounded, too. Let Xw ~ i. Then
i E G, because each convex and closed set in X also is weakly closed in X. On the other
hand, from (2.1) we have
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(A(x) - 16, X - X",) + aW"(x), X - xa) + 2M(g(M)e + 6) Ilx - x'" 11 ~ 0, 'Ix E G.

After passing e, 5 and a to zero in this inequality we have got

(A (x) - 10, X - i) ~ 0, 'Ix E G.

If i E Int G, then A(i) = I by Minty's lemma (see [13]). Let

GO = {Xl E G: (A(x) - 10, X - Xl) ~ 0, 'Ix E G}.

Evidently, sf! c GO. Let i E GO, but i ~sf!. If i E Int GO, then i E sf!. It means that
i E Fr GO, the frontier of G. It is impossible, since the sets GO and sf! are both closed and
Int GO = Int sf!. Consequently, from (2.2) we have i E sf!.

Replacing x by tx + (1- t)x", , t E (0, 1) in (2.1 and after dividing both hand sides of the
obtained inequality by t and then tending t to zero we get

(2.2)

(Ah(X",) + aU"(x",) - 16, x - x"') + (g(M)e + 6) IIx - x'" 11 ~ 0, 'Ix E G.

Therefore, using (1.3) we obtain

m Ilx - x'" 11" ~ W"(x), x - x"') + 2(g(M)e + 6) IIx - x'" ilia, ~x E sf! .
From this inequality it implies that the sequence {x",} converges strongly to x and

W"(x), x - i) ~ 0, 'Ix E sf! .
We shall prove that x = xfj. Since sf! is convex and U" is hemicontinuous (because of
strictly convex property of X· see [11]) the last inequality is equivalent to

W"(i), x - x) ~ 0, 'Ix E sf! .
Hence 11 x 11 ~ 11 xII, Vx E sf!. Because of the strictly convex property of X i = xfj .

Now, we can approximate the inequality (2.1) by the sequence of finite-dimensional
problems

(Ai: (xn) + aUm(xn) - I;, xn - X",n) + (g(M)e + 6)llxn - x",nll ~ 0,

x",n E Gn, Vxn E Gn = PnG, xn = Pnx, X E G. (2.3)
where Ai: = P~ Ah Pn, U~ = P~ U" Pn, I; = P~ [s and Pn denotes the linear projection form
X on its subspace Xn satisfying the condition

Xn C Xn+l, Pnx - x, n - +00, 'Ix E X

and P~ is the adjoint of Pn, IIPnll ~ C, C is the positive constant (C ~ 1). The existence of
solution x",n of (2.3) is proved by the similar way as for (2.1) ..

We establish whether
1· Glm x",n = Xo •

a,h,/i--+O
n--++oo

Obviously, the answer for this question depends on the relation between h, a, 6 and n.
Applying the idea of W. Engl and C. Groetsch in [5Jwe are going to answer this question.
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Theorem 2.3. Assume that following conditions hold:
(i) A is Frechet differentiable in some neighbourhood 00 of So s - 1- times if s = Is]' the

integer part of s , [s]- times of s =f. Is].
(ii) There exists a constant L > 0 such that

IIA(k) (x) = A(k) (y)11~ L Ilx - yll, '<IxE So, yE 0,

k: = s - 1 if s = Is]' k: = [s] if s =f. Is]' and if [s] ~ 3, then A(2) (x) = ... = A(k)(x) = o.
(iii) a = a(n) -> 0 such that

bn(x) + 11(1- Pn)xll["I)a-1 -> 0, '<IxE So,

as n -> +00, where I'n(x) is defined by I'n(x) = IIA'(x)(1 - Pn)xll.

Then the sequence {xwn} converges to xii.

Proof. As in the proof of Theorem 2.2, from (2.3) we can obtain the inequality

Thus
am IIxwn - xnll" ~ (g(M)e + 6) Ilxwn - xnll + aW"(xn), z? - xwn)

+ (Ah(xwn) - A(xwn) - A(xn) + A(xn) - A(x) + fo - ls, xn - xwn),
x E sf, z" = Pnx.

Since

we obtain

If s = Is], we can write

with

A(xn) = A(x) + A'(x)(xn - x) + rn

LIIrnll ~ I" 11(1- Pn)xll"·s.

Therefore, from (2.4) it is easy to see that

am IIXwn - xnll" ~ (2(g(M)e + 6) + IIA'(x)(1 - Pn)xll + ~ 11(1- Pn)xll") IIxwn - xnll

+ a (U" (xn), xn - xwn), '<IxE sf, xn = Pnx.

Obviously, this inequality gives us the boundedness of the sequence {xwn}. Without loss of
generality, suppose that Xwn ~ Xl E X, as n -> +00 and e, 6, a -> O. Then Xl E G because
Xen E G for every n. From (2.3) it follows

"
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After passing n -+ +00 in this inequality, the continuity of A a.nd the weak convergence of
the sequence {xan} give us

(A (x) - fo, x - Xl) ~ 0 \Ix E G.

Now, by the similar way, as in the proof of the Theorem 2.2 we can conclude that the
sequence {xwn} converges to Xo. Theorem is proved.

Note tha.t the condition of defining the number M is presented in [13].
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T6m t&t. Muc dich cua bai bao nay la trlnh bay mQt sd-a d5i t5t hen cho tigp c~n cila Liskovet
dg giAi bai toan khong chinh quy phi tuygn v6'i toan td- don di~u trong khOng gian Banach phdn
xa v6'i toan td- nhi~u Mt kY. SI{ h9i tv. cda nghism hi~u chinh dircc xet Mn trong m5i tirong quan
vOi xgp xi hu-u han chi'eu cho khdng gian d6.
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