Tap chi Tin hoc va Pléu khién hoc, T.14, 56.2 (1998), (1-7)

ON THE COMPUTATIONAL ALGORITHM RELATED TO ANTIKEYS

VU DUC THI"

Astract. The keys and antikeys play important roles for the investigation of functional
dependency in the relational datamodel. The main purpose of this paper is to prove that the time
complexity of finding a set of antileys for a given relation scheme S is exponential in the number

of attributes. Some another results connecting the functional dependency are given.
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1. INTRODUCTION

Now we start with some necessary definitions, and in the nex sections we formulate our
results.

Definition 1.1 Let R = {h,.... h,} be a relation over U, and A, Bc U.

f
Then we say that B functionally depends on A in R (denoted AE > ) iff
(Vh;, h; € A) (hya) = h(a)) = (Vb € B) (hy(b) = hy(b))

f
Let Fr = {(A, B): A, Bc U, A'I—{— > B), Fy is called the full family of functional

f :
Dependencies of R. Where we write (A, B) or A— B for AE > B when R, f are clear from the
context.

Definition 1.2. A functionai cvendency over U is a statement of the form A — B, where

f
A, B c u. The FD A — B holds in a relation R if A R > B. We also say that R statisfies the FD

A — B.

'Let U be a finite set, and denote Z(U) its power set.
Let Y < P(U) x P(U). We say that Y is an f-family over U iff for all A,B,C,Dc U

(D AAcY

2) (ALB)cY.B,OeY=(A.C e,

(3) (A,BlcY.AcC,DcB=,D)eY,
4) (A,B)cY,(C,D) e Y= (AUC,BUD) € Y.

Clearly, F; is an f-family over U.
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It is known [1] that if Y is an arbitrary f-family, then there is a relation R over U such that
Fr=Y.

Definition 1.4. A relation scheme S is a pair <U. F>. Where U is a set of attribites, and F
is a set of FDs over U. Let F* be a set of all FDs that can be derived from F by the rules in
definition 1.3.

Clearly, in [1] if S = <U,F> is a relation scherme, then there is a relation R over U such
that F; = F". Such a relation is called an Armstrong relation of S.

Definition 1.5. Let be a relation, S = <U, F> be a relation scheme, YY be can f-family
over Ujand A c U. Then Aisakeyof R (akey of S,akeyof Y)if A_ U(A > UeF, (A,
U) € Y). A is a minial key of R(S, Y) if A is a key of R(S,Y), and any proper subset of A is not
a key of R(S, Y). Denote Ky, (K, Ky) the set of all minial keys of R(S, Y).

Clearly, Kg, K, Ky are Sperner systems over U.

Definition 1.6. Let K be a Sperner system over U. We define the set of antikeys of K
denote by K'', as follows:

K'={Ac U:(Be K):(BaK)and(AcC):(EB e K) Bc O)}
_ It is easy to see that K™' is also a Sperner system over U.

It is know [4] that if K ia an arnitrayru Sperner system plays the role of the set of minimal
keys antikeys, then this Sperner system is not empty (does’t countain U). We also regard the
comparision of two attributes to be the elementary step of algorithms. Thus, if we assume that

subsets of U are represented as sorted lists of attribites, then a Boolean operation on two subsets
of requires at most |U| elementary steps.

Definition 1.7. Let I cPU),Uel,and A,Bel = ANnBel Let M ¢ P(U). Denote
M’ = {nM’: M’ c M}. We say that M is a ‘generator of I iff M* = I. Note that U € M’ but not
in M, since it is the intersection of the empty collection of sets.

Denote N={Ael: A#n{A’e L AcA’}}.

In [6] it is proved that N is the unique minimal generator of 1. Thus, for any. generator N’
of I we obtain N ¢ N’.

Definition 1.8. Let R be a relation over U, and Eg the equality set of R, i.e

Eg = {E;: 1 <i<j< [R|}, where E; = {a € U: h(a) = hj(a)}. Let Ty = {A € P(U): 3E; =
A, JE,: AcE,}. Then T is called the maximal equality system of R.

Definition 1.9. Let R be a relation, and K a Sperner system over U. We say that
Rrepresents K iff Kz = K. '

The following theorem is known in [8]

Definition 1.10. Let K be a relation, and K a Sperner system over U. We say that:R
presents K iff K”' = Ty, where Ty is the maximal equality system of R.
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2. RESULTS

In this section we investigate the connections betweem Armstrong relations, relation
scheme, and Sperner systems from different aspects.

Definition 2.1. Let S=<U,F = {A, - B;:i=1, ..., m}> be a relation scheme over U, and X
< U. Denote X" = {a € U:X — {a} € F'}. Then X" is called the closure of X over S.

It is known that in [2] ther is an algorithms that computes X" from X and this algorithms
has polynomial time complexity in [Ul and IFl.

Remark 2.2: If F is an f = family over U, we denote He(A) = {a € U: A — {a} € F}.
Where (A, B) or A — B denotes a fuctional dependency. Denote Z(F) = {A € U: Hi(A) = A}. It
1s easy to see that U, 0 € Z(F) and A, B € Z(F) implies A N B € Z(F). Clearly, for a relation
scheme S = <U, F> F" is an f-family over U.

Theorem 2.3. [4] Let F,, F, be two f-families over U. Then F, = F, iff Z(F,) = Z(F,), and
F, c F. iff Z(F,) < Z(F)).

Theorem 2.4. [4] Let K be a Sperner system, and S = <U, F> a relation scheme over U.
Then K, = K iff [U] U K" ¢ Z(F") c {U} U G(K™"), where G(K') = {A e PU): 3Be K" A c
B}.
According to [4], clearly.
Theorem 2.5. Let K = {K,, ..., K.} be a Sperner system over U.
Denote S =<U, F>whith F= {K, > U, ..., K,, > U}.
Then K, =K and Z(F") = G(K") U {U}.
We show the following problems that play important roles for the logical and structural is

vestigation of the relational detamodel in pratice and design theory.

(1) Constructing Armstrong relation: Let S = <U, F> be a relation scheme. Construct a
relation R for which F' = Fg.

(2) Constructing relation scheme: Let R be a relation. Construct a relation scheme S = <U,
F> such that R is the Armstrong relation of S.

(3) FD-relation implication problem: Let R be a relation, and S = <U, F> a relation
scheme. Decide whether Fy ¢ F".

(4) FD-relation equivalence problem: Let S = <U, F> a relation scheme, R be a relation.
Decide whether F* = Fy.

According to [2, 9, 13] two fist problems are inherently difficult. In [13] problem 3 is co-
NP-complete. For the FD-equivalence problem we can costruct an algorithm to slove this
problem in exponential time.

Fist we give an algorithm to slove the second problem. In [8] we proved the follwing
theorem.

Theorem 2.6. Let R = {h,....., h,,} be a relation, and F an f-family over U.
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>

Hr(A) = ' ij
Where Hi(A) = {a € U: (A, {a}) € ﬁgﬁ&lﬁmﬂ%equality set on R.

In relation scheme S = <U, F>, a functinal dependency A — B € F is calledredudant if
ether A = Bor there is c = B € F such that C ¢ A.

Theorem 2.7

Input: a relation R = {h, ..., h,} over U.

Output: a relation scheme S = <U, F> such that Fy = F".

Step 1. Find the equality set Fr = {E;: | <1<j<m}.

Step 2: Find the minimal generator N, where N = {A € Ex: A#n {B € Ex: A c B}}.
Denote element of N by A, ..., A..

Step 3: For every B ¢ U if there is A, such that B ¢ A, we compute C= ,_, A, and set B
— C. In the converse case we set B — U.

Denote: T the set of all such functional dependencies.

Step 4: Set F =T - Q, where Q = {X > Y € T: X = Y is redudant functional
dependency }.

Cleary, accdrding to Theorem 2.6, algorithm 2.7 find q relation scheme S such that a
given relation R is an Armstrong relation of S.

The fllowing example shows that for a given relation R Algorithm 2.7 can be applied to
construct a relation scheme S such that S is an Armstrong relation of S.

Example 2.8 R is a relation over R = {a, b, ¢, d}
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Clealry, E; = {{b, c,d}, {a, b, c}, {b,c}, {c,d]}, {b}, {c}, 0}
The minimal generetor N = {{a, b, c},{b, ¢,d}, {c,d}, {b}, {d}}

It is easy to see that S = <U, F>, where U = {a, b, c,d},F={{a,d} > U, {a} = {a, b, ¢},
{b,c} = {b,c,d}.

It can be seen that the time complexity of algorithm 2.7 is exponential in the number of
attributes. In[14] it is known that there is relation R containing O(n) rows such that a minimal
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relation scheme S of F containing O(2"*) FDs, where n = |U|. From this obsetvation and by
Algorithm 2.7 the following proposition (in [13, 14]) is clear.

Proposition 2.9. The time comlexity of the second problem is exponential in the size os a

given relation.

In [16] we give an algorithm which find a relation scheme S = <U, F> from a given
relation R such that F; = F* and we show that in many cases trhe tme complexity of this
algorithm is polynomial in the size of R.

Let S = <U, F> be a relation scheme and R = {h,, ..., h,,} be a relation over U, we compute
the minimal generator Ny of Z(Fg) from E; (in polynomial time in the minimal generator N, of
Z(S) (in exponential time in the number of element of U). By Theorem 2.3 we compare N with
N,, the two last problems are solved.

Let S = <U, F> be a relation scheme over U, K| is a set of all minimal keys of S. We call -
K," is a set of all antikeys of S. From S we construet Z(S) = {X*: X < U}, and compute the
minimal generator N, of Z(S). We set

Ts={A € N;: 3B € Ns: A c B}

It is known [1] that for given relation scheme S there is relation R such that R is an
Armstrong relation of S. On the other hand, by Theorem 1.10, and Theorem 2.6 the following
proposition is clear.

Proposition 2.10. Let S = <U, F> be a relation scheme over U. Then
I{S‘l = TS'

Theprem 2.11 The time complexity of finding a set of all antikeys of a given relation
scheme is exponential in the number of attributes.

Proof. We have to prove that:

(1) There is an al which finds a set of all antikeys of a given relation scheme in
exponential time in the number of attributes.

(2) There exists a relation scheme S = <U, F> such that the number of elements of K" is
exponential in the number of attribvtes (in our example |K;'| is exponential not only in the
number of attributes, but also in the number of element of F).

For (1): we construct a following algorithm algorithm.
Let S = <U, F> be a relation scheme over U.
Step 1: For every A < U we compute A*, and set Z(S) = {A": A c U}
Step 2: We construct the minimal generator Ny of Z(S).

Step 3: We compute the set Ts from N
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According to Proposition 2.10 we have Ts = K.
Clearly, the time complexity of this algorithm is exponential in |U| .
For (2). Let us take a partition U =X, U, ...., U X, U W, where m = [n/3], and
X, =3<i<m).
We set.
K = {B: |B| =2,Bc X, for some i} if |W| =0,
K={B: B =2,Bc X;forsomei: 1 <i<m-1orBc X, UW}
K= {B: |B| =2,Bc X, forsomei: | <i<morB=W} if |W| =2
It is easy to see that
K'={A: [AnX,| =1, Vi) if [W] =0
K'={A: |[ANX| =1, <i<m-Dand [AN(X, UW|}if W] = 1,
K'={A: [AnX,| =1,(<i<m)and [AAW| = 1}if [W] =2.
Itisclearthatn- 1< |K| <n+23"< 'K"'l.

Thus, if denote the elements of K by K, ..., K, then we set S = <U, F>, where F = {K, —
U, ..., K, > U}. By Theorem 2.5 K" is the set of all antykeys of S. It is clear that for the arbitrary
set of attributes we always can construct a relation scheme S = <U, F> such that IF] <|U1 <2,
but the number of element of F. The theorem is proved.
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