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SOME PROBLEMS ON THE FUNCTIONAL DEPENDENCY RELATED TO
ARMSTRONG RELATIONS IN THE RELATIONAL DATAMODEL.I

VU Due THI (I)

Astract. In the paper, we give some results to combinatorial algorithms for functional dependency (FD for
short) connecting the construction of Armstrong relations, relation schemes, the FD-relation implication
problem, and the FD-relation equivalence problem. These algorithms play important roles in logical and
structural investigations of the relational data model. Now, they are know to have exponential complexity.
However, in this paper we show that if relations and relations schemes satisfy certain additional properties,
then above problems are solved in polynomial time.
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Armstrong relation, dependency inference, FD-relation implication scheme problem, FD-relation equivalence
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1. INTRODUCTION

Now we start with some necessary definitions, and in the nex sections we formulate
our results.

Definition 1.1 Let R = {hi.... h.] be a relation over U, and A, B c U.

f
Then we say that B functionally depends on A in R (denoted A R » iff

(vh, hj E A) (h.ta) = h/a» => (vb E B) (hjb) = hj(b»

f
Let FR = I(A, B): A, B ~ U, A R > B), FR is called the full family of functional

f
dependencies of R. Where we write (A, B) or A- B for A R B when R, f are clear from the

context.
Definition 1.2. A functional dependency over U is a statement of the form A~B,

where A,
+

B c U. The FD A - B holds in a relation R~
the FD A- B. R

B.We also say that R statisfies,
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Definition 1.3. Let U be a finite set, and denote P(U) its power set.

Let Y ~ P(U) x P(U). We say that Y is an f-family over U iff for all A, B, C, D c U

(I) (A,A) ~ Y

(2) (A, B) c Y, (B, C) E Y => (A, C) E Y,

(3) (A, B) ~ Y, A ~ C, D ~ B => (C, D) E Y,
(4) (A, B) ~ Y, (C, D) E Y => (A u C, BuD) E Y.
Clearly, FR as above is an f-family over U.
It is known (l) that if Y is an arbitrary f-family, then there is a relation Rover U such

that F~ = Y.
Definition 1.4. A relation scheme S is a pair <U, F>. Where U is a set of attribites,

and F is a set of FDs over U. Let F+ be a set of all FDs that can be derived from F by the
rules in definition 1.3. Denote A+ = {a: A ~ {a} E F+}. A+ is called the closure of A over S.
It is clear that A ~ B E F+ iff B ~ A+.

Clearly, in (1) if S = <U, F> is a relation scheme, then there is a relation Rover U
such that FR = F+. Such a relation is called an Arinstrong relation of S.

Definition 1.5. Let be a relation, S = <U, F> be a relation scheme, Y be can f-family
f

over U, and A ~ U. Then A is a key of R (a key of S, a key of Y) if A R U (A ~ U E F+,

(A, U) E V). A is a minial key of R(S, Y) if A is a key of R(S, V), and any proper subset of
A is not a key of R(S, V). Denote KR' (K, Kc) the set of all minial keys of R(S, V).

Clearly, KR' Ks, K, are Spemer systems over U ..
It is known (4) that if K is an arbitrary Spemer system then there is a relation R such

that ~R = K.
Definition 1.6. Let K be a Spemer system over U. We define the set of antikeys of K,

denote by x', as follows:

Kl = {A c U: (B E K) => (B CL A) and (A cC)=> (EB E K) (B ~ C)}

It is easy to see that Kl is also a Spemer system over U.

In this paper we always assume that if a Sperner system plays the role of the set of
minimal keys antikeys, then this Spemer system is not empty (does't countain U). We also
regard the comparision of two attributes to be the elementary step of algorithms. Thus, if we
assume that subsets of U are represented as sorted lists of attribites, then a Boolean
operation on two subsets of requires at most IUI elementary steps.

Definition 1.7. Let I c P(U), U E I, and A, BEl => A Il B E I. Let M ~ P(U).
Denote M+ = {Il M': M' c M}. We say that M is a generator of I iff M+ = I. Note that U E
M+ but not in M, since it is the intersection of the empty collection of sets.
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Denote N = {A E I: A :t= n {A' E I: A cA' }}.
In (4) it is proved that N is the unique minimal generator of I. Thus, for any generator

N of I we obtain N ~ N'.
Definition 1.8. Let R be a relation over V, and ER the equality set of R, i.e ER = {Ejj: 1

~ i < j ~ IRI}' where Ejj = {a E V: hj(a) = h/a)}. Let TR = {A E P(V): 3Ejj = A, 3Epq: A c
Ep<.I}.Then TR is called the maximal equality system of R.

Definition 1.9. Let R be a relation, and K a Spemer system over V. We say R
represents K iff KI = TR' where TR is the maximal equanlity system of R.

Remark 1.11. Let us take partition V = XIV, ...., Vx'n U W, where m = [n/3], and

IXjI = 3 (1 ~ i ~ m)

We set

H= {A: IAnXjl = 1, Vi} if Iwl =0

H = {A: IAnXjl = 1, (1 ~ i ~ m-I) and IAn(Xm UW)I = I} iflwl = 1,

H = {A: IAnXjl = 1, (1 ~ i sm) and IAn WI if Iwl = 2.

If set K = RI, i.e. H is a set of minimal keys of K, then we have

K = {C: = n - 3, C n X4 = 0 for some i} if Iwl = 0

K = {C: Icl = n - 3, c n X, = 0 for some i (I ~ i ~ m-I) or Icl = n - 4, C n (X; U

W) = 0} iflwl = 1,

K = {C: Icl = n - 3; C n X, = 0 for some i (1 ~ i ~ m) or Icl = n - 2, C n W = 0} if

Iwl =2.

It is clear that 3(n/3)< IHI,IKI ~ m + 1.

Denote elements of K by Cl_ -.. C, Construct a relation R = {h., hi .... h.] as follows:
For all a E V ho(a) =0, for i = 1, ...., t, hj(a) = 0 if a ECj, in the converse case hj(a) = i.
Clearly, IRI<lvl holds. According to Theorem 1.10 K is the set of antikeys of Rand H is
the set of minimal keys of R.

Thus, we always can construe: a relation R in which the number of rows of R is less
than lvi, but the number of elements of H is exponential in the number of R. On the other
hand, it is known [7] that there is an exponential time algorithm which finds a set of
minimal keys of given relation. Consequently, the time complexity of finding a set of
minimal keys of a given relation R is exponential in the size of R.
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2. FUNCTIONAL DEPENDENCY

The following problems play important roles in the logical and structural investigation
of the relational data model both in practive and design theory.

(I) Constructing Armstrong Relation:
Given a relation scheme S = <V, F> construct a relation R such that FR= F.
(2) Dependency Inference Problem:
Given a relation R over V, construct a relation scheme S = <V, F> such that F+= FR'
(3) FD- Relation Implication Problem:
Givena a relation R and a relation scheme S = <V, F> over V, decide whether FRc F+.
(4) FD-Relation Equivalence Problem:
Given a relation R and a relation scheme S = <V, F> over V, decide whether RR= F+.
By Remark 1.11 it is known that finding a set of all miniall keys of a given relation

has exponential complexity. On the other hand, it is known (see [8]) that the problem of
finding all minial keys of a given relation can be polynomially transformed to the
dependency inference problem. Thus, the latter problem is also inherently difficult. The
problem of constructing Armstrong relation is known to be inherently difficult. The FD -
relation implication problem is co-Nl'-complete (see [8]). Finally, it is still unknown that
the time complexity of the FD-relation equivalence problem is polynomial or not. However,
it is easy to see that there is an exponential time algorithm to solve this problem. We give a
special class of relations and relation schemes in which the complexities of the above
problems are polynomial.

For an f-family F over V the following closure operation can be introduced on P(V)
(c.f. [2]): HF(A) = {a E V: A ~ {a} E F}

Where the notation A ~ B is used as a synonym of (A, B). We denote the family of
the closed sets with respect to the closure HFby Z(F), i.e Z(F) = {A ~ V: HF(A) = A}.

It is easy to see that V, 0 E Z(F) and A, B E Z(F) => An BE Z(F).
Theorem 2.1.[2] Let F" F2be two f-family over TJ. Then F, = F2 iff Z(F,) = Z(F2).
It is clear that if S = <V, F> is a relation schem then F is an f-family over V.
Theorem 2.2 [2] Let K be a Sperner-system and S = <V, F> be a relation scheme over

V. Then Ks = K iff
{V} uK' ~A(F)c {V} uG(K'),
where G(K') = {A c V: 3B E K': A cB}.
According to [2], clearly.
Theorem 2.3. Let K = {K" ..., K} be a Sperner-system over V Consider the relation

scheme S = (V, F) with F = {K ~ V, ...., K, ~ V}.
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Then K, = K, and Z(F+), and Z(K+) = G(K' s) U {U}.

Theorem 2.4. [2] Let K be Spemer system over U. We stay that K is saturated if for
any A ~ K {A} uK is not a Spemer system. If K is a saturated Spemer system then K = FR
uniquely determines F, where K, is the set of all minimal keys of an f-family F.
The following is an example of a saturated Spemer-system K such that K' is not saturared.

Example 2.5. Let U = {1, 2, 3, 4, 5, 6} and
K = {(l, 2), (3, 4), (5, 6), (1, 3, 5), (1, 3, 6), (l, 4, 5), (1, 4, 6) (2, 3, 5), (2, 3, 6), (2, 4,

5), (2,4,6)}.
It is easy to see that K is a saturared spemer-system but K' is not saturared since
Kl = {(l, 3), (1,4), (1, 5), (1, 6), (2, 3), (2,4), (2,5), (2, 6), (3, 5), (3,6), (4, 5) (4,

6)}, and
K' u{(1, 2)} is a Spemer-system over U.
It is clear that there also exists a Spemer-system K such that K is not saturared but K'

IS.

Definition 2.6. A Spemer-system K over V is called embedded iff for every A E K
there exists a. B E H such that A c B. K is called is called completely embedded iff K is
embedded and for every B E H there is an A E K such that A c B, where H denotes the
Spemer-system for which RI = K.

Proposition 2.7. [9] Let K be a Spemer-system .over U. Then K is saturared iff K' is
embedded.

Definition 2.8. A relation scheme S = <U, F> with F = {K, ~ U, .... , Kt ~ U} where
(K

"
..., Kt) is a Spemer-system over U is called a k-relation scheme.

It can be seen that if S = <V, F> is in Boyce-Codd normal form then using the
algorithm for finding a minimal cover we can construct a k-relation scheme S = <U, F'> in
polymial time such that P+= FH, (see [8]). Conversely, it is clear that a k-relation scheme is
in BCNF.

In [7] we constructed an algorithm to find K' Rin polynomial time for a given relation
R.
Theorem 2.9. Let S = <V, F> a k-relation scheme with given as input.

(1) Assuming K is saturared, an Annstrong relation for S, i.e. a relation R with FR =
F'"can be constructed in polynomial rime.

(2) Assuming K' Ris completely embedded, the dependency inference problem for R
can be solved in polynomial time, i.e. a relation scheme S = <V, F> with F+ = FR can be
constructed in polynomial time.

(3) Assuming either K is saturared or KIR is completely embedded, the FD-relation
implication problem and the FD-relation equivalence problem for Sand R can be solved in
polynomial time.
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Proof: (1) Assume that K is saturared. Let us define the following families.
Q = {K - [a.}: ai E K, 1~ i~t}

and
P = {A E Q: HF- (A) = A and HF' (A u {a}) = V '\I a E V -A}.

Assuming that P = {AI' ...., A",}' let us define the relation.
R = {h., hi' .... , hm} as follows:
For all a E U, ho(a) = 0,
For i = 1,.,. m

hi(a) ={ ? if aE~i
1otherwise

It can be seen that Q, P, R can be constructed in polynomial time. Proposition 2.7
implies P = KI, where K = {KI, ..., Kt}

Based on Theorem 1.10 and Theorem 2.4. F+= FRholds.
(2) By the algorithm in [7] the maximal equality system IT of R can be constructed in

polynomial time. Theorem 1.10 implies TR= KI R'Let us derine M = {T u {a}: A E U, T E

TR} and
L= {E EM: HFR (E)=V, va E E, HFR (E-a):;eV}

By Proposition 2.7, and the definitions of completely embedded Spemer-system we
have L= KR'

Assuming L = {El' .... EJ, define S = <V, F> with F = {El ~ V, ...E, ~ V}.
It can be seen that M, L, S can be constructed in polynomial time.
Theorems 2.3, 2.4, and Proposition 2.7 imply F+= FR'
(3) If K is saturared, then by (1) by we can consrtruct an Armstrong relation. R for S.

We can compare FR'with FR'
If KI R is completely embedded, then by (2) we can construct a relation scheme S' =

<V, F'> such that FH = FR' We have then to compare F and F'+. It is easy to see that this
can be done in polynomial time. The theorem is proved.

Is is known that the number of minial keys of a given relation can be an exponential
function of the size of the relation. But in many cases there are only polynomially many
minimal keys and they can found in polynomial. On the other hand, according to Theorem
2.4 it can be seem that the next corollary is an easy consequence of Theorem 2.9.

Corollary 2.10 Let S = <V, F> be a relation scheme, R a relation over U. Then
If the set of all minial keys of S is saturared, then problem I can be solved III

polynomial time.
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If the set of all antikeys of R is completely embedded, then problem 2 has polynomial
complexity.

If either the set of all minimal keys of S is saturated or the set of all antikeys of R is
completely embedded, then problems 3,4 are solved in polynomial time.

Definition 2.11. Let K, and K2 are Spemer-system over U. We set

K = K, UK2 and TR = (A E K: ~ BE K: A c B}

We say they the union K = K, U K2 is pseudo-saturated if TR is a saturared Sperner
system over U.

Definition 2.12: (FD-relation key-equivalence problem)

Theorem 2.13. Let S = <U, F> be a relation scheme and R a relation over U. Ks(K1
R)

is the set of all minial keys of S (the set of antikeys of R), and K, is computer in polymial
time in the size S.
Then if K = K, UK' R is pseudo-saturated, then the FD-relation key-equivalence problem is
solved in polynomial time in the sizes of S, and R.

Proof: It is known [7] that KIR is computer in polynomial time in size of R. We
·1 .assume that Ks = {A" ... , ~}, and K R= {Bp... By}.

If there is an AI (I ~ i s p) such ~at Ai s; Bj (l ~ j s q) then K, 7: KR. Consequently,
we can assume that Aj S; B, holds for all i, j.

For each j = 1... q we computer HI'" (Bj) (it can be seem that \1D <:;:;:; U, HF' D) is

computed in polynomial time in the size of S)

and set M = [B, U {a}: a E U - Bj} = {MI, ... , M,}. Clearly, M is constructed in
polinomial time. If (B) 7: U, and \11 = I, ... , t, HF• (MI) = U hold then Bj EK1s holds,

otherwise ~e o.b~ain Bj ~ K's:,i _ . _ .....
For each I - I, ... , P we set N - {Aj - {a}. a E Ai} - {NI' ... , NJ. It IS edsy to see that

we compute N in polynomial time. If there is a Nil (I ~ n ~ s) such that N, ~ Bj \1j = I, .... q
then Aj ~KR holds. In the converse case we have Aj E KR· Clearly, if there exists Ai E KR
then Ks7: KR. We assume that vi = 1, ... , p we have Aj E KR• We set Q = {Ai - {a}: a E.Aj, i
= I,...,p).

P={AEQ: HF" (Av{a});;;;U\1aEU-A}

J = {Aj U {a}: a E U - B, j z: 1, ... , q ]
and

1= {B E J: HI" (B) = U andHj, (B - a) 7: U 'Va E BIR R

Based on the definition of K, and the definition of KI R we can see that either there is
an A E P such that A ~ KIR or there exists aB E I but B ~Ks then K, ~ KR holds.
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Clearly, P. I, are constructed in polynomial time in the sizes of S, R, Ks, K' R' Finally,
we see that if for all i = 1, .... , P and j = 1, .... q Ai E KRm Bj E Ks, P ~ K' Rand I ~ K, hold
then based on K' R U K, is pseudo-saturated and by the definition of set of minimal keys
and the definition of set of antikeys we obtain KR = Ks' The proof is complete.

It can be seem that in the BCNF class of relation R and relation schemes S = <U, F>
we have FR = F+ iff KR = K, hold.

Consequently, the following proposition is clear.
Proposition 2.14. Let S = <D, F> be a relation scheme in BCNF and R a relation over

U in BCNF. Then if K, u K' Ris pseudo-saturated then the FD-relation equivalence problem
is solved in polynomial time in the size of Sand R.
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