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CONTINUOUS TIME SYSTEM IDENTIFICATION: A SELECTED
CRITICAL SURVEY

Part I- GENERAL VIEW, SOME MODELS AND
ESTIMATION METHODS
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Abstract. Part I and Part II of the paper refer to a critical survey on significant results available In
the literature for identification of systems, linear in the present part and nonlinear In the following one.
The most important trends In Identification approaches to linear systems are from the development
of optimal projection equations, which are argued by the complexity of numerical calculations and
of practical applications. The perturbed a quasilinear and on Neuro-Fuzzy trends in representing
nonlinear systems, l.e., functional series expansions of Wiener and Volterra, Modeling Robustness and
structured numerical estimators are included. The limitations and applicability of the methods are
discussed throughout.

1. A GENERAL VIEW

Most systems encountered in the really physical world are continuous and the development of
automatic control owes a great deal to the concepts evolved originally in continuous time domain
[1,p.8]. Further, all most control systems in practice are nonlinear to-some extent. Although, it may
be possible to present systems by perturbing over a quasilinear model for a restricted operating range,
in general nonlinear dynamic processes can only be adequately characterized by a nonlinear model
[2,3]). However, whereas now through a huge number of reported works available in the literature,
system identification techniques for linear systems are well established and have been widely applied,
the identification of nonlinear systems has not received so far such attention or exposure. This may be
attributed to the fact arising from inherent complexity happened to be in nonlinear dynamic systems,
arising from the difficulty in obtaining acceptable identification processes to a large class of nonlinear
dynamic systems also [4].

Prior to being into existence of input error concept (5], the identification of a system is known
to be an ezperimental process of determining a mathematical model which is capable of describing
the essential properties of the system from its input/output information (1,15]. This process become
necessary due to the fact that such a model plays the vital role in the analysis and design for ensuring
an efficient operation and control of the system and obviously, the quality of control reaches to
optimum only if the properties of the model are matched as close as possible to those of the actual
system (1, 15].

Probably, it is known to most of us, there exists no model satisfying exactly all sets of in-
put/output data of the system [1,10]. This is because of the fact that the system identification
problem mathematically belongs to a group of optimization ones [1,15], of which solution is char-
acterized by a model structure, a criterion of equivalence also. For a particular descriptive model,
the equivalent criterion is the core giving rise to different various methodologies for estimation of the
model parameters with respect to the choice of performance or cost function. Most cost functions
in the identification theory evaluate the minimum deviation of the model from the system using one
of the four error equations, namely the output error, equation error, prediction error and the input
error equation [1,5,12]. That is, a suitable method of optimization is adopted on an error equation
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for estimating the model parameters 112] It is clear that process of determining values for the mod-
el parameters plays an important role in govnrnmg the behavior of the system or in realizing the
equivalent criterion (1, 14].

It is, however, found that for carrying out an estimation process successfully with respect to
any one of the first three earlier mentioned error equations, the input signal of the system is to be
persistently ezciting (6] (the persistently exciting degree of the input signal is required to be twice
system order [15]). As the input signal of system in most of the cases may be of any form and the
order of the model for the system may be high, for meeting the said peraistence requirement the
system is to be subjected to a test signal which theoretically, is a white noise realizable as a pseudo
random binary sequence signal |1, 15]. This requirement pubu a restriction on real time estimation of
model parameters, where the system under congideration is not permitted to be excited by any sort
of external signals and the identifiability of the system becomes an uncertainty.

With respect to the identifiability aspect, various promissible approaches have been developed
(18- 18] for systems, to which there are uncountable difficulty in trying to describe by mathematical
models. These approaches are on the human brain modeling basics, different from the above optimum
methodology. Although, fuzzy methods are found yet to be successfylly applicable to complex high
order systems with regard to a closer approximation and to an amount of calculation concern where
the number of fuzzy rules is highly required to be set up. However, not only fuzzy methods but compo-
nents of “soft computing” [18] based methods including neural network and evolutionary computing
as the whole, each of them has got various advantages in identifying nonlinear dynamic or uncertainty
system or the one where the system knowledge are difficult (in the sense of a fair complex realization)
incorporating together all in the form of mathematical expressions [17-19]. Therefore, it would be
better to discuss on adopting methods components of soft computing based to the identification of
nonlinear dynamic systems.

In the case where the system is identifiable, a fair complex structure and high order model
may be obtained from the theoretical consideration, the reduction of order for model in such a case
bacomes an evidently useful measure for a better understanding of and controlling the system [20].

Although several different approaches have been proposed in the literature for obtaining low
order models for a given high order model of a system [20,21), practically all of them belong to one
of three main groups. First group of methods attempts to retain the important eigenvalues of the
system and then obtains the remaining parameters of the low order model in such a manner that
its response to certain inputs is a close approximation to that of the original system [22-25]. The
second group of reduction methods is based on obtaining a model of a specified order such that its
impulse or step response are matched with of the original system in an optimum manner [26- 28|
with no restriction on the location of eigenvalues. The third group of reduction methods is based on
matching some other than the properties of the responses [29-31|.

However, most methods developed so far require the knowledge of either transfer function or
parameters of the high order model. This demands the process of parameter estimation for high order
model to be performed before considering the model reduction. Consequently, the model reduction
faces also the aforesaid restriction on the system excitation [21]. Further, due to an error arising
out of the reduction, the response of the reduced model differs from that of the system for the same
excitation. This difference makes the results established prior to the use of input error concept for
the reduction problem unacceptable in the case where the system is in a closed loop configuration
like that in a tra_}actwe control, output regulation or in state estimation problem [32-35], etc. The
reason behind is due to the fact that in such cases a compensation of arisen error is required, leading
to a change in the control strategy which may be no longer a linear control law [33,36).

It has been pointed out that all the first three errors used in the parameter estimation and
order reduction problems for linear, parametric, continuous models are referred on the output side of
the system [36]. This restrains on considering the identification process to be either a vital stage in
the overall task of modern control or linked with analysis of the system properties. The restraints to
be removed for the sake of identification are summarized in three points as follows [36).



CONTINUOUS TIME BYSTEM IDENTIFICATION... I a3

(). Persistently exciting property imposed on the system input signal in a problem of parameter
estimation, ‘ ' . .

(ii). Involvement of either parameters or impulse response (i.e., transfer function) of the high
order model in a problem of order reduction.

(iii). Expense of existing optimal control to system for the attainment of a specified trajectory
from the reduced order model.

It has been found also that for ignoring persistent excitation requirement in a problem of
parameter estimation, the measurements of time derivatives of the system input signal should not
be involved in the parameter estimation process [5). In order to avoid the process of parameter
estimation for high order model before considering order reduction, problem of order reduction can
be considered as that of parameter estimation applicable to a misorder case [36,37). For ensuring the
response of the reduced model to be as specified as that of the system, the match of their output
signals becomes essential condition (36, 38).

From these arguments, the input error concept has been initiated firstly for problem of system
parameter estimation then has been further exploited to problem of order reduction for models (36, 37
and to other related aspects of the problem of system identification (36, 39-41).

With regards to the parameter estimation for models described in the state variable space, in the
literature there exists quite a few works reported on the basics of model adaptation using stability the-
ory (42,43]. Intensive works for identifying system described in this description have been reported in
[44-50] not only with the use of input error concept but also the state optimization concept [47).
Solutions of various identification problems are expressed in the relevant forms of optimal projection
equations (OPEQ), the term has been introduced firstly in |61] for order model reduction. By adopt-
ing OPEQ, the parameters for state variable descriptive models have been found to be estimated
successfully with any form of the system input signal, without incurring linear operators (LD) on
both sides of the system [36,44]. System identification has been shown to switch over to solution of
OPEQ, which got simpler forms by adopting the state optimization concept [36,47]. The developing
OPEQ has got some important significances from the view point of uniqueness in optimization pro-
cess as the effect of different additional constrained conditions to the Ly optimality criterion has been
resulted from interpreting the inherent existence of coupling equations in one side, and in the other
side different constraint conditions are able to be adopted alongwith (27, 47},

In this first article, it is made a selected review on the recent trends in the identification for linear
systems in framework of interest to control and system area without an intention to bibliographic
terms. Identification for nonlinear dynamic system and relevant matters are critical reviewed in the
coming part of the paper. In this part, system and model are considered to be multi input multi output
(MIMO) unless specified whereas. Bold and capital bold letters are used for notations of vectors and
matrices respectively. Superscript “+” of a matrix stands for the notation of pseudoinverse of that
matrix and p(.), £(.) and R"*™ are denoted for rank of a matrix, expectation and (n X m)-real
space.

2. LINEAR, CONTINUOUS TIME MODELS AND BASIC IDENTIFICATION
PROCEDURES

1.1. Linear, continuous times models

The term “model” is used in general to mean a handy entity representing the actual system.
Models are classified mainly in three groups and the first one is of conceptual or phenomenological.
The second group is of physical or empirical and the last one is of mathematical or analytical.

It is concerned herewith the basic mathematical models for linear dynamic, continuous time
systems, frequently used in control theory, characterizing by lumped parameters either in the ordi-
nary differential equations or in some other equivalent finite parameter presentation, i.e., in the state
space description, etc. For the brevity only deterministic models are mentioned for the purpose of
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this article, while stochastic models are obtained simply by adding the term corresponding to the
random input although different model structures and related aspects are arisen from the stochas-
tics. Further, the models considered are of the discrete type only due to the application of digital
computer for identification and control purposes. The discretization of parametric models eliminates
by approximation inherent the continuous time calculus from continuous time parametric models.
Discretization of nonparametric models is mainly for computational convenience purpose, with less
serious consequences with respect to parametric models.

Perhaps, the best known lumped parameter model for a linear continuous time system (p inputs
and g outputs) is expressed in a system of q equations as:

n

Za;,,-(t)% = 'Z Zn:b.-,,,j(z)“"::‘.(", forj=1,...,q (2.1)
i=0 k=11=0

where n stands for the order of model, uk(t) and y;(t) are the respective excitation at the k*h input and
the response at the 7*h output of the system, a;;(t) and b; x(t), forn 2 1,¢=0,...,n, k=1,...,p,
are the parameters of the model. These parameters are usually referred to as process parameters
(7,14], which play the vital role in governing the behavior of the actual system.

The linear dynamic system can be equivalently described in a system of first order differential
equations in the state variable space:

Zn(t) = An(t)zn(t) + Bu(t)un(t), (22)
yn (t) = Cu(t)zn(t) + Dn(t)zn(t), (2.3)

where equations (2.2) and (2.3) are referred to as the dynamical and output equations respectively
(14,36). In these equations, un(t), zn(t) and y(t) are p-, n- and g- dimensional vectors of the inputs,
state variables and outputs, and Ay (t), Bu(t), Cn(t) and Dyn(T') are matrices of the dimensions of
nxn, nXp, ¢Xn and pXp respectively. A description of the model in this space with minimal number
of parameters is called canonical [14]. In such a case, a realization of {An(t), Ba(t), Cn(t), Dn(T)} is
termed minimal and dimension of A, (t) is order of the minimal A, (t) [14,36]. The intention to use
in these equations subscript “n” is for indicating the irreducible order of the model to be referred to
as a well specified order. Otherwise, the order of the system will not be well specified in either sense,
reducible or unknown one [36).

From equations (2.2) and (2.3) above, other representation for the system is also obtained,
referring to the observation space of the system. This description is in the form of a matrix consisting
of multivariable transfer functions, which is known in the literature as polynomial matrix description.
Important point in the polynomial matrix description lies on the usability of time derivative operator
s = d/dt and on the hypothetical “noise free output” of the system. However, a combined effect of
input and output disturbances can be accounted in a model called “autoregressive moving average”
(ARMA) [12,18]. Further, with some certain assumption made on different coefficient matrices in
ARMA model, an autoregressive moving average exogenous variable (ARMAX) model or dynamic
adjustment [15] one is obtained.

2.2. Basis identification procedures

In fixing the course and goal of the identification process, it would be better to stress to the
fact that the ultimate purpose for which the entire job is being planned. In other words, system
identification is merely one of the phase of activity in an integrated effort and therefore should not be
treated as an isolated task. In view of frequent mixing of “identification” and “parameter estimation”
terms in the literature, it is necessary to clear the meaning of each term.

System identification that may be interpreted as the “inverse” of the system analysis problem,
is characterized by a class of signals, a class of models, and by a criterion of equivalence. A particular
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situation, where some certain amount of a priori knowledge in the problem such as structure, time
invariant, linear dynamic, etc. the system identification problem reduces to a simpler one, that
of parameter estimation. Thus, the problem of parameter estimation may be seen as that of the
experimental determination of the values for parameters governing the system behavior assuming
that the system is modeled by parametric, known structure.

It is legitimate to say that observations and experiments are most favourable means for system
understanding. In this connection, measuring data does not mean only measured input/output
information but also that of some auziliary variables such as noise [1, 12|, state variables {13, 15, the
controllability and observability gramians [45,47), etc.

Fig. 1 below shows a general process of system identification. There exists various procedures
for the system identification however. Basic principles behind this variety are concerned with the
type of models first (either linear or nonlinear, parametric or nonparametric, distributed or lumped,
deterministic or stochastic, etc.), then are related conceptual bases for parameter estimation (i.e.,
defined error equations) and in fact, are not very much different between methods for continuous
models and those for discrete ones [11,12].
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Fig. 1. General process of system identification

There are two basic methods of data processing for an optimality problem. These are the “off
line” or batch processing approach and the “on line” or recursive approach. In the batch processing
case, the complete set data as a whole is used for carrying out computation. In this case, the esti-
mate updating unknown parameter vector is performed by reference to all of the data available over
the observation interval. Contrast to this one, in the recursive approach the estimate of unknown
parameter vector is basically continuous updated while computing serially through the data. The
most common recursive algorithm is a gradient algorithm, where the update at any step (k say) of
the recursive process is expressed as a function of the instantaneous gradient evaluated utilizing the
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estimate obtained from the previous recursive step, excepting the first one. An important aspect of
data processing is the form of estimation algorithms in relation to the nature of models, i.e., with
the use of a continuous time estimation procedure for a continuous time model (referred to as CC
scheme) or a discrete time estimation procedure for a discrete time model (DD) or one of hybrid
schemes, either CD or DC. The principles of identification and the state of the art with reference
to parameter estimation for linear dynamic timé invariant lumped continuous models are classified
next.

8. CHOICE OF COST FUNCTION AND ESTIMATION METHODS

Most obvious approach to estimating parameter values in a mathematical model of a dynamic
system is to minimize a scalar cost (or loss) function J. This cost function is usually formulated in
terms of some norm in an error equation vector ¢(t) which reflects the discrepancy between the model
and the real system. The choice of ¢(t) gives rise to particularities of each estimation methodology
[12].

8.1, Cholce of cost function

As regards the choice of cost function J for an optimization process, this depends to some
extent on the nature of the problem. The most common cost is based on the integral of a weighted
Ly norm in e(t), i.e.:

J = / (e (We(t)}dt = / lee) % de, (3.1)
to to

where W is a positive definite weighted matrix of the appropriate dimension, and (t7 —to) is the time
interval over which the data are available. :

In the simplest, scalar case the above integral is reduced to the integral of squared error. The
discrete time equivalent of (3.1) cost function is:

N
J =3 lleilt) Iy dt, (8.2)

1=l

where the subscript “4” indicates the value of the vector e(t) at the i-th sampling instant, and N
denotes the number of samples available over the observation interval from tp to ¢7.

As the reduction of order for a model has been observed to deal with the parameter estimation
problem for a misorder case [36,37], for which cost function is no much different from the above one,
excepting the case for reducing order of a system operating in closed loop configuration, where for
some certain reasons, it is required to impose several constraint conditions on the optimality process
(27, 28).

Also, constraint conditions are required to be exploited in a problem of estimating the param-
eters for either controllable or observable part or both jointly, i.e., parameters corresponding to the
controllable/observable jointly part of the system [44,45]. Further, different constraint conditions
are to be used with an aim at the uniqueness for the solution of system identification problem [4d].
With respect to the uniqueness question, OPEQ [44] are found to open an opportunity for imposing
as many constraint conditions as possible, in one side and in other side, to provide effects of addition-
al constrained conditions towarding to attainment of the absolute extremum. In such cases, above
mentioned cost function, by some mathematical manipulations, becomes:

J < tr RQ, (3.3)

where "tr" stands for the trace of matrix, R and Q are appropriately dimensioned square matrices
corresponding to the weight and data of the system respectively. In most cases, R is also related
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through matrix C with the system, to which Q is related through ma.t.rlcea A, B'and controllability
grammian [59).

It is worthwhile to address herewith that constraint conditions frequently used nowadays in
the control and system areas are thoso for a Lz bound [27), a preassigned Ho, bound [27,34), for
internal balance 29, 32], by principle of cost ranking [30], for the Lyapunov sense with regards to the
stability, controllability, observability character of the system [52], of the robustness including the
robust modeling [28], etc.

8.2. Estimation methods

As mentioned early, the problem of system identification becomes that of parameters estimation
when some amount of a priori knowledge about the system is concentrated in a set of parameters
[1,36). The methods of parameter estimation can be generally seen to be adopted of two steps.
First one arises out of avoiding a direct generation of time derivatives of the input/output signals
of the system. In this step, the system of equations for parameter estimation is derived from the
dynamical model of the system and in an ideal case, the number of equations is equal to that of south
parameters. The second step is to deal with the methods of parameter estimation for models. It is
obviously noted that the major difference in the treatment between the discrete time and continuous
time models arises in the first step, while the second step is applicable to both the cases |1, 36].

Most methods of parameter estimation for models are based on the principle of reference tech-
nique (10}, where an error function is defined for reflecting the discrepancies between the model and
the real system. There are available four error equations in the literature and various but related con-
‘ceptual bases criteria imposed on the error equation for the estimation of model parameters. These
are the output error, equation error, prediction error and the input error. The last one is defined on
a different concept basics however [5,36|, but the first three errors are found some how being defined
similarly for some extent [12,36]. In order to distinguish those errors, it is convenient to consider a
system described:

Zn:Gi.J'(i)”""aJ;LL 2 Zb. ,(t)d ::‘.(t), for 3 = 1,00 58 (3.4)

=0 k=] 1=

By introducing operations:

d‘
i=0
then one gets:
Fy(t) = Su(t), (3.6)
where y(t) = [yi(t), ...,y (t)]7, u(t) = [us(t),... ,up(t)]”, 7 is of a diagonal matrix form having
components fy, for 5 = 1,...,q, § is also of a matrix form consisting of gy, for j = 1,...,q,

k=1,...,q. Actually, matrices ¥ and § that consist of measurements of the operations on y(t) and
u(t) reapectively and that are required for the parameter estimation purpose.

When the system has time invariant parameters only, then the Laplace transformation can be
used as the operation with a; ;d/dt' = a; js' and b; x,d/dt' = b s, ', In such a case, (3.8) becomes:

A(s)y(t) = R (s)u(t), (8.7)

where H(s) = E a8 and K(s) = E bis*, in which ay, by, for 1 = 0,...,n, are real coefficient

matrices of appropna.ta dimension. Based on this equations, the first three error are readily defined.
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Output error methods

Output or response error method is probably the most intuitively obvious approach to the
problem of parameter estimation for models. The parameters in this case are chosen in such manner
that the minimum of an instantaneous (for the purely deterministic case) or an integral (for the

stochastic case) norm in the error between the model output gga; u(t) = §(t) and the actual output
8
y(t) of the system be achieved [36]. That is, error is defined as:

eo(t) = y(t) - 9(¢). (3.8)

It is found that much of early research on deterministic output error methods are tied with
self adaptive system design or model reference schemes [12] using a CC mechanization. To this
CC mechanism for all output methods, there exists one difficulty in regard to the establishment of
conditions for the convergence. It is also found that the output error methods have theoretical but
less practical significance.

Equation error methods

Equation error is generated directly from the input/output dynamical (in the sense of time
derivatives of the input/output) equation of the model as:

eolt) = H(s)i(t) - R (s)ult). (3.9)

In the integral cost function case, the equation error approach clearly derives from an analogy
with static regression analysis and linear least squares estimation. The equation error method has
been shown to be closely related to the concept of differential approximation [53] and has also been
termed as satisfaction error [10).

An alternative generalized equation error is often defined to avoid the obvious problems that
arise from the differentiation of a possibly noisy signal. In this case, the input/output signals are
passed through a set of state variable filters. This state filter set simultaneously filters the signals
and provides the filtered time derivatives, which replace the exact but unobtainable derivatives in
the definition of a modified error [64- 56].

For equation error methods many CC and CD have been suggested, utilizing either off-line or
on-line least squares algorithms with guarantee of convergence by an arbitrarily rapid rate (7,12},
Simplest solution to the asymptotic bias problem associated with basic equation error for stochastic
case is the instrumental variable (IV) method. Here, the least squares solution has to be modified so
that one can include a vector of IV, which is highly correlated with the noise free output of the system
but uncorrelated with the noise on the system measurements. By adopting an adaptive prefilter [13]
on all measured signals, another IV scheme has been suggested (refined IV method [84]), which can
be considered as an adaptive filter and state reconstructor for both continuous and discrete time
stochastic systems.

Equation error methods demand some strong assumptions about the nature of noise and more
gophisticated IV procedure for obtaining the bias free estimate. However, these methods are not
found to work well by adopting equivalent DD for stochastical basics [13,860].

Prediction error methods

Prediction error is defined as the error between the actual output y(t) of the system and some
best prediction of the output given the current estimate of the parameters characterizing the system
and noise models. In other words, the best prediction of the output is conditional mean of the
observed output given all current and past information on the system. That is, the error is defined

tpulf] = %[ou) - Klohu], (3.10)



CONTINUOUS TIME 8YSTEM IDENTIFICATION... 80

¢
where -5%% stands for the transfer function of the noise part of a general model. This prediction

error within an equation context is obtainable by defining the error directly in a recognizable equation
error like form as:
C(s

onlt) = o (A00) - ROt (3.11)

As mentioned in [12}, there exists a considerable number of works reported on the merit, demerit
of each of the above defined errors. Although all of these errors are centered around the output of
the actual system, the prediction error is found to have more practical value, also to need however
more complex process for optimization purpose, due to the consideration of noise part of the models.

Different choices of the noise part of a general model gives rise to different model structures [1,
each structure needs to use a criterion. Among criteria, the least squares error criterion is used only

in an ideal case, where the model has no noise part, i.e., 9(s) — I, For handling a realistic case, the
(a)

generalized least squares error or generalized weighted least squares error (41,57) criterion is used.
In the latter case, with the use of transformations on the noise corrupted data, noise free data are
obtainable (41]. These transformations can be seen to be equivalent to the introduction of an IV
matrix for transfer function of noise part of the model to be unitary. This implies that generalized
weighted least squares error criterion gives rise to the IV method [41] to be adopted. In the case
of a random variable whose N measurements are available and statistically independent of one from
another, the maximum likelihood criterion may be considered [61). When a priori information on
the probability distributions is to be included, as for example, in a recursive solution, where there is
a requirement of linking a prior to a posterior probability statements, then the maximum likelihood
criterion is to be imposed along with the Bayesian method (1,12, 15].

However, an aspect which plays a key role in meeting a requirement (6] for a successful estima-
tion, is the input signal design [1,15]. The parameter estimation problem becomes an experimental
job where the system under consideration has to be subjected to some test signals of specified char-
acteristics. This is because of the fact that in the methods employing errors discussed so far, the
measurements of time derivatives of the system input signals are directly used, demanding the input
to be limited in a class of signals. In other words, the above error methods have been found to
have a limitation in applying to the real time parameter estimation for models where an experiment
on system like a bioone, a chemical reaction or an ecological process etc., can not be performed by
injecting to the system any sorts of external signals,

If the parameter estimation process for high 'order models is not successfully performed due
to the earlier mentioned reasons, it is not possible to tackle problem of order reduction for models
by employing any of the methods which demands the knowledge of the model to be reduced before
considering the reduction. The idea of considering problem of order reduction for models to be that
of parameter estimation for models of unknown order enables one to avoid the involvement of high
order models by the use of input/output signals of systems. That is, both the problems of parameter
estimation and order reduction for models are viewed on the same angle from the point of system
identification problem. However, the problem of order reduction for models should get rid off facing
the limitation imposed on the system inputs too.
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