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FINITE-DIMENSIONAL CHU SPACE

NGUYEN NHUY, PHAM QUANG TRINH, VU THI HONG THANH

Abstract. In this note we Introduce the notion of finite-dimensional space and extend a result In ISJ
stating that, every fully complete Chu space is a fuzzy space. Finally, the general results are applle
to a concrete example of theory of game.

1. INTRODUCTION

Rightly in 1970s, Hoang Tuy (5] suggested that the theory of category will be used widely in
Computer Science. Actually, the general algebraic scheme, known as Chu's categories, becomes a
useful tool today order to present ideas about Theoretical Computer Science. The best applications
of Chu's spaces to Computer Science at this point in time are mainly investigated by Vaughan Pratt
(see, e.g. (7], [8], [9], [10]). The notation of 2-dimensional Chu’s space are studied in several papers
(see, e.g. (3], [6

2. FINITE-DIMENSIONAL CHU SPACES IN GENERAL SETTINGS
By a (n + m)-dimensional Chu space we mean the set C= (X1 % X3 %...%x Xpnj f; A1 X Ag X
oo X Ap), where X;, A; (1 =1,... ,n;7=1,... ,m) are arbitrary sets and f : X; X...x X, X Ay X
oo X Am — [0,1] is a map, called the probability function of C.

Example 1. Lot X is a metric space, then €' = (X1 % Xa %X .o.X Xni i Xnt1 X Xnta X oo X Xnom)
is a Chu space, where X; = X fort =1,...,n+mand f: X; X X3 X... X Xp4+m — [0,1] is defined

by
n+m
f(z1,23,.+. , Zn4m) = min {, Z d(z, 2;)2, 1}.
f,=1

60 = (X, xXaX...X Xpi fi A1 X Ag X ... X Apy) and D = (Y3, xYa X ... x Yyig; By x By x
... X Bp) are (n + m) - Chu spaces, then a (n + m)- Chu morphism @ : C — D is a (n+ m)-tuple
of maps ® = (p1,02,... ,@ni¥1,%2,... ,¥m), with o1 Xy =+ ¥ fori=1,... ,nand yj: By — 4;
for j = 1,... ,m such that the diagram below commutes:

(H:-l p"ln;"-l lj)

[Tiay Xi % I15e1 By v [Tias Yi x I15ay By
oz T ) : (1
[Ties Xi x l'[fL; Aj 7 =) [0, 1]

where IH? X, lnm By, denote identity maps. That is
m] iml

fo Uy, %o E"”" =se([n "I, o)

i=1

or equivalently,
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f(Ha;awa, (b5) )—g(Hpg(z.)be) for Hz.EHX; and Hb,eHB; (2)

i=1 i=1 i=1 =1 J=1

= (1, @ity ¥m) 1 O = (XX X Xni fi AL X0 X Am) = D = (V1 x
Yoi g B; X .o X Bp)isa(n+ m) Chu morphism, t.hen the (n + m) Chu space ([], X;,f ><¢
g; [171 Bs), where

fxeg9)=fo(lf x‘H¢;)=9°(HPi1nm ;)

=1

is called the cross product of G and D over ®, denoted by O xg D, see (4]
We say that the diagram (1) upper-commutes if instead of (2) we have

#([T = x TT 95030 < o([T weles) x T 89)- (9
f=l J=1 =1 J=1

for n?:.l z; € n:"=1 x" and H?;l bJ' € n?:l BJ

If (3) holds, then we say that @ : ¢ = (X1 x Xax...Xx Xn;fiA1 x Aa X ... X Ap) = D=
(YixYax...xYug B x By x...x By,) is a (n+ m)- Chu upper-morphism.

The composition of two (n -+ m) - Chu morphisms ®(*) = (p1,... ,@n;¥1,... ,¥m) and (3 =
('P'j,l o Pni ¥l ¥i,) i8 given by ool = (P L PnPni Y1l »Ym¥y,). Cleraly 15 =
(1x,) 15+ y1%ns 1411 Lagy e+ ) 14,,) i8 the identity of C = (X1 x XaX...XXn; f; A1X Az X.. . XAm).

Proposition 1. ®(1) and ®2) are (n+m) - Chu morphisms (resp. (n+ m) - Chu upper-morphismas),
then ®3®(1) {s a (n + m) - Chu morphism (resp. (m + n) - Chu upper-morphirsm).

Proof. We carry out the proof in case of (n + m)- Chu morphisms. Let
) = (1,00 @mr P11y ¥m) (X1 X X Xni fi A1 X0 X Am) = (YaX... X Yo gi By X...X Bp)
O = (!, ..., 0h ¥ ) i (Yix.. XY gi BiX...X Bm) = (Z1%... X Zni i C1 X ... X Cpy)
be (n + m)- Chu morphisms. Then
@) = (Pp1,. .., Pheni Y1l oo ) Pm¥in)-
Since ®(*) and ®(?) are (n + m)- Chu morphisms, we have

f(Hm X H\,b,(b ))~g(1'[p.(z" ) x Ha,) for H.'c; x Hb, eHX; X HB,,

i=1 =1 i=1 J=1

g(Hu.wac,n-h(Hp.(y.)ch,) for T[wi x [] es € [1 ¥ % Hc,

1=l i=1 J=1 =1

Hence

f(H z; X H \bﬂl{,(%)l = Q(H i) X H ‘:l’;("J)) = h(H wipi(zi) X H ¢5)-

=1 =1 =1 f=1 =1
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That is, the diagram below commutes:

(Ths wﬁm.ln;nﬂ o))

[Ty X x [T55, Gy v [Iiay Z x T15e, C;
(11'[‘ xgsn 1¢:¢’)l lh |
[Ti=y Xi x HTm Ay ; * (0,1]

Therefore, the assertion is proved.

By Proposition 1 we can define:

1. The (n-+m) - Chu category, denoted by C, of (n-+m)-dimensional Chu spaces with (n-+m)-
Chu morphisms.

2. The (n + m)- Chu upper-category, denoted by C*, of (n + m) - dimensional Chu spaces with
(n + m) - Chu upper-morphisms.

EC = (X, XXaX...X Xn;f; A1 X Ag X ... X Ap) is an object in the (n + m) - Chu category,
then the products [[{Z, X; and [].., 4; are called the set of events (or players) and the set of states
(or sstuations), respectively.

Let & = (X1 X X3 X ... X Xn; f; A1 X Az X ... X Ap) be a (n -+ m) - Chu space. For [[f\, z; €
[Ti=: Xi and [T75, a; € [TjL, A; we define the support of H;'gl ¢ and [7L, aj by, respectively,

m

Supp(H ;) = {H a; € H Aj: f(Hz; X H aj) > 0}

i=1 j=1 i=1 i=1 j=1
and
Supp(Ha,)—{Hz,EHX f(Hz.xHa;)>0}
{=1 i=1 i=1 jm=1
For (zy,23,...,2p) e X, x Xz x ... x X, we introduce the following notations

1. The number I [T5ey &ll* = lil-lp{_i"([‘[m1 o X [[7my a5) ¢ [Tjny a5 € [Tk, Aj} is called the
upper value of [[i., .

2. The number || JT¢L, #ill. = inf{f([Ti., @ X [Ijn; a5) ¢ [Ifm; a5 € [1je, A5} is called the
lower value of ]}, .

3. The number || [T, =] = -21:(” [Ty ill* + || [Iiy @ills) is called the valued of [}, .

4. The number d(ITi, @) = || [Tw; zill* = = || [1{=; zill« is called the deviation of [T\, .

We can also define the followmg notations for the whole space ol

L. M‘(nim Xl'l 5) = !'I.lp{” |=1 z'|'” I-Ii=1 z € Hi=1 X‘}
The number M"([’[‘=1 Xi, 6) is called the upper event value of &.

2. M. (ITi=y Xi, €) = inf{| Ty &ill* + TTfs, &4 € [Ty Xi}-
The number M, ([]l, Xi, C) is called the minimaz event value of C.

8. m*([Ti=, Xua) = sup{|| [Tiay @ills : ITiay 20 € [Tia, X}

4. ma([Tiey Xi, 6) = inf{| H.=15-‘|| 1 @ € [[iny X3},

Dually, we can defined values || a,||*, ||1'[,=1a,||., [Ty asll, d(ITy=ya5) for a
state []7L.; a; € [I}L, 4;, and the numbera M*(IT7=, A,,0), M. ([T}, A;, ), m m* ([T7ey Az, ©),
ma([T7=1 4ss ) in the same way. For instance:

I ﬁ a;|* = snp{f(fI z; X H ay) Ha:; € H X:}.

=1 i=1 i= i=1
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Roughly speaking, for an event (z1,23,... ,%n) € X1 X X3X...X Xy, the upper value || [Tra; =:|*
measures the “skill” of J]{.., # in the best situation and the lower value | [Tfy #i]ls measures the
“gkil” of [[P., % in the worst situation. An event [i., 2 € 17, X; is called a strong event if
I TIR, zi]l = 1, and a null event if || [T{; @]l = 0, or equivalently supp([7s, =) = 0.

Dually, for state [[jw,a; € [}, 4; the upper value | TT7ey ajll* describes the quality of
the position [[jL, a; if a best player is staying there, and the lower value || [I7., ajl+ describes
the quality of the position [[j., a; if a worst player is staying there. A state [T a5 € [Ijm1 4
is called a winning state if || [Ij., a;]| = 1, and a dead state if [ TTwy a5l = 0, or equivalently
supp([T3=, a5) = 8.

We can define the Chu distances || [T, & — [Ii=, ul| between two events z = [Ji., =, y =
[0, w and || [Tju; 65 = IT5%, bsl| between two states a = [T}, a5 and b = []7., b by, respectively,

J=1
|z = y|| = sup{|f(]] = x I] a5) - F(JT o % [Tenl: [Jas € 11 4}
i=1 I=1 i=1 i=1 J=1 i=1
and n m n m n n
la = bl = sup{|#(T] = x T] as) = #(IT = x TL b5)1: [T s € [1 Xi}.
i=1 J=1 i=1 J=1 i=1 fe=]

A (n + m)-Chu space C is separated, see (2], if || [TjL, a5 — [ju, bl = O implies a; = by for
9=1,.,..,mand C is estensional if || [Tiey @i = [Tiwy il = O implies z; = y; fors =1,...,n.

If ¢ is both separated and extensional then we say that C is biestensional.
Clearly the Chu distances define pseudometrics on []i.., Xi and [17%, A;. Hence

Proposition 2. If & is separated (resp. extensional) then [Ty, A; (resp. [Ty X:) is a metric space
with the Chu distance. Therefore if C is biestensional then both []7, A; and [1i, Xi are metric
spaces.

We say that a (n + m)- Chu space C= (X1 %X...%x Xnifi AL X ... X Am) in the (n+m2n-0hu
catogory is complete if for any function @ : [[iL; Xi — [0, 1] there exists a state H;’;x ay € [Ijm1 4s
such that ([T, 2i) = f([Tia 2i X [Ij=, ay) for every [T, = € [Ti=, Xi. We say C fully complete
if €' is complete and separated.

For (n+m) - Chu spaces C = (Xyx...xXp; f; A1 X...Xx Ap) and D= (Yix...xYnjgi B1X...X
B,,) let M(C, D) (resp. M*(C, D)) denote the set of all (n+m)- Chu morphisms (vesp. (n+m)=Chu
upper-morphisms) from ¢ into D.

For M(&, D) # 0 we have the following proposition.

Proposition 8. Let C = (X1 X o X XnifiA1 % X Ap) an’sl D= (Yix...xYpjgi By X. . X Bp)
be {n + m) - Chu spaces. If M(C, D) # 0, then M*(ITiuy Xi, C) 2 Ma([Ti Y:, D).

Proof. In fact, if it is not the case, then

| TLad® <1 Tul" for any [Lave TT% snd Twe [ %. 0
=1 i=1 i=1

i=1 i=1 i=1
On the other hand, since M(C, D) # 0 there exists a morphism

o= (Pla---vpni\bh-"l‘bm)l

where H?=1 e n?=1 X‘ =t n?;l K and n?;l ‘p! : n:’nal BJ' = H;'n=l AJ' such that
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f(f_[ ¢ X ﬁ ¥i(bi)) = o(f[ i () X ﬁ b)

fe2l J=1 =1 J=1
for [Tiy % € [1i; Xi and [I5L, b € I17w: By

It foll_ow that " " - m "
ITT 2l = sup{f(JT @ x [Jas): [Jas € IT 4}

i=1 f=1 i=1 =1 =1
)

& > sup{ ([T o x [T w500 [T s 1 B33

i=1 J=1 J=1 J=1

= sup{g(f[ wi(z) % ﬁ by) : ﬁ by € ﬁ By}

gm=l J=1 J=1 i=1

n
= || [T es(=)lI*,
f=1
which contradicts (4). Consequently M*(I]}\, X;, &) = M.([T%, ¥, D) and the proposition is
proved.

Lt G, DecC 1 M(a, 5) # @, then way say that & is dominated by D and denote & < D.
We say that C and D are equivalent, denoted by Cw ,5, if @< Dand D =<0, and ¢ and D are
connected if either & < D or D < €. A class of (n + m) - Chu spaces § is called a connected system
if any two members of § are connected. If G ws D for every 0, D € ¢, then we say that J is an
equivalent system. A connected system is called a closed system if 9 is closed under cross products.
That is, & xo De g for every G, Degandde M(C‘. D). A complete system is a closed equivalent
system.

We say that & and D are isomorphic, denoted by e B, if € and D are isomorphic objects
in the category C of (n + m)-Chu spaces. It is easy to see that a (n + m)-Chu morphism & =
(@1r+r s @niPareee ¥n) t (Xi X oo X Xni fi AL X oo X Am) = (Y2 X o0 X Ynjgi By X ... Bpn) i8
an isomorphism if and only if ¢; : X; — ¥; foré = 1,...,n and ¢y : By — Ajforj=1,...,m
are one-to-one and onto. f & = (1,... ,Pni¥1, ... 1 ¥m) is a (n+ m) - monomorphism, then we say
that C = (X‘& XoooX XnifiAL X o0 X Ap) is a subspace of D = (Y1 X ... X Ypjgi By X ... X Bn),
denoted by C C b. Fina.llz, the (n + m) - Chu space ot = (Xp XX Xnjl=fiA1 X, X Ap) is
called the complement of C = (X1 X ... X Xn;j fi A1 X ... X Am).

Proposition 4. A (n + m)-morphism ® = (p1,... ,@ni¥1 -+ 1¥m) : ¢ — Disan+m)-
monomorphism if and only if for every i = 1,...,n, pi : Xi — Y; is one-to-one and for every
7=1,...,m, ¥y By — Aj 1s onto.

P;'o;qlf. Assume that & = (.Xg X ... X XnifiAL X ... X Ap) is a subspace of D= (Y1 x ... %
Yoi 8 By X v X Bun)y @) = (@l vy @i Vo s Gl) and BO) = (0,000, 0y 0o s i) ave
two Sn + m) - morphisms with the same target C = (X1 X ... X Xn; fij A1 X ... X Am) such that
o0(!) = @0(3),

Then
(Plpill"' )99!150:\) - ('PlP’z’:«-- |Pnp¥;) (5)
and
w’ﬂb‘n e s'lbm'l’:n) - (\bﬂb'{,- " l‘pm'lb::; ' (6)
Since ¢; is one-to-one for ¢ = 1,...,n and y; is onto for j = 1,...,m, from (5) and (8) we
infer that ‘

o=l fori=1,...,nand ¢;=9¢j for j=1,...,m.
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Hence o) = 3(3)

that is, ® is a (n + m) - monomorphism.

Proposition 6. For any (n + m) - Chu space ¢ = (X1 x Xax...x Xp; fi A1 X ... X Am) we have
1. m"‘(nial X‘va) <m (l'lm X;,&). M*(Hu_: Xua) < M‘(H.=1 X"na)'
8 mu(IThay Xi, 0) = 1 - M*(IT7.., X, 0) and m* ([T, Xi, &) = 1 = M([T7, X:, €).

Proof. 1. An easy proof is omitted.

2 ma([] %8 =int( T il : T ov € I X0}

f=1 i'=1 |'=1 |'=1

mf{mf{l—f(Hz; X Ha;) Ha; € HA }: H:ci € HX;}

i=1 ;—1 J=1 =1 i=1

lnf{lnsup{f(Hz;xHa,) Ha, HA} Hw. HX;}

i=1 J— fe=1 =1

=1 -sup{sup{f(Ha:; X Ha,) Ha, € HA,} Hm‘- € HX;}

i=1 =1 =1

= 1= sup{ [l : Hzeenx‘}

l'=l1 i=1

=1- M‘(H X, &),

1=1

m'(H X;,0+) = sup{inf{1 - f(H z; X H ay) : H a; € H A} H z; € H X:}
i=] i=1 J=1 J=1 J=1 f=1 f=1

—sup{l—sup{f(H:c; X Ha,) Ha, S HA, ﬂa:; € f[)ﬁ}

i=1 J=1 ,1=l f=1 f=1

= l—mf{aup{f(Hz. X Ha,) Ha, € HA_;} Hx;EHX‘}

J=1 J=1 J=1 =1 i=1

=1- M*(]___[ X:,0).

f=1

Of course Proposition b still holds if the set []i.; X; of events is replaced by the set J7.; 45
of states.

Observe that if m* ([T, X;,8) > M, (l'[‘_1 X, ) then || TT5s, zille > I TTie, will* for some
IThey 2 [1iey v € [T}y Xi. This means that in the worst situation the players z; (§ = 1,... ,n)
can do better than the players y; (¢ = 1,... ,n) even when y; are in the best situation. Clearly,
in this utuatxon the qualification of the set [Ii; Xi is “every un-uniform”. We say that (n + m)-
Chu space &' is event unsform (resp. state uniform) if m* ([, X, @) < M. ([T X:,C) (resp.
m* ([17ey A4,0) < M. ([T5=, A;,©)), and € is uniform if it both event and state uniform. From the
Proposition 5 we get

Proposition 8. For any uniform (n + m) - Chu space C=(XyX.. X Xnifi AL X .00 X Am)?
1. m, (T3, x‘,é) <m*([Tia 1X|16) < M. (ITi-, Xha) = M‘(I'I?gx?fng')-
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2. m*(H;LJ. A:'sa) < m.(HTm A,-,a) - M*(Hm AJla) < M‘(H,m A,-,a).
We prove following theorem

Theorem 1. Let & = (X;x X Xni fiAL X .. X Am) and D= (Y1 x...x Ynigi By X ... X Bp,)
be (n + m) - Chu spaces. If C C D then

1. M* (Hiulxilﬂa) < M(IT, Y D),

2. M (ITiay X)) 2 Mu(IT0., Y, D),

8. m* ([T Xi,€) < m* (T3, Y, D),

4 mu([Thay Xi, €) 2 mu(IT0ey Yo D).

Therefore, if € and D are isomorphic, then

5. M*(ITiy X:, 6) = M*(IT}-, i, D),

6. M..(H?,l xﬁa) - M'(H:LL Y; ﬁ):
7 m* ([Tias Xha) =m*([[iz, Y,-,ﬁ),

8. m. ([T, X, €) = m. ([T, ¥, D).

Pﬂmf- n n m m m n n
1, M"(H X;,C) = aup{sup{f(H z; X H ag) H a; € H A} Hz.- € HX;}
f=1 i=1 j=1 J=1 J=1 i=1 i=1
= SHP{WPU(H zi X H ¥5(b5)) « H by € H By} H @ € H Xi}
i=1 :=1 :=1 {m1 (=1
= Bup{sup{y(H pi(zi) X H bj) : H bj € H By} H z; € ]_'[X;}
" I=1 J=1 =1 =1
< sup{nup{g(H Yi X H by) : H bj € H By} H Y € H Y}
i=1 I=1 J=1 i=1 i=1 i=1
= sup{|| H wll* Hw € H Y:}
i=1 i=1
= M‘(H Y;, D).
i=1
2, M.(HX;,&) mf{aup{f(H @i X H as) ! H a; € HA }: Hm € HX;}
= y=l =1 {=1
= inf{sup{f(H z; X H vy(by)) : H by € II B;}: H z; € H Xi}
i=1 J=1 J=1 i=1 =1 i=1
= inf{sup{g(]] wi(ae) x [T 8,): [Tbs€ ] Bs}: [[mi € ;‘[ X}
i=1 J=1 J=1 J=1 =1 =1
= nt(l [T e« [T s € IT 0
i=1 f=1
> inf (| [Lwl* : [T w e [T %)

i=1 i=1 i=]

- M.(f[ Y, D).

i=1
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m (H X, 0) = sup{mf{f(H z; X Ha,-) : ﬁa,- € ﬁA,-} | f[z; 5 HX;}

i=1 :'=1 J=1 J=1 i=1 =1
= lml:'{mf{ai'(]_-,[ zi X H ¥5(b5)) : H bj € H By} : Hz; € H X:}
=1 J=1 Jnl. :al i=1 i=1
= sup{inf{g(H wi(zi) x H by) : H by € H By} : Hz; € HX;}
i=1 J=1 J=1 J=1 i=1 i=1
= sup(| T] pu(aa)l : T 1 € [T %0
i'ull. i=1 i=1
< sup{|| lel- Hw € H Y:}
u=1 i=1
= m‘(l‘[ Y, D)
te=]

m,.HX;,a) mf{mf{f(Hx;xHa,-) Ha,EHA} Hz;EHX,;}

im =i el el id e
mf{mf{f(H zi X ,1'.[ ¥i(b5)) ¢ 1‘[ by E,I=I1 B;}: ‘1:[13‘ G Hx;}
mf{mf{g(gp,(z;)xnb, Hb, HB, c.H;ME‘.HlX‘}
mf{lle(ze)lI- Eme.gx‘}

Zinf{ll‘gwll Hv-EHK}

= m.(ln-_[ Y, D).
f=1

3. FUZZY SPACES AND RELATIONS BETWEEN FUZZY SPACES
AND CHU SPACES

In this section we introduce a special class of Chu spaces called fussy spaces, and similarly as

(8] we show that a pre-fuzsy space is a fuzzy space if and only if it is fully complete.

By a fuszy subset of a set X = X; x X3 X ... X X, we mean any function f : X — [0,1], see
[6]. Observe that if A = A, X ... X Ay, is a subset of X, then the characteristic function x4 of A is a
fuszy subset of X. So by identifying A with x4 we can say that any subset of X is a fyzsy subset of

X. A fuzzy subset of X is also simply called a fuzsy set.

Let S denote the category of sets. For a given set X = X; X X3...% X, let X* = (X; x Xj %

.+ X Xp)* =[0,1]¥ denote the collection of all fuzsy sets of X.
For any set A C X* we define f4: X; x...x X x A—[0,1] by

fa(@yy.oo %, 6) =a(2zy,.00,2p) for (z1,...,2n,68) € X1 X ... X Xn X A
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Clearly & = (X; x X3 X ... x Xnifa;A) is a (n + 1)-dimensional Chu space. This space
is called a pre-fuzsy space on X. In the case A = (X; x X3 X ... x X,) the (n + 1)- Chu space
F(X) = (X1 x X... X Xnjfx+; X*) is uniquely determined by X, and is called the fuzsy space
associate with X, or shortly, fussy space.

We will show that

Proposition 7. Any pre-fussy space 1s separated, but not necessarily eztensional, However any fuzsy
space F(X) = (X1 X Xz X ... X Xp; fx+; X*) is dully complete and bieztensional.

Proof. We show firstly that the pre-fuzszy space is separated. Assume that

“a = b" e sup{lf(mll L TR nzma) = f(zilsal ---zmb)l : (zllzin-- ' ;5n) € InIxi'} =0.
f=]

Then

f(z1,%3,... ,2n,0) = f(z), 3, ... Zn, b) for every (z;,xg,.l.. 12n) € (X1 X Xa x...x X,).

Hence
n
a(zy, %3,... ,2p) = b(z1,23,...2n) for every (z,z3,... ' %n) € HX;.
f=1
That is @ = b and the pre-fuzsy space is separated.

Now we are going to show that the pre-fuszy space is not necessary extensional. In fact, let
A={a€(Xy,...,Xn)* :a=1}. Then for z = (#1,23,... &) # ¥ = (y1,¥2,... , Yn) We obtain

= = yll = sup{|f(21,22,... , Zn,0) = f(y1,¥2, .. .n,a)| : a € A} =0,

that is, € = (X1 % Xz X ... % Xp; fa; A) is not extensional.

In the next, we show that F(X) = (X, x X3 X ... X Xp; fx+; X*) is biextensional, Since F'(X)
is separated, it is sufficient to show that F(X) is extensional.

Assume that

”5— y“ - Hup{]f(m.z:.--- :zma) = .f(yhyﬂl”'yma” 1a € x-} =0,
thus, f(21,23,... ,2n,a) = f(y1,v2,... ,yn,a) for all a € X*.
Hence
a(zy, 23, ... ,2,) - a(y1,y2,...yn) for all a € X*,
Let a = x(z), then a(z, z3,...,2,) = 1. It implies that a(y) = X(z} (y) = 1, therefore z = y.
Finnaly, we claim that F(X) = (X; x X3 X ... X Xn; [x+; X*) is complete.
Let ¢ : X; x X3 XX Xp = (0,1] be a map of set X = X; x X3 X ...x X, into the interval
[0,1]. Then ¢ € X*. Thus, with a = ¢ € X* we have
f(z1,%3,... ,2n,0) = p(21,23,...2,) for every (%1, 22, ... ,@0) EX.
The theorem is peoved.

Since the fuszy space FI(X) = (X); X X3 X ... X Xp; Fx+; X*) is biextensional, by Proposition
1 the Chu distance on X = X, x X3 X ... x X,, defines a metric. It is easy to see that it is a discrete
metric.
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The catagbry of pre-fuzsy spaces with (n + 1) - Chu morphisms is called the pre-fuzsy category
and denoted by 7p. The fuzsy category, denoted by 7, is the subcategory of Fp consisting of fuzsy
spaces.

For any map a: X = X; X Xa X ... X X,— Y=Y, xY;x...xY, we define the conjugate
a*: Y* — X* of a by the formula

o*(a)(z) = a(a(z)) for every z€ X and a € Y

It is easy to see that

(Ba)* = a*B* forevery a: X =Y and f: Y = Z.

Observe that a (n+1) - Chu morphism @ : & = (X1 X Xa X ... X Xnj fa; 4) = D= (YyxYsx
... X Yni fp; B) in the pre-fussy category is a collection of maps ® = (1,%2,..+ 1 ©ni ¥), where

fIiPs : f[xi - ﬁYd with (ﬁ Pi)(]_n-[ ) = f[m(z.-) € flﬁ.
=1 =1

=1 i=1 i1=1 i=1 =1
and ¢ : B— A satisfy the condition

n n
w(B)(IT =) = o(]] @i(a)) for (@1,... 2n,b) € X x B. (8)
=1 i=1
In fact, since bellow diagram commutes
{ “_ Pl )
H:',lX;XB n“ irn :I-I?EL“XB
(IH:-; xl"'b)l lfn
I'I:-L; Xix A — |0'1|
fa

we have for every []{., z; € [[{s, Xiand b€ B

o(TT il = fo ([T e1(20, 8

{=1 f=1

= fA(f_[ zi,$(b))

i=1
= w(O)(J] =)
i=1
That is (8) is claimed.
Thus, Proposition 7 shows that, any fuszy space F(X) = (X1 x X3 X ... X Xni fxe; X*)
associated with a set X is fully complete. Conversely, we have the following theorem.

Theorem 2. A (n+ 1) - Chu space C= (X1 X Xa X ... X Xnj f; A) 1s a fuszy space if C is fully
complete,

Proof, Let & = (X; x X3 X ... x Xn; f; A) be a fully complete (n + 1)- Chu space. Then F(X) =
(X1 X X3 X ... X Xp; fx+; X*) is a fuzsy space. We will show that & and F'(X) are isomorphic. To
see this we first define 7' : A — X* by

T(a)f (21,3, %) = f(21,%3,...%n, ) for every (21, %3,+. 1 2n) € (X1 X Xa X .00 X X,). (9)
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We claim that 7' is one-to-one. In fact, assume that a,b € A and a # b. Since C is separated, there
exists z € X such that f(z1,23,... ,%n,a) # f(21,22,... ,2n,b). Hence T'(a) # T'(b).

To see that T' is onto, let ¢ € X*. Then o : X — [0, 1]. Since C is state complete there exists
a state a € A such that

@(z1,22,... ,%n) = f(®1,23,...20,a) for every (z1,22,... ,2n) € (X1 X X3 X ... X Xp).

It follows that T'(a) = ¢.
Now we define

O = (1x,T"‘):6s (X1 xXax..X Xn; f;A) = F(X) = (X1 x X3 %X ...%x Xni fx+; X*),

U= (1x,T): F(X) = (X1 % Xa X ... X Xni fxo; X*) = C = (X1 X Xa X ... x Xn; f; A).
From (7) and (9) we get

£(5,774(a) = TT"1(a)(z) = a(a) = fx+(za)
for every z € X and a € X*, and by (9)

fx+(,T(a)) = T(a)(2) = f(z,a)

for every © € X and a € A, Therefore ® = (1x,T~*) and ¥ = (1x,T) are (n + 1) - Chu morphisms. '

It is easy to see that V& = 1 and ®¥ = 1p(x). Consequently ¢ and F(&") are isomorphic,
and the theorem is proved.

Example 2 (In forming a National Football Team to win a match). Given the set A = A; x Az X
As X A4, by a game space over A = A; X Az x Az x Ay we mean a 15-dimensional Chu space
6= (X1 X Xg X X Xu;f;A; X X A4), where

1. X;,i=1,...,11 is a set of all players selected from Football Clubs in Serie A, they can play

at the position ¢ (Goal-keeper, right Back, left Back, right Advanced Guard, left Advanced Guard,
Forward,...). .

2. Ay is the set consisting of two possibilities: home field or other field.

8. Aj is the attitude of Refree (prejudice, not prejudice,...).

4. Aj is weather condition (hot, cold, warm,...).

5. A4 is condition of Football field (dry, wet, slippery,...).

8. f(%1,... ,&11,61,... ,a4) is the winning probability of Soccer Team at the situation (ay, az, as, a4).
In this example the function f: X; X ... x X;1 X A; X ... X A4 — [0,1] takes only three values:

L=0.D=%.W=1.
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