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ON SINGULAR HAMMERSTEIN EQUATIONS

NGUYEN BUONG

Abstract. In this paper the generalized solution of the singular Hammersteln equations in reflexlve
Banach spaces s defined and found by the operator method of regularization, Convergence rate of the
regularized solution is studied. An application in mechanlics is glven for illustration.

1, INTRODUCTION

Let X be a real reflexive Banach space having E-property and X* be dual space of X, For the
sake of simplicity and without of any confresion norms of X and X* will be denoted by the same
symbol ||.|. We write (z*,z) instead of z*(z) for z* € X*andz € X. Let F;, i = 1,2, be
monotone, continuous and bounded operators with domain of definition D(Fy) € X, D(F3) € X*
and range R(Fy) € D(F3), R(F;) ¢ X,

Consider the operator equation of Hammerstein type
s+ FF(z)=f, feX (1.1)

Equation (1.1) is called to be regular if D(F}) = X and D(F;) = X*, and singular otherwise. The
existence of solutions of the regular equation (1.1) was studied in (2], [13] and [14]. The singular
case of (1.1) was firstly investigated in (3], [4]. In this paper, basing on the results in the theory of
system of variational inequalities (see [8]), the method of regularization (see [5]) and by introducing
a new concept of solution for (1.1), called generalized solution, we give a method of approximating
this solution when F; are known approximatively by F}'.

Let G;, 1 = 1,2, be the convex and closed subsets of X and X*, respectively, such that
G, C D(IM), G3 € D(F3), and int G; # #.

Definition. The element zo € G is called the generalized solution of (1.1), if there exists an element
zf € G such that

(Fy(z0) — =g,z — z0) 2 0, V& € Gy, (1.2)
(Fa(2)) + =0 — f,2° — a35) 2 0, V&' € Gy, (1.8)

It means that the pair [zo, z§) is the solution of (1.2) and (1.3). If (1.1) is regular, then the classical
solution o is also the generalized solution with zf = Fy(zo), G1 = X and G3 = X*, because zp and
z§ satisfy the system of two equations

F1(2) -z''=0, z-+ Fg(ﬂ:‘) - f=0, (1.4)

Obviously, they satisfy (1.2) and (1.3). Inversely, if the generalized solution zo € int Gy and z5 €
int G, then zo is the classical solution, because o and zj satisfy the system (1.4) (see [12]). If
both the sets G; are bounded, the generalized solution always exists (see [1]). Moreover, if both the
operators Fy are strictly monotone, then there exists a unique solution of (1.2) and (1.3), hence there
exists a unique generalized eolution of (1.1). Repeating entirely the proof of Theorems X.1 and X.2
in [12], we have two results on the existence of the generalized solution. Fiphl 0 aTaEs 1
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Theorem 1.1, Let F; be hemicontinuous monotone operators, and Gy C D(Fy) and G3 C D(F3) be
the convez and closed subsets. Also let F3(0) = 0. Suppose that IR > 0: (Fi(u),u) <0 — |u|| < R.
Then there exigts a generalized solution of (1.1).

Theorem 1.2. Suppose that IR’ > 0: (Fy(z),2z) < 0— | Fy(z)|| < R’ and that Fy is bounded with
F3(0) = 0. Then there ezists a generalized solution of (1.1) (|| Fy(z0)| < R').

From now on, the symbols — and — denote weak convergence and convergence in norm,
respectively.

2. MAIN RESULTS
Let Uy be the standard dual mapping of X, i.e., U; is a mapping from X onto X* having the
property (see [14])
(Ui(a),2) = |Us(a)]ll|=] = [|=]?, V=€ X.
Also let Uz : X* — X be the standard dual mapping of X*,
Consider the system of variational inequalities: find z € Q;, 2}, € G5 such that
(Fl(za)+aul(5a)_$;|5_3u>Zoi V&"EGI) (2'1)
(Fa(zh) + ala(ah) + 24 — f, 8" — 4) 2 0, Vz* € Ga, (2.2)

where o is a small parameter. We have the following result.

Theorem 2.1. For each a > 0 the system of inequalities (2.1) and (£.8) has a unigue solution
[%a, z5]. Moreover, the sequence {zq} converges to a generalized solution of (1.1), as a — 0.

If instead of Fy it is only known the monotone hemicontinuous approximations F}* such that
171 () = F'(2)]l < hgi(ll2]), = € Gy,
I1Fa(2*) = F ()| < hga(ll=*[l), =* € Ga, h—0,
gi(t) < a; + bst,
where g;(t) are the real and nondecreasing functions with g(0) = 0, g(t) — +oo, as t — o0,
then we can define a regularized solution as the solutions of the variational ine;ualities: find zpo €
G1, Zhq € Gg such that
(Ffl(zha) + an, (ﬁha) - x;‘u’ T - $).¢> 2 0, VZ E Gl’ (2-3)
(FMaha) + aUs(2ha) + &ha — f, 2* - Tha) 2 0, Vz* € Gy, (2.4)

Theorem 2.2. For each a > 0 system (2.8), (2.4) has a unique solution [zhq, 3}, ], and if hja — 0,
the sequence {zna} converges to a generalized solution of (1.1).

If X and X* are uniformly convex, the solutions z, or z,; can be found by the methods in
(8], because the operators Fi, = F; + alj, Ffl‘, = F} + al;, 1 =1, 2, for each a > 0, are uniformly
monotone. Our next result in this paper is concerned with the convergence rates of the sequences
{za} and {zpa}.

Let the mappings U; satisfy the following conditions

(Ui(yi) = Ui(wh), vf — vh) = mullyt = ]|, mi >0, & 22, (2.5)
(U (vf) = Us(wd) || < e Ra) Il — will”, O<wmi <1, (2.6)

where yf, y; € X or X* on dependence of i = 1 or 2, respectively, and ¢;(R;), R; > 0, are the positive
increasing functions on R; = max{||y} ||, lu5]l} (see [11}).
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Assume that o is a solution in the classical sense of the equation (1.1).

Theorem 2.8. Suppose that the following condstions hold:

(i) Fy ss Frdchet differentiable at some neighborhood Uy of zo 8; — 1-times if 8; = [81], the
integer part of sy, [s1]-times if 8, # [81], and Fy is Fréchet differentiable at some nesghborhood Vo of
@5 83 — 1-times, 1f 83 = [a3], [e3]-times 1f 85 # s3],

(1) there ezists a constant L > 0 such that

128 (20) = F{® ()| < Ellao ~ yll, Vy € U,
175 (3) — FM ()1 < Ellzg = vl Vo € Vo,
for Ff") ko= si—1dfoy =[a], k=[] if o # [85], and if [8;] > 3, then Fi) (gg) = ... = F® (20) = 0,
and F,m(xa) == Ff"l(:c;) =0, ’
(1) there exists an element z' € X such that
(1 + F3(25)" F{(wo)")a* = Fj(2})* Us (o) — Ua(s3),
if 81 = [sy] then L||z*|| < mysy), and if 85 = [sa] then L||F}(zo)** — Uy (mo)|| < mgagl
Then, if o 1s chosen such that a ~ h?, 0 < p<1, then

l#ha = 20| < O(K®/%), 6 = min {p,1- p}.

3. PROOFS

Following (6], consider the Banach space Z = X X X* with the norm of any element 2 € Z, # =
[z,2*], z€ X, 2* € X* defined by

l2ll = (=] + [|=*[|2)*/2.

Then, the system of equations (1.4) can be written in the form
F(z) = f, (8.1)

where 7(2) = [Fy(z) - z*, 2 + Fy(2*)],  =1[0,7]. It is easy to see that ¥ is a monotone operator

from Z into Z* = X* x X. Analogously, the systems of variational inequalities (1.2), (1.3) and (2.1),
(2.2) can be written in the form

(F(20) = F 2~ 2) 20, V2 €@, (3.2)

(7 (2a) + aJ(2q) = F, 2 — 2.) 20, V2 €G, (8.3)

respectively, where G == Q; x G3, 2z = (%0, 23], 2a = [Za, gy and J is the standard dual mapping

of the space Z. From the results in the theory of regularization for variational inequalities (see [10])

we obtain that (3.3) has a unique solution 24 := 24, 2%), ||z4|| — |Zoll, Za — o, a8 @ — 0. Because
X possesses E-property, the sequence {24} converges strongly to zo. Theorem 2.1 is proved.

We rewrite the system (2.3) and (2.4) in the form
(7"(3ha) + aJ(2ha) - f, 2 — Za) 20, V2 EQG,
where zha = (Tha, Z},), F*(3) = [F]}(z) - &*, 2 + Ff(2*)] and is monotone. It is easy to verify that
17%(2) = #(2)Il < hg(|12ll), = € G,

where g(t) = max {g1(t), ga(t)} and it has all the same properties as g;(t) do. If h/a — 0, then
Tha = %o, 88 & — 0 (see [7]). Theorem 2.2 is proved.
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Put
¢ = my||Tha = Tol|** + mal|zha — 2o **.

Basing on (2.3)-(2.8) we have got
¢ S(Ui(20), 0 = Zha) + (Va(28), 25 — Tha)
+ é[(:ﬂfm - F{'(-’Bha): Tha — -‘~'D> + (f = Zha — Fih(m;a)l mia o= xﬁ)] ) (3'4).

Put 2? = U, (o) - F!(z0)*z*. From condition (iii) of Theorem 2.3 it follows that z* and z? (€ X*)
satisfy the system of following equalities

F{(z0)* 2" + 2? = Uy (m0),
Fy(z5)* 2® — z* = Us(a3).

Therefore, from (3.4), the monotone property of F; and that zo is a solution of (1.1) in the classical
gense, it implies that

¢ <{U1(%0), %o — zha) + (Ua(23), 2§ — o)
+ %[("r‘m = &5, Bha = %o) + (%0 = Zha) Tha — %)
+ (Fy(20) ~ FM(ha), 5ha — 20) + (Fa(ab) = F(2ha), tha — b))
<(U1(20), 20 = @hna) + (Ua(20), 35 — za)
T é[(zi-m ~ @8, Tha — T0) + (%0 = Tha) Tha = )
+ (Fy(0) = Fi(2ha), oha - 50) + (Fa(ab) ~ Fa(zha): 2ha — 20)]

Ch " .
+ = (l#na = @ol| + |74 — =5}

Ch i "
"a—(”-"hu = o + [|[Zha = wo”)

+ (2%, - Zha) + (z*, F{(20) (%0 — Zha))
+ (@', 38 — zha) + (2%, F§(3) (25 — 2ha))s (3.5)

<

where C is some positive constant such that g1 (||znall),ga(||zhe]l) £ C. First, consider the case
8 =[8],t=1, 2. As
F{(20)(%0 = zha) = Fi(20) = Fi(2ha) + rha;
Fy(a5) (a5 — 7o) = Fa(ap) = Fa(2ha) + Fhas

L ,, L
Inall € llena = 2ol [Fnall S lizha = 251,
1 82

form the inequality (3.5) it follows

Ch . ¥
¢ S?(”Eha = zo|| + || #ha = 20)

+ (23, 20 = Zha) + (= 2*, 2} = &) + (2}, Fi(20) = Fi(2na))

(e, Ba(e) - Faie)) + 2L e - o

L|=2|| , .
+ Azl jag, - e
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Ch. \
S—(ll#na = 20| + l|zhq = =5l)

+ (511 W;u: . Fl(zha)) + <5’: = %ha— FB(’;::))
Ul o 4 Uy, e
3
Ch
—
1

+ a{z', Ui (zha)) + a(a?, Ua(2ha)) + g!f_,u""'ha - @o||**
+ Uy, — g

Ch . .
ST(”’"MI - go|| + [|eha = 7o)

S—(ll#ha = @0l + l|zha — =3]|)

L)zt
+ ol lznall + I Nlahal) + L2 fona - aof

Li|=z3, . "
A= gp, - gy
3
Hence, i 3
m (1 - ﬂ{”;l})llm - ao|** < O(h” + h'~7). (8.6)
Consequently, '

lzna = 2ol < O(A”*).
If s; # [8;] for one or both the two numbers s;, for example s; # [s1], then

[Pnell < ﬂﬁ”z’"‘ — go[lesl+?

and the left-hand side of (3.6) will be replaced by

1
my([a1] + 1)!

Because ||zpa — zo|| = 0, and [s;] + 1 — 81 > 0, then
_ L=

(IBL] + 1)!

for sufficiently small a. The case s3 # [s3] and both of the two numbers s;,83 are not integer is
considered analogously. This remark completes the proof of Theorem 2.3.

my (1 - ha — 20|11+ 4) [ ng = o] .

”-Wm _ %”lu]-bl-u > 1/2

4. APPLICATION

Consider here an annular elastic membrane under the action of axisymmetric surface loads
and uniform radial edge stresses or displacements within the Foppl-Henky theory.- This leads us to
consider the nonlinear differential equation

v +38y//z+2R%(z)/y? =0, 0<a<z <1, (4.1)

with different kind of boundary conditions, where R(z) is nondecreasing with R(a) = 0. By means of
appropriate Green function (see [6]), the problem can be written as integral equation of the following
form

V(e) = 1(a) = [ Martlole vt
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where the following conditions are fulfilled:

(i) g: [0,1] X [¢,00) — R is Lipschite continuous for every & > 0;
(i) g(t,.): Rt — R is nondecreasing for each ¢ € [0,1];
(iii) The kernel k(z,t) is continuous, symmetric, and positive semidefined, i.e.,

'/: /01 k(z, t)h(z)h(t)dzdt > 0, Vh € L3(0,1];

(iv) f is continuous.
To apply our above theoretical results, we take X = Xt = L,[0,1],

(Fie)(t) = g(t, (t), ©(t) 20, a.e.,p(t) € La|0, 1],

(Fah)(t) = j; " k(t, o)h(s)ds, h(s) € La[0, 1]

Therefore, Ga = L3[0,1), G1 = {p € L3(0,1], ¢(t) 2 0, ae.}. For the case R? = 1, and the
boundary conditions y'(0) = 0, y(1) = § > 0 the classical positive solution exists uniquely (see [9]).
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