CONVERGENCE RATES IN REGULARIZATION FOR EQUATIONS INVOLVING ACCRETIVE OPERATORS

where He is y'. In , at is that, A. is the it is the apparent of strate properties.

NGUYEN BUONG

Abstract. The aim of this paper is to give a theoretical analysis of convergence rates of the regularized solutions for operator equations involving m-accretive operators and of their convergence rates in combination with finite-dimensional approximations. An application to nonlinear integral equations is considered for illustration.

1. INTRODUCTION and to and W. dodogmad para monit of

Let X be a real reflexive Banach space and X^* be its dual space. For the sake of simplicity, norms of X and X^* will be denoted by one symbol $\|\cdot\|$. We write $\langle x^*, x \rangle$ instead of $x^*(x)$ for $x^* \in X^*$ and $x \in X$. Let A be a m-accretive operator in X, i.e. [17]

i) $\langle A(x+h) - A(x), J(h) \rangle \geq 0$, $\forall x, h \in X$, where J is the dual mapping of X, i.e. the mapping from X onto X^* satisfies the condition

$$\langle J(x), x \rangle = ||x||^2 = ||J(x)||^2, \ \forall x \in X,$$

ii) $R(A + \lambda I) = X$ for each $\lambda > 0$, where R(A) denotes the range of A and I is the identity operator in X.

We are interested in solving the ill-posed operator equation [15]

$$A(x) = f, f \in X. \tag{1.1}$$

Without additional conditions on the structure of A, as strongly or uniformly accretive property, problem (1.1) is, in general, an ill-posed one [1, 13, 14]. In order to solve it we have to use stable methods. A widely used and effective method is the variational version of Tikhonov regularization [11] that consists of minimizing the functional

$$||A(x) - f_{\delta}||^2 + \alpha ||x||^2$$
, over X, (1.2)

where $\alpha > 0$ is a parameter of regularization, and f_{δ} are approximations for f:

$$||f_{\delta}-f||<\delta,\ \delta\to0.$$

The aspects of existence, convergence and stability for the solutions of (1.2) have been established in [4, 15].

For given equation (1.1) involving m-accretive operators there is another version of Tikhonov regularization that consists of solving the regularized equation (see [1], [14])

$$A(x) + \alpha(x - x_*) = f_{\delta_*} \tag{1.3}$$

where x_* is some fixed element of X. For finding the solution x_{α}^{δ} of (1.3) one can use the iterative methods (see [3, 11, 12]). Actually, in order to use them first we have to approximate (1.3) by the sequence of finite-dimensional problems

$$A_n(x) + \alpha(x - x_*^n) = f_\delta^n, x \in X_n,$$

where $f_{\delta}^{n} = P_{n}f_{\delta}$, $x_{*}^{n} = P_{n}x_{*}$, $A_{n} = P_{n}AP_{n}$, P_{n} is a sequence of linear projections from X onto X_{n} , $P_{n}x \to x$, $\forall x \in X$, $||P_{n}|| \le c$, c - some positive constant, and X_{n} is the sequence of finite-dimensional subspaces of X such that

$$X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots \subseteq X$$
.

It's easy to see that if A is m-accretive, A_n are m-accretive, too. The aspects of existence and convergence of the solutions $x_{\alpha n}^{\delta}$ of (1.4) to the solution x_{α}^{δ} of (1.3), for each $\alpha > 0$, has been studied in [17]. The question under which conditions the sequence $x_{\alpha n}^{\delta}$ converges to a solution x_0 of (1.1), as α , $\delta \to 0$ and $n \to \infty$, was considered in [7]. The main purpose of this paper is the theoretical analysis of convergence rates of the sequences $\{x_{\alpha}^{\delta}\}$ and $\{x_{\alpha n}^{\delta}\}$ in Section 2. In Section 3 an application in the theory of nonlinear integral equations is considered for illustration.

Note that for the variational version of Tikhonov regularisation this question has been studied in [4]. It was showed in [4] and [5] that the solutions of the variational version of the Tikhonov regularisation converge to a solution x_0 of (1.1) if $\gamma_n = ||(I - P_n)x_0|| = o(\alpha(n))$ for the case when A is linear and bounded. When A is a nonlinear monotone operator these problems are investigated in [8].

Here and below, the symbols \rightarrow and \rightarrow denote the strong convergence and the weak convergence, respectively. The symbol $a \sim b$ means a = O(b) and b = O(a).

2. MAIN RESULTS

Theorem 2.1. Assume that the following conditions hold:

- (i) A is twice-Fréchet differentiable with $||A''(x)|| \leq M$, M is some positive constant,
- (ii) there exists an element $v \in X$ such that

$$A'(x_0)v=x_0-x_*$$

(iii) $\|v\|M < 2$.

Then, if α is chosen such that $\alpha \sim \delta^{\theta}$, $0 < \theta < 1$, we have

$$||x_{\alpha}^{\delta} - x_{0}|| = O(\delta^{\mu}), \quad \mu = \min\{\theta, 1 - \theta\}.$$

Proof. From (1.1) and (1.3) it follows

$$A(x_{\alpha}^{\delta})-A(x_0)+\alpha(x_{\alpha}^{\delta}-x_0)=f_{\delta}-f-\alpha(x_0-x_*).$$

Put

$$P_{\alpha(\delta)} = \int_0^1 A'(x_0 + t(x_\alpha^\delta - x_0))dt + \alpha I.$$

Since Fréchet derivative of any accretive operators is also accretive, then $P_{\alpha(\delta)}$ has the inversion $P_{\alpha(\delta)}^{-1}$ with $\|P_{\alpha(\delta)}^{-1}\| \leq 1/\alpha$. Consequently, we have

$$\begin{aligned} \|x_{\alpha}^{\delta} - x_{0}\| &\leq \delta/\alpha + \alpha \|P_{\alpha(\delta)}^{-1}(x_{0} - x_{*})\| \\ &\leq \delta/\alpha + \alpha \left[\|P_{\alpha(\delta)}^{-1}(P_{\alpha(\delta)} + A'(x_{0}) - P_{\alpha(\delta)})v\| \right] \\ &\leq \delta/\alpha + \alpha \|v\| + \|(P_{\alpha(\delta)} - A'(x_{0}))v\| \\ &\leq \delta/\alpha + 2\alpha \|v\| + \|v\|M\|x_{\alpha}^{\delta} - x_{0}\|/2. \end{aligned}$$

Therefore,

$$(1-\frac{\|v\|M}{2})\|x_{\alpha}^{\delta}-x_{0}\|\leq \delta/\alpha+2\alpha\|v\|.$$

Hence,

$$||x_{\alpha}^{\delta}-x_{0}||\leq O(\delta^{\mu}).$$

Then, $||x_{\alpha}^{\delta}-x_{0}||=O(\delta^{\mu})$ (see [2]).

Remark. We can consider the case, when instead of A we know its approximations A_h which are also m-accretive and such that

$$||A_h(x) - A(x)|| \leq hg(||x||), \ \forall x \in X,$$

where g(t) is some positive nondecreasing real function with g(0) = 0 (see [14]). It is not difficult to prove that if conditions (i) - (iii) of Theorem 2.1 hold, and if α is chosen such that $\alpha \sim (h+\delta)^{\theta}$, then the solution $x_{\alpha h}^{\delta}$ of the equation

$$A_h(x) + \alpha(x - x_*) = f_{\delta} \tag{2.1}$$

converges to the solution x_0 of (1.1) and

$$||x_{\alpha h}^{\delta}-x_0||=O((\delta+h)^{\mu}).$$

Theorem 2.2. Suppose that conditions (i) - (ii) of Theorem 2.1 hold, c||v||M < 2, and α is chosen such that $\alpha \sim \delta^{\theta_1} + \gamma_n^{\theta_2}$, $0 < \theta_i < 1$. Then we have

$$||x_{\alpha n}^{\delta}-x_{0}||=O(\delta^{\mu_{1}}+\gamma_{n}^{\mu_{2}}),\ \mu_{i}=\min\{\theta_{i},1-\theta_{i}\}.$$

Proof. First, we estimate the value $||x_{\alpha n}^{\delta} - x_{0}^{n}||$, where $x_{0}^{n} = P_{n}x_{0}$. From (1.1) and (1.4) it implies that

$$A^{n}(x_{\alpha n}^{\delta}) - A^{n}(x_{0}^{n}) + \alpha(x_{\alpha n}^{\delta} - x_{0}^{n}) = f_{\delta}^{n} - f^{n} - \alpha P_{n}(x_{0} - x_{*}) + P_{n}(A(x_{0}) - A(x_{0}^{n})), f^{n} = P_{n}f.$$

Put

$$P_{\alpha(\delta)}^{n} = \int_{0}^{1} P_{n} A'(x_{0}^{n} + t(x_{\alpha n}^{\delta} - x_{0}^{n})) dt + \alpha I_{n},$$

where I_n denotes the identity operator in X_n . Clearly, the operator $P_{\alpha(\delta)}^n$ is linear, bounded, and has the inversion $P_{\alpha(\delta)}^{n(-1)}: X_n \to X_n$ with $\|P_{\alpha(\delta)}^{n(-1)}\| \le 1/\alpha$. Since

$$\begin{split} \|P_{\alpha(\delta)}^{n(-1)}P_{n}(f_{\delta}-f)\| &\leq c\delta/\alpha, \\ \|P_{\alpha(\delta)}^{n(-1)}P_{n}(A(x_{0})-A(x_{0}^{n}))\| &= \|P_{\alpha(\delta)}^{n(-1)}P_{n}(A'(x_{0})(P_{n}-I)x_{0}) \\ &+ \frac{1}{2}A''(x_{0}+\tau(P_{n}-I)x_{0})(P_{n}-I)x_{0}(P_{n}-I)x_{0})\|, \ 0 < \tau < 1, \\ &\leq c\|A'(x_{0})\|\gamma_{n}/\alpha + cM\gamma_{n}^{2}/(2\alpha) \leq O(\gamma_{n}/\alpha) \\ \alpha\|P_{\alpha(\delta)}^{n(-1)}P_{n}(x_{0}-x_{*})\| &= \alpha\|P_{\alpha(\delta)}^{n(-1)}(P_{\alpha(\delta)}^{n}+P_{n}A'(x_{0})-P_{\alpha(\delta)}^{n})v\| \\ &\leq \alpha\|v\|(1+c)+\|\int_{0}^{1}P_{n}(A'(x_{0})-A'(x_{0}^{n}+t(x_{\alpha n}^{\delta}-x_{0}^{n}))vdt\| \\ \alpha\|v\|(1+c)+c\|v\|M\gamma_{n}+\frac{c\|v\|M}{2}\|x_{\alpha n}^{\delta}-x_{0}^{n}\|. \end{split}$$

Therefore,

$$||x_{\alpha n}^{\delta} - x_0^n|| \le O((\delta + \gamma_n)/\alpha + \alpha).$$

Then,

$$||x_{an}^{\delta}-x_{0}^{n}||=O(\delta^{\mu_{1}}+\gamma_{n}^{\mu_{2}}).$$

Hence,

$$\|x_\alpha^\delta-x_0\|=O\big(\delta^{\mu_1}+\gamma_n^{\mu_2}\big).$$

Now, equation (2.1) can be approximated by the sequence finite-dimensional problems

$$A_h^n(x) + \alpha(x - x_*^n) = f_\delta^n, \tag{2.2}$$

where $A_h^n = P_n A_h P_n$, are also m-accretive, and equation (2.2) has a unique solution $x_{\alpha\delta}^{hn} \in X_n$. We have the following result.

Theorem 2.3. Assume that conditions (i) - (ii) of Theorem 2.1 hold, c||v||M < 2, and α is chosen such that $\alpha \sim (\delta + h)^{\theta_1} + \gamma_n^{\theta_2}$. Then

$$||x_{\alpha\delta}^{hn}-x_0||=O((\delta+h)^{\mu_1}+\gamma_n^{\mu_2}).$$

The proof of the theorem is completely similar as the proof of Theorem 2.2. Therefore, we omit it here.

8. APPLICATION

We can use the results obtained in Section 2 to solve the nonlinear integral equations of Hammerstein's type

$$x(s) - \int_{\Omega} k(s,t)F(x(t))dt = f(s), \qquad (3.1)$$

where F(t) is a real nonlinear function satisfying the condition

$$|F(t)| \le a + b|t|, \ a, b > 0,$$

 $f(s) \in L_p[\Omega]$, the space of p-summable functions in σ -finite measure set $\Omega \subseteq \mathbb{R}^n$, the kernel function k(s,t) is such that the operator K in $L_p[\Omega]$ defined by

$$(Kx)(s) = \int_{\Omega} k(s,t)x(t)dt$$

has an eigenvalue $\lambda = 1$. If the operator G defined by

$$G(x)(s) = \int_{\Omega} k(s,t) F(x(t)) dt$$

maps $L_p[\Omega]$ into $L_p[\Omega]$ [12], and F(t) is Lipschitz continuous with Lipschitz constant $||K||^{-1}$, then I-G is accretive (see [7]). If we want to solve (3.1) by the collocation-method (see [6]), then the important condition which needs to be satisfied is that $KG'(x_0)$ does not have 1 as an eigenvalue, where $x_0(t)$ is a solution of (3.1). This fact is equivalent to that $I-KG'(x_0)$ has to have the bounded inversion. In applying our result, we can obtain the convergence rates under the weaker condition: the range of $I-KG'(x_0)$ contains the element x_0-x_* . Let the subsets Ω_j , j=1,2,...,m, be such that $\bigcup_{j=1}^m \Omega_j = \Omega$. Denote by $f_j(t)$ the characteristic function of Ω_j . Then the linear combination of $\{f_1, f_2, ..., f_m\}$ is the subspace $L_p(m)$ of the space $L_p(\Omega)$. We can choose

$$P_m f = \sum_{j=1}^m \frac{1}{(m\mu(\Omega_j))^{1/q}} \int_{\Omega_j} f(t) dt,$$

where $p^{-1}+q^{-1}=1$. Then $||P_m||=1$ (see, [17]), and $||(I-P_m)\phi||=O(1/m)$, $\forall \phi \in L_p(\Omega)$ (see [10]). Thus, the finite-dimensional regularized equation (1.4) in this case has a form

$$(1+\alpha)\int_{\Omega_j} x(s)ds - \int_{\Omega_j} \int_{\Omega} k(s,t) F\left(\sum_{j=1}^m \frac{1}{(m\mu(\Omega_j))^{1/q}} \int_{\Omega_j} x(t)dt\right) dt ds$$

$$= \int_{\Omega_j} f(s)ds, \ j = 1, ..., m.$$
(3.2)

Put

$$y_j = \int_{\Omega_s} y(s) ds.$$

We have the following system of nonlinear algebraic equations with unknowns y_j , j = 1, 2, ...m.

$$(1+lpha)y_j-b_jF(\sum_{j=1}^mc_jy_j)=f_j,$$
 $b_j=\int_{\Omega_s}(\int_{\Omega}k(s,t)dt)ds,\ c_j=rac{1}{(m\mu(\Omega_j))^{1/q}},\ f_j=\int_{\Omega_s}f(s)ds.$

This system of equations can be solved by the methods presented in [9].

REFERENCES

- [1] Alber Ja. I., On solution by method of regularization for operator equation of the first kind involving accretive mappings in Banach spaces, *Differential Equations XI* (1975) 2242-2248 (Russian).
- [2] Bakushinsky A. and Goncharsky A., Ill-posed problems: Theory and Applications, Dordrecht Boston London, Kluwer Acad. Publishers 1994.
- [3] Chidume C. E., An Iterative Process for Nonlinear Lipschitzian Strongly accretive Mappings in L_p Spaces, J. of Math. Analysis and Appl. 151 (1990) 453-461.
- [4] Engl W. H., Kunish K., and Neubauer A., Convergence rates for Tikhonov regularization of non-linear ill-posed problems, *Inverse Problems* V (1989) 523-540.
- [5] Groetsch C. W., On a Regularization-Ritz method for Fredholm equation of the first kind, J. of Integral Equations IV (1982) 173-182.
- [6] Kumar S., Superconvergence of a Collocation type method for Hammerstein equations, IMA Journal of Numerical Analysis 7 (1987) 313-325.
- [7] Nguyen Buong, Projection-regularization method and ill-posedness for equations involving accretive operators, Math. Journal 20 (1992) 33-39.
- [8] Nguyen Buong, On ill-posed problems in Banach spaces, Bull. South-East Mathematical Journal 21 (1997) 95-103.
- [9] Ostrowski A.M., Solution of equations in Euclidean and Banach Spaces, Acad. Press, New York, London, 1973.
- [10] Prenter P. M., Splines and Variational Methods, New York, London, Sydney, Toronto, Wiley-Interscience Publ., 1975.
- [11] Reich S., Approximating zeros of accretive operators, Proc. AMS 51 (1975) 381-384.
- [12] Reich S., An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Analysis: Theory, Methods and Applications 2 (1978) 85-92.
- [13] Ryazanseva I. P., Regularization for equation involving accretive operators by a method of successive approximations, Sibir's Math. J. XVI (1980) 223-226 (Russian).
- [14] Ryazanseva I. P., On nonlinear operator equations involving accretive mappings, Izvestia Vyschix Uchebniz Zavedenii Math. 1 (1985) 42-46 (Russian).
- [15] Tikhonov A. N. and Arsenin V. Y., Solutions of Ill-Posed Problems, Willey, New-York, 1977.
- [16] Vainberg M. M., Variational Methods of Investigation for Nonlinear Operators, Gostexizdat, 1956 (Russian).
- [17] Vainberg M. M., Variational Methods and Method of Monotone Operators, Moscow, Mir, 1972 (Russian).

Received December 30, 1998

Institute of Information Technology.