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CONVERGENCE RATES IN REGULARIZATION FOR
EQUATIONS INVOLVING ACCRETIVE OPERATORS

NGUYEN BUONG

Abstract. The alm of thle paper Is to glve a theoretical analysls of convergence rates of the regularized
solutlons for operator equations Involving m-accretlve operators and of thelr convergence rates in

, combination with finlte-dimensional approximations. An application to nonlinear Integral equations ls
considered for lllustration.

1. INTRODUCTION

Let X be a real reflexive Banach space and X* be its dual space. For the sake of umphc:t.y,
norms of X and X* will be denoted by one symbol II- || We write (z*, z) instead of z*(z) for z* € X*
and 2 € X. Let A be a m-accretive operator in X, i.e, [17]

i) (A(z+ h) - A(z), J(h)) 2 0, Yz, h € X, where J is the dual mapping of X, i.e. the mapping from
X onto X* la.t.lnﬁea the condition :
(I(2), z) = ||==|l’ - ||J(=)II’. Vz € X, |
ii) R(A + AI) = X for each A > 0, where R(A) denotes the range of A and I is the identity operator
in X.
We are interested in solving the ill-posed operator equation [15]

Aw) = 1, feX. R

Without additional conditions on the structure of A, as strongly or uniformly accretive property,
problem (1.1) is, in general, an ill-posed one [1, 13, 14]. In order to solve it we have to use stable
methods, A widely used and effective method is the variational version of Tikhonov regularization
[11] that consists of minimizing the functional :

A=) = fel* + allall?, over X, (12)

where a > 0 is a parameter of regularization, and fs are approximations for f:
| Ifs = £ < & 6 —o0.

The aspects of existence, convergence and stability for the solutions of (1.2) have been established in
(4, 18).

For given equation (1.1) involving m-accretive operators there is another version of Tikhonov
regularization that consists of solving the regularized equation (see (1], [14])

Als) + alz-2.) = fi, (19)
where z, is some fixed element of X. For finding the solution z of (1.3) one can use the iterative

methods (see [3,11,12]). Actually, in order to use them first we have to approximate (1.3) by the
sequence of finite-dimensional problems

Ap(2) + a(z—2P) = fI}, z€ X,
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where f! = P, fs, 2 = P,z., Ay = P,AP,, P, is a sequence of linear projections from X onto X,,,
Paz — @, V2 € X, ||Pu|| < ¢, ¢ - some positive constant, and X,, is the sequence of finite-dimensional
subspaces of X such that

Xi€CXaC - CXnC 0 CX

JIt's easy to see that if A is m-accretive, A, are m-accretive, too. The aspects of existence and
convergence of the solutions 4, of (1.4) to the solution z¢ of (1.3), for each a > 0, has been studied
in [17). The question under which conditions the sequence z%,, converges to a solution zo of (1.1), as
a, § — 0 and'n — oo, was considered in [7]. The main purpose of this paper is the theoretical analysis
of convergence rates of the sequences {24} and {z,} in Section 2. In Section 8 an application in
the theory of nonlinear integral equations is considered for illustration.

Note that for the variational version of Tikhonov regularisation this question has been studied
in [4]. It was showed in (4] and [5] that the solutions of the variational version of the Tikhonov
regularisation converge to a solution zo of (1.1) if yn = ||(F = Pp)#o|| = o(a(n)) for the case when A
is linear and bounded. When A is a nonlinear monotone operator these problems are investigated in

(8]. ,
Here and below, the symbols — and — denote the strong convergence and the weak convergence,
respectively. The symbol a ~ b means a = O(b) and b = O(a). -

2. MAIN RESULTS

Theorem 2.1, Assume that the following condstions hold:
() A s twice-Fréchet differentiable with | A"(z)|| S M, M is some positive constant,
(45) there ezists an element v € X such that

A'(mo)u =Zo = Za,

(i) |[v]|M < 2.
Then, if o 18 chosen such that a ~ 6°, 0 < 6 < 1, we have

24 = 2o = O(6"), u = min{0,1 -~ 6},
Proof. From (1.1) and (1.3) it follows
A(zl) = A(wo) + a2zl = @o) = f5 - f - a(zo — 2.).
Put i
Pys) = _/; A'(zo + t(z4 = @0))dt + al.

Since Fréchet derivative of any accretive operators is also accretive, then Py (5) has the inversion P;(f,)
with || Pa'(f,)ﬂ < 1/a. Consequently, we have

e, = 2ol < 6/a+ ol P33 (@0 - 2.
< 8/a+ a[IP) (Pato) + 4'(20) = Page)) ]
< 8/a+ allv] + | (Pas) = A'(ao)v]
< 6/a+ 2allu] + [} M |24 ~ o] /2.
Therefore, ‘

(1= 0¥t — 2] < 6/a+ 2a).

‘Hence,
ll25 = 2ol < O(5*).
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‘Then, ||z4 — ol = O(6*) (see [2]).

Remark. We can consider the case, when instead of A we know its approximations A, which are also
m-accretive and such that ,
| An(2) = A(=)|| < hg(||=]l), V= € X,

where g(t) is some positive nondecreasing real function with g(0) = 0 (see [14]). It is not difficult to
prove that if cond;tionl (i) - (iii) of Theorem 2.1 hold, and if « is chosen such that o ~ (h + 6)?, then
the solution 24, of the equation
An(z) + az - 2.) = f ' (2.1)
converges to the solution zg of (1.1) and
ll2Gn = zoll = O((6 + h)").

Theorem 2.2. S'uppou that conditions (3)- (43) of Theorem 2.1 hold, c||v]|M < 2, and « is chosen
such that o ~ 6% +~0  0<6; < 1. Then we have

l2bn = zol = O(6#* + 442), wi = min{ﬂ;, 1-6).
Proof. First, we estimate the value |25, — 23|, where 2§ = P,zo. From (1.1) and (1.4) it implies
that
A" (agn) = A"(5) + a(aly, — 2§) = £ -
—aPp(zo = %.) + Pu(A(20) — A(28)), ™ = Paf.
Put 1
Pl = [ Pukaf +t(ah = ai))it + o,
0
where I;, denotes the identity operator in X,,. Clearly, the operator .P"‘ 8) is linear, bounded, and has

the inversion P ((a) t Xn = X, with || :((””H < 1/a. Since

P& Balfs = DIl S cb/a,
122053 Pa(A(z0) = A(s))]| = [ P45} P (4 (20)(Pa — )20
+§A"(zu + 7(Pn = 1)) (Py = Iao(Py = Do), 0< 7 < 1,
< || 4'(zo) |1/ + e M2/ (2a1) < O(vn/)

ol Palsy ) Palzo = @) | = all P25 (Pls) + Pad!(m0) = Pyl

S a1 +e) 1 [ Pl (o) = A + (a8 — a))oct]
a1 +¢) + el Mo + LM s g,

Therefore, l2%n = 281l < O((6 + )/ + a).

Then,
|l2&n = 28]l = O(8% +4?).

.Hence,
25 = zol| = O(8#* + ~42).

Now, equation (2.1) can be approximated by the sequence finite-dimensional problems
n(z) +a(z - 23) = f7, (2.2)

where A} = P, Ay P,, are also m-accretive, and equation (2.2) has a unique solution z7? € X,,. We
have the following result.



4 NGUYEN BUONG
Theorem 2.8. Assume that conditions (i) - (1) of Theorem £.1 hold, c||v||M < 2, and o 1s chosen
such that o ~ (6 + h)% + 4%, Then

ok = woll = O(8 + A" +242).

The proof of the theorem is completely similar as the proof of Theorem 2.2, Therefore, we omit
it here.

8. APPLICATION

We can use the results obtained in Section 2 to solve the nonlinear integral equations of Ham-
merstein’s type

ﬂﬂ-Lk&ﬁﬂﬂm&=fm, (3.1)

where F(t) is a real nonlinear function satisfying the condition
|F(t)| < a+ bjt|, a,b >0,

f(2) € Ly[0), the space of p-summable functions in o-finite measure set {1 C R", the kernel function
k(s,t) is such that the operator K in L[] defined by

(Ka)(s) = j; (s, t)a(t)dt
has an eigenvalue A = 1. If the operator G defined by
G(2)(s) = [ (s, 8) F(a(t)) dt

maps L,,[ﬂ] into Ly[0)] [12), and F(t) is Lipachits continuous with Lipschits constant | K||~*, then
I — @G is accretive (see [7]). If we want to solve (3 1) by the collocation-method (see [8]), then the
important condition which needs to be satisfied is that KG'(zo) does not have 1 as an elgenvalue,
where zo(t) is a solution of (3.1), This fact is equivalent to that I — KG'(zo) has to have the bounded
inversion. In applying our result, we can obtain the convergence rates under the weaker condition:
the range of J — KG'(z) contains the element zg — z,. Let the subsets {1, j = 1,2,...,,m, be such
that U, 0; = (1. Denote by f;(t) the characteristic function of (1;, Then the lmear combination of
{f1, fg. s fm} is the subspace L,(m) of the space Lp(ﬂ) We can choose

Pnf= E ( #(n W [y, T
where p=! +¢~! = 1, Then ||Py|| = 1 (see, [17)), and ||(I = Pn) || = O(1/m), V¢ € Ly(0) (see [10]).

Thus, the finite-dimensional regularized equation (1.4) in this case has a form

m

(1+a)f z(s)ds —[ f k(s, t)F(ZWf x(t)dt)dtds

f(s)ds, 7=1,...,.m (8.2)
U]

Put
" y,-=./; y(e)ds

J
We have the following system of nonlinear algebraic equations with unknowns y;, 7 = 1,2,..m
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(1+ a)y; = b:'F(Z es95) = iy

jmi

' ;= _1—- ¢ = 8)as,
by = -/;j(j; k(s, t)dt)dih Ccy (m,u(ﬂ;))lfﬂ' fi '/;’ f(e)d

This system of equations can be solved by the methods presented in [9).
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